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Abstract—Buffer insertion is a critical netlist optimization technique
in Physical Design (PD) that balances trade-offs between Power, Per-
formance, and Area (PPA) metrics. Traditional buffering methods rely
heavily on local heuristics, which do not scale and often result in globally
sub-optimal solutions. Prior Machine Learning (ML) techniques such as
BufFormer attempted to alleviate this limitation but remain prohibitively
time-consuming (and sub-optimal) due to their incremental nature. In this
paper, we introduce BUFFALO, a generative buffer insertion framework
that, for the first time in PD, formulates buffer tree generation as a
sequence-to-sequence task solved by Large Language Models (LLMs).
Particularly, given a design, BUFFALO performs single-shot generation
of buffer trees for all fanout-violating nets and INSTA-selected timing
critical nets. Furthermore, Group Relative Policy Optimization (GRPO),
a Reinforcement Learning (RL) technique, is employed to refine predicted
solutions in a PPA-configurable manner. Experimental results on 9 full-
chip designs in a 7nm node demonstrate that BUFFALO outperforms
an industry-leading commercial PD tool by 71% in Total Negative Slack
(TNS), 67.69% in Worst Negative Slack (WNS), and 83x in runtime
without incurring additional power consumption.

I. INTRODUCTION

Interconnect buffering is essential for achieving timing closure in
modern VLSI design flows [1], [2], [3]. As interconnect delay
increasingly dominates gate delay, at advanced technology nodes,
buffer cells can account for over 30% of a chip’s total cell count
[4]. Traditional buffering approaches typically involve a two-stage
pipeline: initially constructing either a timing-driven tree [5] or a
Steiner minimum tree [6], [7], [8], followed by wire segmenta-
tion [9] to determine candidate buffer sites. Subsequently, pseudo-
polynomial van Ginneken’s dynamic programming (DP) algorithms
[10], [11] are employed for buffer sizing and placement. This sequen-
tial methodology severely restricts achievable power-performance-
area (PPA) trade-offs, creates an explosively large DP state space
requiring heuristic pruning [12], [13], and results in multi-second
to multi-minute runtimes per net even for moderate complexities
[6]. Furthermore, since timing-driven buffer insertion is NP-complete
[14], these conventional methods inherently fail to scale efficiently
for large nets and full-chip applications.

Although machine learning and generative models [15], [16]
have revolutionized numerous electronic design automation (EDA)
tasks, interconnect buffering remains notably underexplored. Few
attempts have been made [17], [18] to address these challenges,
but these efforts suffer significant drawbacks. For instance, [17]
advertises “single-shot” buffer insertion but actually fragments the
buffering process into multiple sequential stages—including sink
clustering, incremental level-by-level tree growth, buffer sizing, and
placement—each introducing cumulative errors, latency, and complex
hyperparameter tuning. Because [17] is trained exclusively to mimic
[6] + [11] solutions, it is inherently bounded by their suboptimal
power-performance-area (PPA) results, with practical training con-
straints further degrading its performance. Additionally, it provides

†This work was conducted during an internship at NVIDIA.
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Fig. 1: Overview of our Buffalo flow

no mechanism for direct PPA optimization or online refinement
and is validated only on isolated synthetic nets without full-chip
demonstrations to prove scalability or practical deployment. These
critical shortcomings highlight an urgent need for an end-to-end, PPA-
driven buffering framework capable of scaling to real-world designs.

To address these limitations, we introduce BUFFALO, the first
truly end-to-end buffering framework driven by large language mod-
els (LLMs). Unlike fragmented, error-prone multi-stage heuristics,
BUFFALO employs a unified full-tree token representation that
concurrently predicts buffer-tree topology, sizing, and placement
in one seamless inference step, thereby eliminating cumulative er-
rors and significantly enhancing efficiency. To directly optimize
multi-objective PPA metrics and surpass traditional PPA ceilings,
BUFFALO uniquely employs Group Relative Policy Optimization
(GRPO)[19], a state-of-the-art reinforcement learning algorithm
proven effective in recent research. To the best of our knowl-
edge, BUFFALO is also the first framework rigorously validated
on complex, real-world design benchmarks, demonstrating practical
effectiveness and scalability.

