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Traditional Design Space Exploration (DSE) methods in Physical Design (PD), such as Bayesian Optimization
(BO) and Ant Colony Optimization (ACO), as well as state-of-the-art commercial tools like Synopsys DSO.ai,
typically treat the design flow as a black box, lacking insight into the underlying designs. This hinders their
ability to generalize across unseen designs. In this paper, we introduce FastTuner, an innovative Reinforcement
Learning (RL) agent that leverages Graph Neural Networks (GNNs) and Transformers to understand the
underlying designs and enable rapid DSE on unseen designs across various PD stages. Our approach incorpo-
rates an attention-based framework for autoregressive and conditional parameter tuning and introduces a
power, performance and area (PPA) estimator to predict end-of-flow PPA metrics, significantly accelerating
RL reward computation. Extensive evaluations on seven industrial designs using the TSMC 28nm technology
node demonstrate that FastTuner significantly outperforms existing state-of-the-art DSE techniques in both
optimization quality and runtime, achieving improvements of up to 79.38% in Total Negative Slack (TNS),
12.22% in total power, and more than 50x reduction in runtime.

CCS Concepts: •Hardware→ Physical design (EDA); •Computingmethodologies→Machine learning.

Additional Key Words and Phrases: Physical Design, Reinforcement Learning, graph neural network

1 INTRODUCTION
Commercial Physical Design (PD) tools offer a broad range of tunable parameters, enabling cus-
tomization to meet diverse design requirements. While this flexibility enhances optimization
potential, it also complicates design space exploration, making it difficult to pinpoint configura-
tions that optimize design goals. Conventional methods, including the widely used "auto-tuning"
features in commercial tools, often suffer from prohibitively long runtimes and a vast number
of permutations, stretching over days to weeks. Moreover, these methods require a "cold start"
for each new design and struggle to leverage knowledge from previous tuning efforts. As design
complexity escalates and the demand for rapid time-to-market intensifies, traditional approaches
are becoming increasingly impractical. Consequently, there is an urgent need for a more efficient
and scalable Design Space Exploration (DSE) technique.
Recent advancements in automated DSE techniques have emerged to tackle the challenges of

extensive PD design spaces. In the industry, tools like Synopsys DSO.ai [1] and Cadence Cerebrus
Intelligent Chip Explorer [2] are designed to automatically optimize engineer-specified design
goals. In academia, state-of-the-art methods, primarily based on Bayesian techniques, have been
developed to optimize Power, Performance, and Area (PPA) objectives, as demonstrated in [3–6].
Recently, more advanced techniques, such as those proposed in [7] (which is publicly available
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as an open-source implementation1) and [8], have been developed to effectively address multi-
objective optimization. While these methods have shown considerable effectiveness, they fall
short in leveraging underlying design features, requiring time-consuming and resource-intensive
re-tuning for each new design.
To address the limitations of existing methods, some recent works have attempted to embed

design features and demonstrate generalizability across different designs. For example, [9] leverages
a generative adversarial network (GAN) to optimize clock tree synthesis, while [10] introduces a
deep reinforcement learning approach for optimizing placement parameters. However, both of these
approaches are confined to specific stages within the PD workflow and are not fully "automatic."
They require substantial expertise to pre-configure near-optimal solutions, limiting their ability to
achieve optimal performance without manual intervention.

Several other works, both in academia and industry [11–15], have been proposed to address the
design space exploration problem. However, these methods often face limitations in transferability
and scalability and typically rely on static models or datasets. Many of these studies focus on niche
architectures or specific environments, such as the RISC-V BOOM microarchitecture or FPGA
designs, whichmay restrict the broader applicability of their findings to other architectures or design
spaces. These methods can struggle with scalability, particularly when applied to larger or more
complex design spaces, andmay require significant retraining or adaptation when design constraints
or objectives change. Additionally, the reliance on static datasets can lead to suboptimal results
compared to onlinemethods that adapt in real-time to evolving design parameters and environments.
Consequently, the effectiveness of these techniques often depends on the representativeness of the
training data, which might not always reflect real-world scenarios, further limiting their practical
utility.
In this paper, we introduce a fast and fully automatic RL tuning methodology using Decision

Transformers to address current limitations[16–18]. Our framework features three key components
that accelerate the exploration process: (1) Offline-trained PPA estimators provide immediate
feedback to the RL agent, effectively replacing the time-consuming place-and-route (P&R) process.
(2) Our framework generalizes effectively to unseen designs encompassed by the spectrum of prior
training, delivering rapid adaptation without per-design retraining. (3) The FastTuner is built on
a Transformer Decoder framework, allowing users to fine-tune specific parameter subsets and
efficiently reduce the search space.

Our primary contributions include:

• Hybrid FastTuner Framework: We present a novel Hybrid FastTuner framework that enables
online RL tuning using offline-trained PPA estimators, effectively eliminating the need for
the extensive P&R process and reducing tuning duration from hours to seconds. This hybrid
approach ensures rapid tuning by leveraging pre-trained models to provide instant feedback,
allowing real-time and iterative parameter tuning.
• Generalization Through GNN: FastTuner supports transfer learning through a GNN, enabling
it to adapt to diverse designs. Beyond simply capturing correlations between parameters and
PPA metrics, our approach leverages underlying design features to drive optimization. A pre-
trained FastTuner can significantly enhance optimization with minimal fine-tuning iterations.
This adaptability ensures that the model capitalizes on pre-training efforts, minimizing the
need for extensive retraining with each new design.
• Decision Transformer Tuner: Our framework leverages a Transformer decoder architecture,
offering not only superior decision-making capabilities but also the flexibility for users to

1https://github.com/shelljane/REMOTune
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fine-tune specific parameter subsets. This architecture captures the intricate interdependen-
cies between parameters, ensuring that tuning is context-aware rather than independent.
Additionally, the Transformer tuner allows users to resume tuning from any set of fixed pa-
rameters, picking up precisely where it left off. This approach provides a seamless integration
interface with other frameworks, facilitating a comprehensive and adaptable tuning process
that evolves with the design needs.
• Superior Optimization Performance Across Benchmarks: Our methods consistently outper-
form academic state-of-the-art (SOTA) approaches by a considerable margin across seven
industrial benchmarks and distinct optimization objectives. This consistent performance
across various benchmarks underscores the robustness and reliability of our approach, making
it a viable solution for industrial applications.