Figure 1 illustrates our four-stage BUFFALO methodology. Rec-
ognizing that training a robust, generalizable large language model
(LLM) fundamentally relies on massive, high-quality data, we begin
by developing a net-level netlist generator. This generator synthe-
sizes diverse, realistic buffering scenarios conforming to industry
standards. Each generated synthetic net is buffered using a state-
of-the-art commercial buffering engine, yielding over 10 million
buffered nets that form a substantial dataset for training. In Stage
2, we leverage this rich dataset to fine-tune a pretrained LLM,
empowering it to predict comprehensive, industry-grade buffer-tree
topologies, sizing, and placements in a single inference pass. To
transcend mere imitation and actively discover superior buffering



TABLE I: Key differences: FLUTE+GL [10], [11] vs. BufFormer [17] vs. Buffalo (ours).
Feature van Ginneken’s style [10], [11] BufFormer [17] Buffalo (ours)
Dataset size N/A (non-ML based) 23K nets 10M+ nets
Data source N/A (non-ML based) FLUTE+GL synthetic nets Industrial-grade synthetic nets
Steiner-tree required Yes No No
Sink clustering required No Yes No
Buffer tree construction Two-stage (Steiner → sizing) Level-by-level growth + sizing One-shot tree + sizing generation
Language representation No only single tree level token sequence full-tree token sequence
Model none (heuristic rules) 6-layer Transformer (trained from scratch) T5-Large (pretrained LLM)
Refinement No No GRPO multi-objective RL
Optimization objective Delay-only heuristic Imitate FLUTE+GL PPA Direct multi-objective PPA optimization
PPA awareness No No Yes (via GRPO)
Scope Net-level only Net-level only Net + full-chip
Inference speed Baseline (CPU) Up to 160× (GPU) Fastest (one-shot GPU)
Delay evaluation - Elmore + LUT INSTA, commercial tool
Full-chip evaluation No No Yes

† [17] is trained to imitate solutions from [11]; due to irreducible training error, [11] represents an performance upper bound of [17].

strategies, we apply GRPO at the net level to directly optimize
multi-objective PPA metrics. In Stage 3, we scale the GRPO to
the entire chip, addressing the crucial limitation that localized net-
by-net optimizations cannot capture complex cross-net interactions.
By employing INSTA.netGrad, we systematically identify the most
critical nets and apply full-chip GRPO refinement to derive globally
optimal buffering policies. Finally, in Stage 4, we hand off the
remaining, less-critical nets to a conventional commercial placement
optimization flow and perform an extensive post-placement PPA
analysis, thoroughly validating BUFFALO’s efficiency and scalability.

Our main contributions are as follows:

• We introduce the first genuinely end-to-end buffering framework
utilizing LLMs to concurrently predict complete buffer-tree topol-
ogy, sizing, and placement in a single inference step.

• We are the first to directly optimize multi-objective PPA metrics
using Group Relative Policy Optimization (GRPO).

• We provide the first rigorous full chip validation of ML-driven
buffering approach using comprehensive, real-world benchmarks
at advanced 7nm technology nodes.

II. BACKGROUND AND PRELIMINARIES

A. Comparative Analysis of Buffering Methods
Interconnect buffering methods broadly fall into two categories: con-
ventional heuristic-based algorithms and emerging machine learning
(ML)-based approaches.

Table I contrasts traditional methods, ML-based models, and our
BUFFALO framework. Traditional methods (e.g., van Ginneken
style [10], [11]) typically involve multi-stage processes—constructing
Steiner trees, segmenting wires, and separately sizing and placing
buffers via dynamic programming—leading to cumulative errors and
limited PPA performance. ML-based methods, such as BufFormer
[17], attempt to address these issues using transformer-based models,
but still suffer from fragmented representations, indirect imitation-
based learning, and insufficient validation limited to isolated nets.

BUFFALO distinguishes itself with three key innovations: (1) A
unified full-tree representation enabling one-shot inference of com-
plete buffer-tree solutions. (2) Direct multi-objective PPA optimiza-
tion through GRPO. (3) Rigorous validation on full-chip benchmarks
at advanced 7nm technology nodes, demonstrating superior scalability
and practical applicability.
B. Group Relative Policy Optimization (GRPO)
Recently, reinforcement learning (RL) and preference learning has
emerged as a promising approach for optimizing complex design
tasks [20], [21], [22], [23], [24]. Preference tuning of LLMs tra-
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Fig. 2: Overview of our dataset generation with our RTL generator and
commercial buffer engine.

ditionally uses methods like Proximal Policy Optimization (PPO)
[25], which stabilizes reinforcement learning from human feedback
(RLHF)[26] by optimizing a clipped objective with a value-function
baseline and KL-divergence penalty. Direct Preference Optimiza-
tion (DPO) [27] simplifies this further by directly optimizing a
classification-style loss, eliminating the reinforcement loop and im-
plicitly controlling policy divergence. However, both PPO and DPO
utilize only pairwise or single-sample preferences, underexploiting
richer multi-candidate feedback.