2 MOTIVATIONS AND RELATEDWORKS
2.1 Why RL for Parameter Optimization?
Parameter optimization in physical design can be effectively modeled as a sequential decision pro-
cess, where each timestep involves selecting a parameter value to optimize the final PPA metrics. RL
is particularly well-suited for this task due to its ability to learn policies that maximize cumulative
rewards over a sequence of decisions. Recently, reinforcement learning (RL) has demonstrated
promising success in the realm of electronic design automation (EDA) [19], with notable examples
including [10, 16–18, 20–22]. In this work, we propose a fast RL-based learning framework for phys-
ical design parameter tuning. Our RL-based approach offers several advantages. Unlike traditional
optimization methods, which often suffer from the curse of dimensionality and require complete
model retraining when additional parameters are introduced, our approach extends the decision
process with additional time steps. This makes it efficient and scalable, even in high-dimensional
parameter spaces. Additionally, the continuous learning capability of our model allows it to adapt in
real-time with newly collected data. This reduces reliance on static databases and enables immediate
updates to the decision policy, resulting in progressively better performance.

By integrating RL with neural networks, such as GNNs, we can effectively capture and leverage
the underlying design features. This integration enhances the transferability and generalization of
the learned policies in different designs, further improving the overall effectiveness of the tuning
process.

2.2 Why Transformer?
We have selected the Transformer [23] as our decision-making agent due to its superior capabilities
in sequential tuning. The attention mechanism inherent in the Transformer facilitates sequential
decision-making by leveraging previous decisions and automatically discerning and quantifying
correlations between parameters across different stages. Moreover, by utilizing the Transformer
framework, we extend our tuning approach to parallel a sentence completion task, where the
model autonomously continues from the point it left off. In this framework, when provided with a
subset of user-specified parameters, our tuner automatically completes the tuning of the remaining
parameters to arrive at an optimal solution. This capability allows users to efficiently fine-tune
specific subsets of parameters, thereby enhancing the overall effectiveness of the tuning process.

2.3 Why GNN?
State-of-the-art (SOTA) methods have demonstrated strong performance in optimizing physical de-
sign parameters; however, their limited transferability remains a significant challenge, as they often
require retraining from scratch when applied to new designs. Recently, graph learning has gained
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Fig. 1. High-level overview of our hybrid framework: FastTuner optimizes parameters sequentially online by
leveraging a pre-trained offline PPA estimator to provide instantaneous reward feedback, eliminating the
need for time-consuming ICC2 evaluations.

widespread attention for its ability to embed design netlists into meaningful representations[24]. For
instance, the authors of [25] and [26] introduced graph-based learning techniques utilizing Graph
Neural Networks (GNNs) to embed netlists effectively, capturing both technology and design-
specific parameters. Other notable works, such as [27–35], have further advanced GNN-based
approaches in physical design optimization.
Building on this approach, we employ GNNs to utilize knowledge gained from previously

optimized designs, enabling our model to generalize and apply tuning experience across a wide
range of design scenarios.

2.4 Related Works
In this paper we implement and compare the following ML methods widely adopted for parameter
optimization:
Bayesian Optimization (BO): Bayesian Optimization employs a surrogate Gaussian process

model to probabilistically predict the PPA based on parameter configurations. With the prediction,
an acquisition function guides the selection of the next configuration to sample. The chosen
configuration undergoes evaluation with real 3D P&R, and the surrogate model is updated with
the new observation. This iterative process enhances the accuracy of the surrogate model over
successive steps.

Ant Colony Optimization (ACO): ACO, inspired by real ants, models parameter optimization
as a graph. With m parameters, the graph has m+1 nodes, each representing a parameter. Edges
between nodes, associatedwith pheromone levels, denote possible configurations for each parameter.
Paths from the first to the last node correspond to parameter configurations. After evaluating
performance, pheromone levels on the chosen path are updated based on QoR (quality of result).
This iterative process continues until convergence.

ACM Transactions on Design Automation of Electronic Systems
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Fig. 2. The detailed architecture of FastTuner comprises the following main components: GNN, Transformer
Decoder, Parameter Tuners, and PPA Estimator. The Transformer decoder leverages graph embeddings
and predetermined parameter embeddings to sequentially decode parameters using customized parameter
predictors.

3 METHODOLOGY
3.1 Overall Optimization Flow
Figure 1 illustrates the overall optimization flow, which integrates both online and offline training
strategies. The process begins with an offline phase, where we train PPA estimators using supervised
learning on a diverse dataset of parameter-netlist combinations. This dataset is constructed from
post-route PPA results derived from various configurations across different designs.
In the online tuning phase, FastTuner leverages netlist embeddings, combined with predefined

parameter embeddings as contextual features. At each time step t, the framework uses these
embeddings and all previously selected parameters to predict the next action. Once all parameters
have been sequentially chosen, they are assessed by the PPA estimator to determine the reward.
FastTuner is then updated using the Proximal Policy Optimization (PPO) algorithm based on the
calculated reward. This iterative tuning process continues until the system reaches a point where
further reward improvements diminish.

3.2 Reinforcement Learning Formulation
Our objective is to sequentially tune a user-selected set of parameters throughout the design flow
to achieve optimal post-route PPA. We formalize the problem as a Markov decision process (MDP)
and solve it using RL. Our RL formulations are as follows:

• 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑠): In our setup, a state at time step 𝑡 , denoted as 𝑠𝑡 , consists of two key elements.
First, it captures the configuration of the parameters that have been tuned from time steps
1 through 𝑡 − 1. These tuned parameters are automatically attended to by the Transformer
tuner as hidden features. Second, the state also encompasses the design characteristics of the
design currently being optimized. We employ a GNN to encode the essential physical design
characteristics.
• 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝑎): An action 𝑎𝑡 denotes a valid value that can be selected for the parameter being
tuned at time step 𝑡 .
• 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑟 ): In our framework, the reward is set to zero for each intermediate action
𝑎1, 𝑎2, . . . , 𝑎𝑇−1. The final reward is only assigned after the last action, 𝑎𝑇 , which receives a
reward corresponding to the estimated PPA value derived from the complete P&R process.
• 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 (𝜏): A trajectory 𝜏 is a complete sequence of parameter selections from time step
𝑡 = 1 to 𝑡 =𝑇 , along with the rewards received based on the selected parameters.

ACM Transactions on Design Automation of Electronic Systems
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3.3 FastTuner Architecture
Our tuning framework consists of five main components, as shown in Figure 2:
(1) PPA estimator: Responsible for providing real-time PPA estimation as a reward.
(2) GNN: This component is responsible for encoding gate-level netlists.
(3) Transformer Decoder: The Transformer decoder sequentially tunes the user-selected parame-

ters
(4) Parameter Tuners: In the final layer, we employ customized modules for each parameter to

decode the high-dimensional feature into a probability distribution for action sampling.
FastTuner utilizes GNN to encode the gate-level netlist, generating graph embeddings that

capture the structural features of the design. The Transformer decoder in FastTuner begins by
processing the predetermined (fixed) parameters. Instead of predicting these parameters, they are
directly provided to the decoder using a "teacher forcing" approach, where the predetermined
values are input at each step. This approach ensures that the decoder accurately incorporates
the fixed parameters as it sequentially predicts the remaining parameters. During this prediction
process, the decoder cross-attends with the GNN-derived graph embeddings, allowing the model
to integrate detailed design information while making predictions. Cross attention is an essential
mechanism to enable the interaction between parameter embeddings, generated by a decoder, and
contextual information encoded in graph embeddings. In the proposed decoder-only architecture,
parameter embeddings are sequentially generated, while graph embeddings, precomputed using a
GNN, serve as static keys and values.
Each parameter embedding, denoted as p, acts as the query (Q), while the graph embeddings,

denoted as g, serve as the keys (K) and values (V). The query, key, and value are first linearly
transformed into a shared feature space:

Q =W𝑞p, K =W𝑘g, V =W𝑣g,

whereW𝑞 ,W𝑘 , andW𝑣 are learned weight matrices.
The attention scores are computed as the scaled dot product of the query and key:

Scores =
Q · K⊤
√
𝑑𝑘

,

where 𝑑𝑘 is the dimensionality of the key, used to stabilize the gradient flow. A softmax function
is applied to these scores to normalize them into a probability distribution, highlighting the most
relevant components of the graph embeddings:

Attention Weights = softmax
(
Q · K⊤
√
𝑑𝑘

)
.

The attention weights are then used to compute a weighted sum of the value embeddings,
extracting relevant contextual information:

Output = Attention Weights · V.
This output, representing the context derived from the graph embeddings, is integrated back

into the parameter embeddings, guiding the decoder to make informed and adaptive decisions.
Each parameter is managed by a customized module tailored to its specific type. While the

Transformer layers are shared across all parameters, dedicated prediction layers are employed to
generate the final values. In the following subsections, we describe each main component in detail.

ACM Transactions on Design Automation of Electronic Systems
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Table 1. Initial handcrafted features of each node in our netlist graph.

features descriptions
wst slack worst slack of cell
wst output slew maximum transition of output pin
wst input slew maximum transition of input pin
drv net power switching power of driving net
int power cell internal power
leakage cell leakage power

3.4 PPA Estimator
The architecture of the provided model comprises a simple feedforward neural network consisting
of three linear layers. Each PPA estimator accepts input in the form of concatenated parameter
embeddings and graph-extracted features, resulting in a total of 60 dimensions. This input is then
processed through two hidden layers with 32 and 16 outputs, respectively, both utilizing Tanh
activation functions. Ultimately, the model generates a single output unit for prediction. During
training, the model is updated using the mean squared error (MSE) loss, calculated between the
ground truth PPA value and the predicted PPA value.

3.5 Netlist Encoding with GNN
To enable our RL agent to generalize across various netlists, we employ GNN to capture both the
structural information of the netlists (graph) and the node attributes of the cells (nodes) within the
design. Our graph learning process consists of three distinct phases: (1) node-level embeddings
(2) graph downsampling and (3) graph-level readout. We initiate the node-level embedding phase
with initial node features, which are handcrafted using the metadata associated with each cell,
as outlined in Table 1. Subsequently, we iteratively propagate messages from each node to its
neighboring nodes. The message-passing mechanism within our GNN is defined as follows:

𝑓 𝑘−1
𝑁 (𝑢 ) = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑚𝑒𝑎𝑛({𝑊

𝑎𝑔𝑔

𝑘
𝑓 𝑘−1
𝑣 ,∀𝑣 ∈ 𝑁 (𝑢)}) (1)

𝑓 𝑘𝑢 = 𝜎 (𝑊 𝑝𝑟𝑜 𝑗

𝑘
· 𝑐𝑜𝑛𝑐𝑎𝑡 [𝑓 𝑘−1

𝑢 , 𝑓 𝑘−1
𝑁 (𝑢 ) ]) (2)

In the equations above, we use the symbol 𝜎 to represent the activation function, while 𝑁 (𝑢)
refers to the set of neighboring nodes connected to node 𝑢. The terms𝑊 𝑎𝑔𝑔

𝑘
and𝑊 𝑝𝑟𝑜 𝑗

𝑘
represent

learnable weights that correspond to the aggregation and projection matrices, respectively. In
each iteration, the aggregation function operates on the embeddings of the neighboring nodes
in 𝑁 (𝑢) to produce an aggregated information representation denoted as 𝑓 𝑘−1

𝑁 (𝑢 ) . This aggregated
message is then combined with the previous embedding of node 𝑢, represented as 𝑓 𝑘−1

𝑢 , to update
its embedding, which we denote as 𝑓 𝑘𝑢 .