Group Relative Policy Optimization (GRPO) [19] addresses this
limitation by replacing the traditional value-function critic with a
group-level baseline. Specifically, GRPO evaluates multiple candidate
outputs simultaneously, computing scalar rewards from a reward
model for each candidate. These rewards form group-relative ad-
vantages, enabling accurate advantage estimation without needing
an explicit value function. GRPO updates the policy using a PPO-
inspired clipped objective averaged across candidates. By leveraging
richer group feedback, GRPO achieves superior advantage estimation
accuracy, increased sample efficiency, and accelerated convergence.
C. INSTA Fast Timing Analysis
GPU acceleration has been increasingly adopted in EDA to handle
large-scale design optimization tasks [28], [29], [30], [31]. To support
efficient GRPO training, we employ INSTA [28], a GPU-accelerated
timing analysis tool. INSTA rapidly computes timing and gradient
data, significantly boosting training efficiency and enabling scalable
full-chip optimization.

III. METHODOLOGIES

A. Large Buffering Dataset Generation
We designed an automated end-to-end pipeline, illustrated in Figure 2,
which generates over 20 million paired examples of unbuffered and
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Fig. 3: Detailed architecture of our T5-based encoder-decoder model including dual-head decoding for structured tokens and coordinate prediction.

TABLE II: Parameter sampling ranges used in data generation.
Parameter Sampling Range

Driver/Sink Type ASAP7 standard cell library
Driver/Sink Size ASAP7 standard cell library

Fanout Count [1, 100]
Delay Target [100 ps, 1 ns]

Input Transition [0, 0.2×Tclk]
Input Delay [0, 0.2×Tclk]

Driver/Sink Placement [0, Width] × [0, Height]
Leakage/Dynamic Ratio (%) [0, 100%]

TABLE III: Cell and Pin Features for Model Input
Category Features

timing arrival arrival (max/min rise/fall)
capacitance pin (max/min rise/fall)

slew rate slew (max/min rise/fall)
slack metrics slack (max/min rise/fall)
voltage levels driver pin/ rail voltage (max/min)
fan Metrics Fan-in; fan-out count; fan-out load

physical Dim. cell area; bbox; pin count
Library Pin
Attributes

Pin cap (max rise/fall); drive resistance
(rise/fall); fan-out load

buffered nets. Initially, our RTL net generator synthesizes diverse,
high-fanout netlists under realistic constraints outlined in Table II,
including variations in driver and sink placements, fanout counts,
delay targets, input transitions, and input delays, ensuring com-
prehensive scenario coverage. Subsequently, we employ a custom
bufferOpt.tcl script integrated with a commercial physical-
design tool to insert buffers while adhering to realistic timing
constraints. Each resulting unbuffered and buffered net is serialized
into a structured depth-first search (DFS) bracketed sequence (e.g.,
D(L1L2L3L4L5) and D(B1(L1L2);B2(L3B3(L4L5)))), forming
an extensive supervised dataset suitable for training and evaluation.
B. Model Architecture
Building on the T5 encoder–decoder backbone, we enhance the
decoder to emit structured tokens and spatial coordinates. The key
architectural components are:
1) Transformer Backbone
We adopt the standard T5 architecture, which has stacked multi-head
self/cross-attention, and position-wise feed-forward layers.
2) Library-Cell Tokenization
To effectively represent buffer trees for sequence modeling, each
buffer tree is serialized into a sequence of tokens following a depth-
first search (DFS) traversal order. Instead of assigning a unique
token to each distinct gate type and size combination—which would
result in a large and sparse vocabulary pool—we adopt a factorized
tokenization scheme. Specifically, we split each library-cell name
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Fig. 4: Cell-embedding module that fuses cell and pin features through
self- and cross-attention mechanisms.

into two distinct tokens: one token denoting the gate type and
another specifying the gate size (as illustrated in Figure 3). This
decomposition naturally exploits the Cartesian structure inherent to
standard cell libraries, significantly reducing the total vocabulary
size and enabling efficient parameter sharing among cells of sim-
ilar attributes. Additionally, we introduce special tokens—<(> and
<)>—to explicitly encode tree structures within sequences. Standard
sequence delimiters such as <s>, </s>, and padding token <pad>
are also incorporated to facilitate structured modeling and sequence
completion tasks.

3) Input Representation and Embedding

To jointly capture a net’s structural topology and detailed per-cell
physical attributes, each net targeted for buffering is represented by
two parallel, positionally aligned sequences: (1) a bracket-delimited
token sequence generated via DFS, and (2) a corresponding cell-
embedding sequence. Each token in the DFS-based sequence pre-
cisely corresponds, position-by-position, to a cell embedding, ensur-
ing exact alignment between gate tokens and their associated features.
For each DFS-ordered cell, a dedicated embedding module (illus-
trated in Figure 4) integrates intrinsic cell-level features with pin-
level attributes. Specifically, to accommodate cells with variable pin
counts and accurately model signal propagation through internal cell
arcs, input and output pins undergo intra-group self-attention followed
by cross-attention from inputs to outputs. A pooling operation then
summarizes these pin embeddings into a fixed-size vector, which is
subsequently concatenated with intrinsic cell attributes. Finally, these
two aligned sequences are fused by the input embedding module
(Figure 6), producing a unified representation that enables the LLM
to effectively reason about both structural topology and electrical
context at each cell.
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4) Dual-Head Decoding for Buffer and Location Prediction
At each decoding step t, the decoder hidden state ht is shared by
two parallel heads:
• Structural head: selects the next token—either a cell identifier or a