The objective of graph downsampling is to create a condensed graph embedding that captures the
essential characteristics of the original graph. This process involves utilizing graph attention pooling
after each graph convolution layer to selectively retain nodes with the highest attention scores. To
derive a holistic representation of the entire graph (netlist), we execute a readout operation (global
mean aggregation), to consolidate the node-level embedding obtained from the preceding stages.
Our GNN framework comprises three graph convolution layers followed by a fully-connected

(FC) layer, all of which share the same hidden dimension. In our implementation, we set the
dimension of the graph convolution layers to 32, and the final FC layer to 16. Consequently, the
resulting graph embeddings are represented in a 16-dimensional space.

ACM Transactions on Design Automation of Electronic Systems
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3.6 Transformer Decoder
Our autoregressive parameter tuning framework offers the distinct advantage of subset tuning,
which can be analogized to a next-word prediction task in language modeling. In this approach,
when a subset of user-defined parameters is specified, our tuner automatically infers and optimizes
the remaining parameters. The self-attention mechanism within the Transformer architecture
enables the model to capture the intricate dependencies between the provided subset and the
parameters yet to be tuned. We have trained our tuner to adapt to various scenarios. In the first
scenario, when only the placement parameters are provided, the tuner predicts and optimizes the
clock tree synthesis (CTS) and routing parameters. In the second scenario, when both placement
and CTS parameters are provided, the tuner completes the configuration by predicting the routing
parameters. Finally, in the absence of any predefined parameters, the tuner autonomously predicts
and optimizes the entire set, including placement, CTS, and routing.

3.7 Parameter Tuner
In conventional language model decoders, a shared final softmax layer is typically used to model the
distribution of the prediction space, producing final predictions at each time step. However, when
the parameters to be predicted vary in their value spaces—such as binary, discrete, and continuous
values—relying on a single softmax layer can present substantial challenges. The combination of
these diverse parameter types within a single action space results in a high-dimensional and sparsely
populated prediction space. This situation demands extensive masking of irrelevant dimensions
at each step, which complicates the training process and reduces its overall effectiveness. To
address the challenge, we implemented a tailored prediction approach for each parameter within
our Transformer tuner. While the Transformer layers are shared, each parameter has its own
dedicated prediction layer. This design allows us to handle both discrete and continuous parameters
effectively.

For discrete parameters like “route.global.effort_level”, which can take one of five distinct
values (“minimum”, “low”, “medium”, “high”, “ultra”), we use a softmax layer with corresponding
outputs. For continuous parameters such as “ccd.max_prepone”, a fully connected layer predicts
the mean and standard deviation of a normal distribution.

3.8 RL Update
We update our FastTuner to optimize the expected reward (PPA) by employing the SOTA Proximal
Policy Optimization (PPO) algorithm. PPO stands out as a robust RL algorithm that facilitates policy
updates while mitigating substantial deviations from the previous policy, which could potentially
lead to suboptimal performance or divergence issues. PPO achieves efficient policy optimization by
performing multiple update steps for each sample while adhering to a clipped objective function.
The PPO clipped surrogate objective that we aim to maximize can be expressed as follows:

LCLIP (𝜃 ) = E
[
min

(
𝜌 (𝜃 )𝐴, 𝑐𝑙𝑖𝑝 (𝜌 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴

)]
(3)

The objective is to maximize the expected value of the advantage-weighted probability ratio. In
other words, PPO encourages actions that have a positive advantage (actions that perform better
than expected) and discourages actions that have a negative advantage (actions that perform worse
than expected). 𝐴 refers to the advantage function, defined as the difference between the observed
rewards 𝑅 and the expected returns.
𝜌 (𝜃 ) represents the likelihood of taking a current action under the new policy compared to

the old policy, which helps determine how much the policy should be adjusted. The clipped PPO
objective introduces a crucial constraint using the min and clip functions to ensure that policy

ACM Transactions on Design Automation of Electronic Systems
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Algorithm 1: FastTuner training flow.
Input:
1: P𝑎𝑙𝑙 : {𝑝1 . . . , 𝑝𝑛}: all parameters
2: P𝑓 𝑖𝑥𝑒𝑑 : {𝑝1 . . . 𝑝𝑘 }: parameters predetermined by the user
3: P𝑡𝑢𝑛𝑒𝑑 : {𝑝𝑘+1 . . . 𝑝𝑛}: parameters to be tuned
4: GNN for gate-level netlists
5: Dataset D = {(𝑃1,𝐺1, 𝑦1), . . . (𝑃𝑁 ,𝐺𝑁 , 𝑦𝑁 )} which contains parameter-netlist combinations and their

ground truth PPAs
Output: parameters P∗

𝑡𝑢𝑛𝑒𝑑
: {𝑝∗

𝑘+1 . . . 𝑝
∗
𝑛} that optimize the given objectives

(Offline)
1: Initialize the PPA_Estimator with weights 𝜃𝑃𝑃𝐴
2: while 𝜃𝑃𝑃𝐴 hasn’t converge do
3: sample a batch of data P,G, y from D
4: y

′ ← 𝑃𝑃𝐴_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (P,G)
5: Compute MSE loss: 𝐽 (𝜃 ) ← 1

2𝑀 ∥y − y
′∥22 (M: batch size)

6: Update parameters: 𝜃𝑃𝑃𝐴 ← 𝜃𝑃𝑃𝐴 − 𝛼 · ∇𝐽 (𝜃 )
7: end while
(Online)
8: Initialize the FastTuner with weights 𝜃𝑇𝑢𝑛𝑒𝑟
9: while reward hasn’t saturated do
10: g← 𝐺𝑁𝑁 (𝐺)
11: for 𝑖 = 𝑘 + 1 . . .𝑛 do
12: 𝑝′𝑖 ∼ 𝐹𝑎𝑠𝑡𝑇𝑢𝑛𝑒𝑟 (𝑝′𝑖 |𝑝′𝑘+1, . . . , 𝑝

′
𝑖−1; 𝑝1, . . . , 𝑝𝑘 , 𝑔)

13: Compute reward: 𝑟 ← 𝑃𝑃𝐴_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (𝑝1, . . . , 𝑝𝑘 ,

𝑝′
𝑘+1, . . . , 𝑝

′
𝑛, 𝑔)

14: Update 𝜃𝑇𝑢𝑛𝑒𝑟 by maximizing Eq. 3 using gradient ascent
15: end for
16: end while

updates are controlled within a specified range, typically denoted as [1 − 𝜖, 1 + 𝜖]. 𝜖 is set to 0.2 by
convention. These constraints are vital for preventing excessively large policy updates that could
destabilize the training process.

3.9 Training Methodology
Algorithm 1 details the two-phase training process of our FastTuner framework, which consists of
both offline and online stages. In the offline phase, referred to as "(Offline)," we begin by initializing
a PPA (Power, Performance, Area) estimator, which is subsequently trained through supervised
learning. This training utilizes a dataset D, containing various parameter-netlist combinations and
their corresponding ground truth PPA metrics. The goal of this phase is to iteratively refine the
PPA estimator by minimizing the Mean Squared Error (MSE) loss between predicted and actual
PPA values, thus improving its predictive accuracy.

In the online phase, denoted as "(Online)," FastTuner employs a Decision Transformer, which is
essentially a Transformer decoder, to sequentially optimize the parameter set. The Transformer
tuner incorporates netlist embeddings, generated by a Graph Neural Network (GNN), as contextual
information. The tuning process begins either from scratch or after a fixed set of predetermined
parameters, if specified. Utilizing the self-attention mechanism, FastTuner sequentially determines
the optimal tuning parameters. At each time step, it selects a new parameter as an action based on all
previously decided parameters. Once all parameters have been selected, the complete configuration
is passed to the PPA estimator, trained during the offline phase, to compute the reinforcement

ACM Transactions on Design Automation of Electronic Systems



10 Hao-Hsiang Hsiao, Yi-Chen Lu, Pruek Vanna-Iampikul, and Sung Kyu Lim

Table 2. Dataset Statistics: We report two key statistics: the mean (𝜇) and the coefficient of variation (CV).
The CV is defined as the ratio of the standard deviation to the mean (𝜎/𝜇).

Design
Power (mW) WNS (ns)

Train Test Train Test
Mean CV Mean CV Mean CV Mean CV

AES 672.310 0.024 671.674 0.023 -0.063 -0.268 -0.058 -0.317
CPU 1 150.510 0.043 148.081 0.048 -0.355 0.195 -0.377 0.204
DMA 149.669 0.029 149.719 0.027 -0.197 -0.101 -0.198 -0.100
ECG 599.524 0.028 588.121 0.018 -0.180 -0.417 -0.118 -0.250
VGA 380.258 0.012 362.305 0.018 -0.503 -0.224 -0.549 -0.272
LDPC 292.468 0.036 292.142 0.035 -0.208 -0.258 -0.172 -0.234

learning (RL) reward. This reward is then used to calculate the Proximal Policy Optimization
(PPO) loss, which updates the Transformer Tuner. The process iterates until the reward stabilizes,
indicating that the tuning process has converged.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Our tuning framework is developed using Python and the Synopsys IC Compiler II (ICC2) physical
design tool. We leverage the deep learning library PyTorch for the overall framework and PyTorch
Geometric specifically for graph learning tasks. To evaluate the optimization capabilities of our
Transformer Decision Tuner, we conducted a comprehensive comparative experiment against
academic state-of-the-art methods, including Ant Colony Optimization (ACO) and Bayesian Opti-
mization (BO). The experiment was designed to explore the design space of selected key parameters
in ICC2. Our comparison was carried out across nine benchmarks, all of which are based on the
TSMC 28nm technology node.

4.2 Training Dataset
For online learning in reinforcement learning (RL), the model continuously learns from incoming
data streams, eliminating the need for a prebuilt dataset. To accelerate RL tuning, we employ
supervised learning to train PPA estimators. Our objective is to develop PPA estimators offline
that can generalize across a variety of designs, accurately predicting post-route PPA values based
on specific parameter configurations. To achieve this, we generated a high-quality, representative
dataset by conducting P&R runs using Synopsys ICC2 with different combinations of netlists and
parameters. Our data set includes data from over 3500 runs in 7 distinct designs.

The total data collection effort can be estimated based on the runtime of each design, as shown
in Table 8. Importantly, this process is a one-time offline effort conducted in parallel across 16 CPU
workers. We collected 3 500 total P&R + STA evaluations (500 per design across seven benchmarks).
By distributing these evaluations over 16 parallel workers, each design requires only

500
16
≈ 31.25

sequential rounds of evaluation. With an average per-evaluation cost of approximately 2.45 h, this
corresponds to roughly 76.6 h (≈3.2 days) of wall-clock time per design. Moreover, the resulting
dataset and GNN encoder share experience across all designs, amplifying the benefit of each
evaluation and obviating additional P&R + STA runs for subsequent model updates.
By contrast, BO requires 50 sequential runs (≈ 265 h) and ACO requires 55 (≈ 291.5 h) on the

largest design, yet still deliver inferior QoR because neither method can leverage cross-design
knowledge. Thus, our data-collection overhead is fully amortized (500/16 < 50, 55) and in practice
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Fig. 3. Parameter analysis using SHAP. (a) Power impact (b) WNS impact. Each dot represents a datapoint for
a specific parameter configuration and its PPA metrics. The color gradient (blue to red) indicates parameter
values. Dots on the right suggest a positive impact on the model output.

is lower than that of BO or ACO. Finally, the network-training step completes in under one minute,
making its runtime negligible compared to data collection.
To visualize our distribution of the dataset, we report two key statistics: the mean (𝜇) and the

coefficient of variation (CV). The coefficient of variation is defined as the ratio of the standard
deviation to themean (𝜎/𝜇), as shown in Table 2. As reported, our train-test split is evenly distributed
across designs, indicating that there is no significant distributional shift between training and
testing data. This balance also serves as evidence of sufficient data collection, which is critical for
successful training.