structural symbol—from all available tokens.
• Location head: This coordinate prediction is meaningful only at

decoding steps corresponding exactly to the buffer’s size token
(which immediately follows the buffer’s type token), specifying
the buffer’s physical location. Coordinates predicted at all other
token positions (e.g., type tokens, drivers, or loads) are ignored.

C. Supervised Fine-Tuning
Our supervised fine-tuning strategy frames buffer-tree synthesis
as a sequence-to-sequence task, employing a pretrained T5 en-
coder–decoder model to translate depth-first search (DFS)-linearized
unbuffered net sequences directly into buffered nets in single shot.
Specifically, given each input net q, the process (outlined in Algo-
rithm 1) begins by tokenizing library cells into paired tokens (type and
size) and extracting associated cell features (lines 6–8). These token
sequences and features are then embedded separately, combined with
positional encodings, and jointly fed into the T5 encoder to generate
context-rich embeddings (lines 11–13). The decoder subsequently
outputs a sequence of predictions that include both structural tokens
and spatial coordinates for buffer placements (line 15). To effectively
train this joint decoding scheme, we introduce a composite loss
function comprising two components: a structural classification loss
and a masked coordinate regression loss (lines 17–22):

L =
∑
i

[
− log p(tokeni) + λmi ∥̂li − li∥22

]
, (1)

where the mask mi activates coordinate loss only at buffer size
token positions, ensuring precise learning of meaningful buffer loca-
tions (lines 19–21). Here l̂i and li denote predicted and ground-truth
buffer coordinates, respectively, and the hyperparamete λ balances
structural and spatial loss.
D. Group Relative Policy Optimization (GRPO)
While supervised fine-tuning (SFT) effectively trains the policy πθ

to imitate reference solutions generated by commercial buffering
tools, it treats all solutions as equally optimal, lacking the ability
to balance trade-offs between power, performance, and area (PPA).

Algorithm 1 BUFFALO: Supervised Fine-Tuning

Input: initial parameters θinit; dataset D = {(q, t)}; regression weight
λ; batch size M ; learning rate η; epochs E

Output: fine-tuned parameters θ

1: θ ← θinit
2: for e = 1, . . . , E do
3: for each mini-batch Db of size M do
4: L ← 0
5: for each sample (q, t) ∈ Db do
6: // 1. Tokenize libcells into (type, size)s and extract features
7: tokens← libcell tokenizer(q)

8: ▷ e.g. [A type, A size, ’(’, B type, B size, . . . ]
9: feats ← feature extractor(q)

10: // 2. Embed tokens & features + positional encoding
11: Etok ← Embedtok(tokens)
12: Efeat ← Embedfeat(feats)
13: X ← Etok + Efeat + PosEnc

14: // 3. Forward through encoder–decoder
15: (pi, ℓ̂i)

T
i=1 ← Decoderθ(Encoderθ(X))

16: // 4. Compute composite loss (Eq. 1)
17: for i = 1, . . . , T do
18: L += − log pi(ti)

19: mi ←


1 if tokeni is a size token

and tokeni−1 is a buffer type
0 otherwise

20: L += λ mi ∥ℓ̂i − ℓi∥22
21: // 5. Gradient update
22: θ ← θ − η∇θ L

To explicitly address this limitation, we introduce Group Relative
Policy Optimization (GRPO), a lightweight, policy-based refinement
method designed to directly align buffer-tree predictions with desired
PPA objectives. GRPO operates by evaluating multiple candidate
buffer trees per net and optimizing the policy based on their relative
PPA quality. Specifically, for each net, we generate candidate buffer-
tree solutions and quantify their relative performance using Group
Relative Advantage Estimation (GRAE):