4.3 Parameter Analysis
In our experiment, we systematically explored the design space of ICC2 physical design by identify-
ing 23 critical parameters. These parameters were carefully selected based on domain expertise and
statistical analysis, and they encompass both high-level general parameters applicable across the
entire design flow and stage-specific parameters relevant to individual stages within the flow. Table
3 provides a comprehensive list of these parameters along with their respective tuning ranges. The
parameter set includes both discrete and continuous variables.
To quantify the importance of these parameters, we employed SHAP (SHapley Additive ex-

Planations), a robust technique for explaining the output of machine learning models. SHAP not
only measures the importance of each parameter but also provides interpretable explanations,
offering valuable insights into the direction of influence each parameter exerts on the optimization
objectives.
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Table 3. Parameters we tune and their ranges

Parameter type dims or ranges
place.coarse.target_routing_density float [0.7, 0.9]

place.coarse.max_density float [0.7, 0.9]
place_opt.initial_place.buffering_aware bool 2
place_opt.initial_drc.global_route_based int [0, 1]

placement.aspect_ratio float [0.5, 1.5]
ccd.max_prepone float [-50 ps, 50 ps]
ccd.max_postpone float [-50 ps, 50 ps]
ccd.timing_effort enum 3
cts.max_skew float [0.01, 0.2]
cts.max_fanout float [50, 250]

cts.max_buffer_density float [0.3, 0.8]
cts.max_latency float [0, 1]

route.common.rc_driven_setup_effort_level enum 4
route.global.effort_level enum 5

route.global.crosstalk_driven bool 2
route.global.timing_driven bool 2

route.global.timing_driven_effort_level enum 2
route.track.crosstalk_driven bool 2
route.track.timing_driven bool 2

route.detail.optimize_wire_via_effort_level enum 4
route.detail.timing_driven bool 2

route_opt.flow.enable_power bool 2
route_opt.flow.enable_irdrivenopt bool 2

Mathematically, let 𝑓 : X → R represent a model that maps input instances 𝑥 from the parameter
space X to predictions. The SHAP value 𝜙𝑖 (𝑥) for a specific parameter 𝑖 in a given instance 𝑥 is
defined as:

𝜙𝑖 (𝑥) =
∑︁

𝑆⊆{1,...,𝑝 }\{𝑖 }

|𝑆 |!(𝑝 − |𝑆 | − 1)!
𝑝!

[𝑓 (𝑥𝑆 ∪ {𝑖}) − 𝑓 (𝑥𝑆 )] (4)

Here, 𝑆 is a subset of parameters excluding 𝑖 , 𝑥𝑆 represents the instance with only parameters in
𝑆 , and 𝑝 is the total number of parameters. This equation computes the marginal contribution of
parameter 𝑖 to the model’s prediction by evaluating all possible subsets of parameters. The term
𝑓 (𝑥𝑆 ∪ {𝑖}) − 𝑓 (𝑥𝑆 ) captures the change in the model prediction when parameter 𝑖 is included.
To implement this, we trained an XGBoost model where the input comprises the candidate

parameters and the output represents the optimization objectives. After fitting the XGBoost model,
we applied SHAP to explain the model and identify the correlation between the parameters and
the final objectives. Unlike traditional statistical testing or correlation analysis, SHAP considers all
parameters collectively rather than treating them independently. It then marginalizes the impact of
each parameter on the model output, providing a more comprehensive and holistic understanding
of parameter importance.
The analysis results are depicted in Figure 3. Each dot in the figure represents a datapoint

corresponding to a specific parameter configuration and its resulting PPA (Power, Performance,
Area) metrics. The color gradient, ranging from blue to red, indicates the value of the parameter,
with blue representing lower values and red representing higher values. The position of the dots
along the horizontal axis shows the impact of each parameter on the model output—whether it
drives the output higher or lower. For instance, if red dots for a particular parameter cluster on the
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Table 4. Prediction results of our PPA estimator on the test sets of seven designs: The "CC" refers to the
Pearson correlation coefficient.

designs TNS CC Power CC WNS CC
AES 0.97 0.95 0.94
DMA 0.91 0.93 0.90
LDPC 0.95 0.94 0.93
ECG 0.94 0.95 0.90
VGA 0.95 0.92 0.91

Commercial CPU 0.92 0.93 0.90
Rocket 0.90 0.91 0.90
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Fig. 4. Correlation analysis of our PPA estimator’s predictions on the AES benchmark: For each targeted
objective, we plot the scatter distribution between the estimated values (x-axis) and the ground truth values
(y-axis). The strong correlation observed in these plots indicates that our estimator effectively provides
representative reward estimations..

Table 5. Comparison of FastTuner with ICC2 vs. the PPA Estimator: We trained two versions of FastTuner—one
using the PPA estimator and the other using ICC2. We then compared their runtime and PPA results.

PPA estimator imp. % ICC2 imp. %
power (105 uW) 5.94 11.48 5.92 11.77

tns (ns) -28.74 71.62 -28.71 71.64
training iteration 70 - 30 -

time 6 min - 60 hrs -
right side of the power metric, this indicates that increasing the value of the parameter tends to
significantly increase the total power. Conversely, for metrics like Worst Negative Slack (WNS), a
positive impact on timing is observed as the parameter values increase, since a less negative WNS
(i.e., closer to zero) signifies improved timing performance.

For instance, as shown in Figure 3, increasing the values of the parameters "route.track.crosstalk_driven,"
"ccd.max_postpone," and "ccd.max_prepone" demonstrates a marginal contribution to both reducing
power consumption (negative power SHAP value) and improving timing (positiveWNS SHAP value).
Conversely, parameters such as "place_opt.initial_place.buffering_aware" and "ccd.timing_effort"
primarily contribute to timing improvement (positive WNS SHAP value) while at the cost of in-
creasing power consumption (positive power SHAP value). Note that the impact is a marginal
contribution after considering the interaction of different parameters altogether, which is not
intuitively seen by correlation analysis.
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Fig. 5. Transfer learning on VGA using a pre-trained FastTuner model, achieving comparable optimization
results at a significantly faster convergence rate. No actual P&R run occurs. Each iteration represents the
generation of a configuration for all parameters, evaluation by the PPA estimator, and an update of the tuning
agent.