A(g) = w1
∆TNS(g) − µTNS

σTNS
+ w2

−∆Area(g) − µArea

σArea
, (2)

where ∆TNS is the improvement in timing slack and ∆Area
epresents area increase. Each objective is standardized independently
to maintain scale invariance and subsequently combined via convex
weighting factors w1, w2. GRPO employs the mean advantage across
candidates within each group as a baseline, eliminating the need for
an explicit value-function critic or external ranking models, thereby
significantly reducing computational overhead. To efficiently perform
the required multi-step evaluations, we integrate INSTA [?], a GPU-
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accelerated timing analysis engine capable of rapid assessment.
In the mean time, we leverage GRPO to explicitly enforce the

structural legality of generated buffer trees by penalizing outputs that
violate predefined structural requirements. An output is considered
legal only if it satisfies all of the following conditions:
• Driver match: the first token exactly matches the driver cell’s name.
• Balanced parentheses: all parentheses are properly nested and

closed only at the end of the sequence.
• Buffer grouping: each opening parenthesis ( immediately follows

a buffer candidate rather than an input leaf.
• Load-only groups: groups indicated by parentheses contain only

leaf sinks and no additional buffers.
• Complete leaf coverage: each original input leaf sink appears

exactly once without repetition or omission.
To strongly discourage illegal predictions, any candidate failing

these criteria is assigned a fixed z-score advantage of -3 (three
standard deviations below the group mean) after GRAE, significantly
penalizing outputs that cannot be parsed into valid buffer trees.
During inference, we apply token masking to enforce legality in every
decoding step.

Algorithm 2 summarizes steps in each GRPO iteration:
1) Set the reference policy πref to the current policy πθ , or initialize

it from the SFT policy at the first iteration.
2) Sample a mini-batch of nets, each generating G candidate buffer-

tree solutions under πθ .
3) Evaluate each candidate based on timing slack improvement

∆TNS and area change ∆Area.
4) Update πθ by maximizing a clipped surrogate objective with KL-

divergence regularization:

JGRPO(θ) = Eq∼P (Q), {oi}∼πref

[ 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min(ri,t Âi,t,

clip(ri,t, 1− ϵ, 1 + ϵ) Âi,t)− β DKL(πθ∥πref)
]
. (3)

where ri,t =
πθ(oi,t | q, oi,<t)

πref(oi,t | q, oi,<t)
, q ∼ P (Q). (4)

and enforce a trust region with a KL-penalty:

DKL[πθ∥πref ] = Eo∼πref

[
log

πref(o)

πθ(o)

]
. (5)

E. Chip level GRPO
Although per-net GRPO iterations successfully optimize local power-
performance-area (PPA) trade-offs, independently applying these
policies to individual nets can inadvertently degrade overall chip-level
performance. For instance, optimizing an upstream net locally might
shift critical timing constraints downstream, causing unnecessary
power and area overhead. To address this issue, we propose a compre-
hensive chip-level GRPO strategy that coordinates buffering decisions

Algorithm 2 BUFFALO: Group Relative Policy Optimization
(GRPO)
Input: initial policy πθinit ; INSTA evaluator; dataset D; weights w1, w2;

batch size M ; samples per prompt G; inner its µ

Output: optimized policy πθ

1: πθ ← πθinit
2: for i = 1, . . . , I do
3: πref ← πθ ▷ freeze for KL/trust-region
4: for j = 1, . . . ,M do
5: Sample mini-batch Db ⊆ D
6: for each q ∈ Db, g = 1, . . . , G do
7: og ∼ πθ(· | q) ▷ generate buffer tree
8: ∆TNSg ← INSTA(og)

9: ∆Ag ← bufferArea(og)
10: ℓg ← I{valid(og)} ▷ 1 if valid, else 0
11: Compute group stats:
12: (µ1, σ1)← mean, std({∆TNSg})
13: (µ2, σ2)← mean, std({∆Ag})
14: Compute normalized advantages:
15: Ag

TNS ← (∆TNSg − µ1)/σ1

16: Ag
Area ← (−∆Ag − µ2)/σ2

17: for g = 1, . . . , G do
18: if ℓg = 0 then
19: Ag

TNS ← −3, Ag
Area ← −3 ▷ penalize illegal

20: Combine weighted advantage:
21: Ag ← w1 A

g
TNS + w2 A

g
Area

22: for k = 1, . . . , µ do
23: Update πθ by maximizing clipped GRPO surrogate (with
24: KL(πθ∥πref))
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for multiple critical nets in parallel, as detailed in Algorithm 3.
Because buffering inevitably increases area and power, we begin by
identifying the most timing-critical nets via INSTA.netGrad, which
quantifies each net’s impact on overall timing delay. As illustrated in
Figure 7, we select these top-ranked critical nets and apply our trained
buffering policy collectively in a unified GRPO update. During chip-
level optimization, the GRPO loss function (Equation 3) incorporates
global timing metrics evaluated through INSTA.fullSTA along with
the corresponding area overhead. This combined evaluation ensures
the updated policy properly balances global timing improvements
against area and power penalties. After several fine-tuning iterations,
the policy adapts to the overall timing picture, minimizing over-
head while enhancing design performance. The resulting optimized
buffering configuration is subsequently integrated into the standard
commercial design flow for final verification and sign-off.

IV. EXPERIMENTAL RESULTS

This section presents the experimental validation of our proposed
buffering methodology, focusing on supervised fine-tuning and Group
Relative Policy Optimization (GRPO). Experiments were conducted
on a Linux compute cluster with 8 NVIDIA A100 GPUs (each with
96GB HBM2E), and AMD EPYC 7742 64-Core Processor with 2TB
of RAM. utilizing Python, PyTorch, and Hugging Face Transformers



Algorithm 3 BUFFALO: Chip-Level GRPO Fine-Tuning

Input: net-level checkpoint πθnet ; INSTA.netGrad; INSTA.fullSTA; net
set N ; weights w1, w2; batch size M ; inner its µ; top-k selector

Output: chip-tuned policy πθ

1: πθ ← πθnet

2: for i = 1, . . . , I do
3: πref ← πθ ▷ freeze for KL/trust-region
4: Sample Nb ⊆ N with |Nb|= M
5: for each net n ∈ Nb do
6: sn ← INSTA.netGrad(n) ▷ impact score
7: Select high-impact nets H ← top−k({sn})
8: for each n ∈ H do
9: on ∼ πθ(· | n) ▷ generate buffer tree

10: ∆TNSn ← INSTA.fullSTA(on)

11: ∆An ← bufferArea(on)
12: ℓn ← I{valid(on)} ▷ 1 if valid, else 0
13: Compute group stats:
14: (µ1, σ1)←mean, std({∆TNSn}n∈H)

15: (µ2, σ2)←mean, std({∆An}n∈H)

16: for each n ∈ H do
17: ATNS,n ← (∆TNSn − µ1)/σ1

18: AArea,n ← (−∆An − µ2)/σ2

19: if ℓn = 0 then
20: ATNS,n, AArea,n ← −3, −3
21: An ← w1 ATNS,n + w2 AArea,n

22: for k = 1, . . . , µ do
23: Update πθ by maximizing clipped GRPO surrogate with
24: KL(πθ ∥πref)

25: Record Pareto-front solutions from {(n, on)}n∈H
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for model implementation and training.
A. Supervised Fine-Tuning Results
Figure 8 depicts the supervised fine-tuning (SFT) loss curves of our
T5-based encoder-decoder model. This model concurrently predicts
buffer-tree structures (classification) and buffer coordinates (regres-
sion). The training on 20M dataset spanned 6 days, demonstrating
a consistent decrease in regression loss (mean-squared error for
coordinate prediction) from approximately 0.18 to below 0.01, and
classification loss (cross-entropy for tree tokens) from roughly 4.5 to
about 0.1. The smooth training and validation curves underscores the
robustness and stability of our dual-task training procedure.
B. GRPO Rewards Trajectory
For GRPO, we set the learning rate of the policy model as 1e − 4.
The KL coefficient is 0.04. For each net, we sample 10 outputs, and

load

buffer

driver

Commercial Tool BUFFALO

TNS: 77 ps

WNS: 27 ps

Power: 0.066mW

Max Fanout: 6

TNS: 0 ps

WNS: 3 ps

Power: 0.061mW

Max Fanout: 8

Fig. 10: Commercial tool (left) vs. BUFFALO(right).

the training batch size is 16. With INSTA as a reward proxy, each
batch spans ∼ 5 second. Figure 11 illustrates the training curves of
our GRPO-based optimization process across six representative nets.
Each iteration comprises multiple update steps (M ), as detailed in
Algorithm 2. Each update step involves sampling groups of buffer-
tree candidates, computing their normalized advantages (GRAE), and
refining the policy parameters πθ based on reward signals provided
by the INSTA static timing analyzer. We utilize improvements in
Total Negative Slack (∆TNS) (in blue, left axis) and reductions
in buffer area overhead (∆area) (in red, right axis) as reward
metrics. Solid lines represent mean values, while dashed lines indicate
medians calculated across candidate groups. Horizontal benchmarks
correspond to baseline solutions obtained from a commercial tool for
direct comparison. Over initial iterations, GRPO consistently achieves
marked reductions in buffer area overhead while simultaneously
enhancing timing slack by several tens to hundreds of picoseconds.
Notably, both area and slack metrics stabilize after approximately
80–100 iterations, demonstrating effective convergence of our GRPO
framework. The results clearly indicate that GRPO learns buffer
insertion strategies that significantly improve upon baseline ap-
proaches, effectively achieving similar or improved timing closure
with substantially less buffer area overhead.