4.4 PPA Estimator Training Results
The PPA estimator takes a pair of netlist and parameter configuration as input and predicts the
final PPA value. We utilize supervised learning to train these PPA estimators. During the training
process, for each design, we divided the dataset into an 80:20 train-test split, with 80% of the
data allocated for training and the remaining 20% reserved for testing. We trained three separate
estimators, each dedicated to predicting one of the following metrics: TNS, power, and WNS. For
Power-Delay-Product (PDP) estimation, we derived the prediction based on both the power and
WNS models. The definition of PDP is as following:

PDP = power × (1/target frequency +WNS) (5)

Figure 4 illustrates the testing results for the AES design across three distinct objectives, show-
casing the strong correlations achieved by our model. The data from the AES design was divided
into an 80%-20% train-test split, with the testing set comprising unseen data. The figure focuses on
the correlation analysis conducted exclusively on the test set, emphasizing the model’s ability to
generalize and perform accurately on data not used during training. Table 4 presents the Pearson
correlation coefficients for various designs and objectives. It’s important to emphasize that our
primary goal is to estimate rewards for the RL agent, where achieving high correlation is more
critical than merely minimizing errors. As shown in both the figure and the table, our estimators
consistently exhibit high correlations across different designs. This strong correlation suggests that
our estimators effectively distinguish between good and bad outcomes, serving as reliable reward
estimations and acting as a suitable proxy for ICC2.

To evaluate the tuning performance using the PPA estimator, we trained two separate FastTuners
on the AES benchmark—one using the PPA estimator and the other using real ICC2 feedback, as
shown in Table 5. It is important to note that while the PPA estimator may require more training
iterations due to the potential instability in reward estimation compared to the ground truth, each
iteration is completed in just a matter of seconds. In contrast, obtaining reward feedback from real
ICC2 evaluations takes several hours per iteration. Remarkably, we observed that the optimization
results from both approaches are nearly identical. As a result, our RL tuning process reduces the
design flow parameter tuning to a few minutes, compared to the hundreds of hours it would take
to run the place-and-route flow with all these parameters on a given design.

4.5 Transfer Learning Results
The core idea behind transfer learning is to utilize a pre-trained model from one domain to another,
enabling zero-shot transfer or faster convergence in unfamiliar domains. In our approach, we
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Table 6. Zero-shot FastTuner inference results. We trained FastTuner with four circuits (CPU, AES, DMA,
and ECG) first and used it without any further training to solve the three unseen circuits shown in this table.
PDP here refers to "power-delay-product."

Metrics
Tool Auto ACO [36] BO [3] FastTuner Zero-shot

LDPC (#cells: 39K, #nets: 41K, #IO: 4.1K)
Power (105 uW) 2.82 2.66 2.58 2.60
TNS (ns) -150.20 -65.21 -74.77 -66.68
WNS (ns) -0.22 -0.11 -0.10 -0.12
PDP (105W*ns) 2.56 2.35 2.31 2.33

VGA (#cells: 52K, #nets: 52K, #IO: 184)
Power (105 uW) 4.01 3.81 3.68 3.70
TNS (ns) -88.26 -50.69 -36.54 -46.20
WNS (ns) -0.38 -0.20 -0.16 -0.20
PDP (105W*ns) 2.89 2.68 2.64 2.66

Rocket Core (#cells: 120K, #nets: 120K, #IO: 379)
Power (mW) 250.80 233.48 229.29 233.40
TNS (ns) -66.81 -32.45 -21.47 -34.20
WNS (ns) -0.16 -0.09 -0.07 -0.09
PDP (mW*ns) 140.00 127.28 124.17 127.20

initially employed the same FastTuner model for RL training on specific designs. After completing
this training, we loaded the pre-trained FastTuner model’s weights on "unseen" designs. The
learning curve depicted in Figure 5 illustrates the advantages of transfer learning compared to
training from scratch. Through transfer learning, FastTuner rapidly converges to optimization
results that are comparable to those achieved by training a new FastTuner from scratch in half the
time. This is attributed to the model’s ability to generalize using GNN netlist encoding, allowing it
to leverage previous training experiences for faster adaptation across various designs.
As shown in Table 6, we trained our FastTuner on four designs: DMA, AES, ECG, and a Com-

mercial CPU, and validated its performance on three distinct, previously unseen designs. Zero-shot
FastTuner inference refers to direct inference on unseen designs using the pre-trained FastTuner
without any additional training. Remarkably, our FastTuner achieved results comparable to the
SOTA even without further training. Additionally, FastTuner can be further fine-tuned for new
designs to achieve optimal results, as presented in the next section.

4.6 RL Algorithm Comparison
We experimented with four commonly used RL algorithms to identify the most suitable one for our
use case. In the following, we compare the following RL algorithms:

4.6.1 Policy Gradient. Policy Gradient is a simple policy gradient method that directly optimizes
parameterized policies. It estimates the gradient of the expected return with respect to the policy
parameters and updates the policy in the direction of higher expected returns [37].

∇𝜃 𝐽 (𝜃 ) = E𝜋𝜃 [∇𝜃 log𝜋𝜃 (𝑎 |𝑠)𝑄𝜋𝜃 (𝑠, 𝑎)] (6)

where ∇𝜃 𝐽 (𝜃 ) denotes the gradient of the objective function with respect to the parameters 𝜃 , 𝐸𝜋𝜃 [·]
represents the expectation under the policy 𝜋𝜃 . The term ∇𝜃 log𝜋𝜃 (𝑎 |𝑠) measures the sensitivity
of the policy to changes in 𝜃 , and 𝑄𝜋𝜃 (𝑠, 𝑎) is the action value function, indicating the expected
return of taking action 𝑎 in state 𝑠 under policy 𝜋𝜃 .
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Fig. 6. Performance comparison of RL algorithms in parameter tuning.