C. GRPO Buffer-Tree Trajectory

Figure 12 illustrates the iterative progression of buffer insertion for
a representative net during GRPO training. Each snapshot shows
the driver (red), sinks (blue), and inserted buffers (green). Metrics
for area overhead (∆Area) and timing-slack change (∆TNS) are
annotated above each subplot. Arrows between panels indicate the
metric shifts from iterations 0 to 70. Starting from the supervised
baseline (iteraion 0: (∆area = 0.64), ∆TNS = 2032.67)),
GRPO progressively refines buffer-tree topology and placements. By
iteration 70, area overhead decreases to 0.36 and slack improves to
2447.82 ps, showcasing GRPO’s simultaneous optimization of tree
topology and locations of buffers for enhanced area-timing trade-offs.

D. Validation with Real-World Objectives

To validate the alignment of our GRPO proxy rewards with actual
design objectives, we export its buffer solutions of a representative
net over the GRPO iterations to a commercial physical design flow
to measure the actual TNS and power. Figure 9 compares the proxy
metrics (top row: ∆TNS and ∆Area) during GRPO training) with
actual tool-measured outcomes (bottom row: ∆TNS and ∆Area).
The notable increase in GRPO proxy ∆TNS around iteration 30
closely corresponds to an equivalent improvement in actual timing
slack, while the steady decrease in proxy area aligns clearly with
a reduction in measured power. This strong correlation underscores
the reliability of our proxy reward, confirming that GRPO effectively
optimizes for genuine timing and power objectives.
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E. Comparison with Commercial Tool

For buffering a single net, our approach typically requires between
0.5 to 1 second, whereas commercial tools commonly need around
30 to 43 seconds for nets with high fanout. Specifically, on a
representative net with 50 sinks, BUFFALO achieves up to an 83×
speedup compared to commercial solutions. Figure 10 contrasts buffer
insertion outcomes for a representative net between a commercial tool
(left) and our BUFFALO GRPO (right). The commercial solution
yields a Total Negative Slack (TNS) of 77 ps, Worst Negative
Slack (WNS) of 27 ps, power consumption of 0.066 mW, and a
maximum fanout of 6. In comparison, Buffalo achieves zero TNS,
significantly reduces WNS to just 3 ps, lowers power consumption to
0.061 mW, and accommodates a higher maximum fanout of 8—well
within the design’s max fanout constraint (16). This direct comparison
demonstrates that our LLM-driven, GRPO-refined buffering approach
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Fig. 13: Distribution of net gradients computed by INSTA.netGrad for
the pci_bridge32 and ac97_top designs.

surpasses commercial methods by delivering superior timing closure
and lower power consumption.



TABLE IV: TNS, Power and WNS across benchmarks. Percentage improvements relative to the commercial baseline are in parentheses.

Benchmark Commercial Tool [6]+[11]/ [17] BUFFALO SFT (ours) BUFFALO GRPO (ours)
TNS
(ns)

Power
(mW)

WNS
(ns)

TNS
(ns)

Power
(mW)

WNS
(ns)

TNS
(ns)

Power
(mW)

WNS
(ns)

TNS
(ns)

Power
(mW)

WNS
(ns)

ac97 top -139.27 59.79 -0.27 -154.70 59.60 -0.15 -135.03 59.65 -0.19 -101.27 (−27.29%) 60.66 -0.18 (−33.58%)
aes -45.75 7.92 -0.18 -65.85 8.00 -0.24 -43.24 8.13 -0.19 -23.14 (−49.42%) 7.99 -0.15 (−18.13%)
des -4.29 4.70 -0.13 -10.81 4.35 -0.25 -2.67 4.47 -0.11 -1.24 (−71.10%) 4.31 -0.04 (−67.69%)
i2c master -4.79 2.86 -0.15 -5.01 2.89 -0.15 -4.79 2.92 -0.14 -4.66 (−2.71%) 2.84 -0.10 (−33.99%)
mc top -125.37 11.41 -0.40 -140.03 11.53 -0.33 -125.72 11.57 -0.37 -107.66 (−14.13%) 11.62 -0.36 (−9.60%)
pci bridge32 -321.57 37.82 -0.23 -449.17 38.29 -0.35 -294.60 38.24 -0.21 -188.99 (−41.23%) 38.29 -0.28 (+21.15%)
tv80s -41.86 3.01 -0.19 -62.24 3.02 -0.26 -39.36 3.01 -0.20 -25.10 (−40.04%) 2.99 -0.16 (−17.37%)
arianne133 -653.82 497.09 -0.28 -829.81 496.05 -0.52 -674.76 496.80 -0.24 -210.87 (−67.77%) 496.60 -0.20 (−30.63%)
arianne136 -277.40 503.54 -0.13 -534.94 504.18 -0.28 -351.27 502.19 -0.13 -175.30 (−36.80%) 503.63 -0.09 (−33.33%)

† [17] is trained to imitate solutions from [11]; due to irreducible training error, [6]+[11] represents an upper bound and a much stronger baseline.
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Fig. 14: Visualization of Total Negative Slack vs. ∆Area over 120
iterations of full-chip GRPO optimization.

F. Net Selection and Chip-Level GRPO
The net gradient computed by INSTA.netGrad quantitatively mea-
sures the sensitivity of the TNS to perturbations in individual net
delays. Figure 13 illustrates the distribution of these net gradients
for the pci_bridge32 and ac97_top designs. The majority
of nets exhibit gradients near zero, indicating minimal influence
on timing closure. However, a distinct subset of nets demonstrates
significantly negative gradients, forming a pronounced negative tail in
the distribution. We define the ”knee point” as the gradient threshold
at which the distribution sharply transitions from low-impact to high-
impact. To efficiently and effectively enhance overall PPA metrics, we
target our buffering effort by selecting nets exceeding this threshold
and violating the maximum fanout constraint for GRPO.

Figure 14 illustrates the full-chip GRPO optimization trajectory
for the pci_bridge32 design. The left panel plots the evolution
of TNS (in blue) and buffering area overhead (∆area, in red) across
120 iterations. Initially, both metrics exhibit fluctuations as the policy
explores diverse buffering configurations but subsequently stabilize
and converge toward significantly improved TNS and reduced area.
The right panel depicts the trade-off between TNS and ∆area, with
a color gradient representing iteration progression. Early iterations
generate scattered solutions in suboptimal regions (top-left). As iter-
ations proceed, solutions systematically transition toward the Pareto
frontier with reduced area and slack (bottom-right). This optimization
trajectory demonstrates that the full-chip GRPO effectively guides
buffering toward superior PPA trade-offs.

V. FULL-CHIP EVALUATION RESULTS

We export the buffering solution generated by the full-chip GRPO
stage to the real design and run it through subsequent optimization
and post-placement PPA evaluation, as described in Flow 1. We
compare our results against a commercial tool and state-of-the-
art (SOTA) methods [11], [17]. Since [17] is trained to learn the
buffering solutions from [11], and given the irreducible training error,
the method of [11] represents an upper bound and thus a stronger
baseline. We therefore use the latter directly as a stronger baseline for

comparison. For the commercial tool, we use its default optimization
engine. For [11], we adopt the open-source implementation [32]. Note
that [17], [11] do not inherently include a net-selection mechanism
and operate only at the net level rather than the chip level. However,
for a fair comparison, we buffer the exact same nets as BUFFALO,
with the nets selected by INSTA, and run them through the identical
downstream optimization flow for PPA evaluation. The results are
summarized in Table I.

VI. FULL-CHIP EVALUATION RESULTS
We evaluate the BUFFALO framework on nine benchmarks under the
ASAP7 7, nm technology node, following the workflow illustrated
in Figure 1. Specifically, we deploy buffering solutions generated
by our full-chip GRPO approach, subsequently apply placement
optimization on remaining nets, and conduct detailed post-placement
Power-Performance-Area (PPA) analysis.

To establish rigorous evaluation baselines, we compare BUFFALO
GRPO against a leading commercial buffer tool as well as SOTA
academic buffering methods [11], [17]. For the commercial baseline,
we employ its built-in optimization engine with default settings.
Among the academic baselines, [17] is specifically trained to imitate
the buffering solutions from [11]. Given the inherent irreducible
errors associated with learning, the method of [11] provides a theo-
retically stronger baseline. We implement this using the open-source
OpenPhySyn framework[32]. It is noteworthy that both academic
baselines [17], [11] operate at a per-net granularity, lacking scalability
for full-chip buffering or intrinsic mechanisms for efficient chip-
level net selection. Therefore, to ensure an equitable comparison, we
enhance their methodologies by applying buffering solely to the exact
subset of nets identified as timing-critical by our INSTA-driven net-
selection stage. Subsequently, all evaluated methodologies undergo
an identical downstream optimization and evaluation process.

Table I demonstrates the substantial performance advantage of
BUFFALO GRPO, achieving improvements of up to 77.7% in TNS
and 67.7% in WNS compared to the commercial baseline, with min-
imal or negligible additional power overhead. These significant gains
confirm that our BUFFALO framework effectively generates buffer-
tree solutions that optimally balance timing closure improvements
with power efficiency, thereby enhancing overall PPA outcomes.

VII. CONCLUSION
In this paper, we introduce BUFFALO, the first LLM-based buffering
framework capable of predicting complete buffer trees in a single
shot and directly optimizing multi-objective PPA via GRPO. Com-
prehensive full-chip validation on nine benchmarks under a 7nm
node demonstrated that BUFFALO outperforms an industry-leading
commercial PD tool by 77.7% in TNS, and 67.7% in WNS, without
incurring additional power consumption, demonstrating BUFFALO’s
practicality for advanced physical design flows.
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