4.6.2 Trust Region Policy Optimization (TRPO). TRPO is an iterative approach that optimizes
policies while ensuring bounded policy updates. It employs a surrogate objective function con-
strained by the Kullback-Leibler divergence between consecutive policies, facilitating more stable
and monotonic improvements [38].

max
𝜃

E
[
𝜋𝜃 (𝑎 |𝑠)
𝜋𝜃old (𝑎 |𝑠)

𝐴𝜃old (𝑠, 𝑎)
]

subject to E[𝐾𝐿[𝜋𝜃old (·|𝑠), 𝜋𝜃 (·|𝑠)]] ≤ 𝛿 (7)

where the goal is to maximize 𝜃 to achieve the maximum expected value of 𝜋𝜃 (𝑎 |𝑠 )
𝜋𝜃old (𝑎 |𝑠 )

𝐴𝜃old (𝑠, 𝑎), this
expression represents the advantage of action 𝑎 in state 𝑠 under the old policy 𝜋𝜃old . The constraint
𝐸 [KL[𝜋𝜃old (·|𝑠), 𝜋𝜃 (·|𝑠)]] ≤ 𝛿 ensures that the Kullback-Leibler (KL) divergence between the old
policy 𝜋𝜃old and the new policy 𝜋𝜃 does not exceed a threshold 𝛿 , thereby controlling the policy
update to avoid large deviations from the old policy.

4.6.3 Proximal Policy Optimization (PPO). The core idea of PPO is to restrict the policy update to a
trust region [39], similar to TRPO, but using a simpler first-order optimization approach. The PPO
objective function is typically formulated as:

𝐿𝐶𝐿𝐼𝑃 (𝜃 ) = E𝑡 [min(𝑟𝑡 (𝜃 )𝐴𝑡 , clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 )] (8)

where 𝐿CLIP
𝑃
(𝜃 ) is the clipped objective function used in Proximal Policy Optimization (PPO). The

expectation 𝐸𝑡 [·] is taken in time steps 𝑡 , and 𝑟𝑡 (𝜃 ) is the probability ratio between the new
policy 𝜋𝜃 and the old policy 𝜋𝜃old . The function clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖) constrains 𝑟𝑡 (𝜃 ) to the
range [1 − 𝜖, 1 + 𝜖] to prevent excessively large updates, ensuring stability. The objective function
minimizes the expression min(𝑟𝑡 (𝜃 )𝐴𝑡 , clip(𝑟𝑡 (𝜃 ), 1−𝜖, 1+𝜖)𝐴𝑡 ), where𝐴𝑡 represents the advantage
in the time step 𝑡 , balancing between maximizing the advantage and maintaining the stability of
the policy.

4.6.4 Soft Actor-Critic (SAC). SAC is an off-policy algorithm that maximizes both the expected
return and the entropy of the policy. This dual objective promotes exploration and robustness,
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Fig. 7. The learning curves for FastTuner with respect to four different objectives.

which is particularly effective in environments with continuous action spaces [40].

𝐽 (𝜋) = E

[∑︁
𝑡

𝛾𝑡 (𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼𝐻 (𝜋 (·|𝑠𝑡 )))
]

(9)

where 𝐽 (𝜋) is the objective function in reinforcement learning, defined as the expected value
𝐸
[∑

𝑡 𝛾
𝑡 (𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼𝐻 (𝜋 (·|𝑠𝑡 )))

]
. Here, the summation

∑
𝑡 is over all time steps 𝑡 ,𝛾𝑡 is the discount

factor increased to the power 𝑡 to weigh future rewards less than immediate rewards, 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is
the reward received at time step 𝑡 for taking action 𝑎𝑡 in state 𝑠𝑡 , and 𝐻 (𝜋 (·|𝑠𝑡 )) represents the
entropy of the policy 𝜋 given the state 𝑠𝑡 . The term 𝛼𝐻 (𝜋 (·|𝑠𝑡 )) is used to encourage exploration
by maximizing the entropy of the policy.

The results of the four RL algorithms for power optimization are presented in Figure 6. The Naive
Policy Gradient algorithm, while effective, demonstrates rather unstable updates and convergence.
This instability is likely due to its lack of mechanisms to constrain updates, making it sensitive to
noisy gradients and potentially leading to suboptimal policies. PPO and TRPO stand out as the most
robust algorithms in our parameter tuning task. Their robustness can be attributed to the use of a
trust region, which constrains policy updates within a specific range, thereby preventing large and
potentially harmful updates. This feature is particularly advantageous in uncertain environments,
where the reward estimator is noisy compared to the real environment.

The results justify our selection of PPO as the RL algorithm for this task. To further validate
the effectiveness of our approach, we evaluated the real outcomes by running the actual P&R
process. Since analyzing intermediate performance at every iteration would be overly costly and
unnecessary, our analysis focuses on comparing the final QoR after each algorithm has converged.
As shown in Figure 6, all four algorithms converged to nearly similar optimal solutions. However,
PPO demonstrated the most stable and fastest convergence, outperforming the other algorithms in
this case. This confirms PPO’s superiority in achieving effective and efficient optimization.

4.7 Overall PPA and Runtime Comparison
In Figure 7, we illustrate the FastTuner learning curves in different optimization objectives using
the DMA benchmark. The learning process begins from scratch, taking advantage of the estimated

ACM Transactions on Design Automation of Electronic Systems



18 Hao-Hsiang Hsiao, Yi-Chen Lu, Pruek Vanna-Iampikul, and Sung Kyu Lim

power optimized design tool default flow design

Fig. 8. Layout of "power" optimized design vs. tool default flow design

wns optimized design tool default flow design

Fig. 9. Layout of "wns" optimized design vs. tool default flow design

TNS Optimized Design Unoptimized Design

(20 worst paths) (20 worst paths)

Fig. 10. Layout of "tns" optimized design vs. tool default flow design

rewards generated by our PPA estimators. These curves depict the progression of reward improve-
ments (y-axis) as training iterations advance (x-axis). During each iteration, FastTuner proposes
a new parameter setting and undergoes an RL update. The final PPA metrics are validated using
Synopsys ICC2. Our observations indicate that FastTuner consistently learns and improves in
all objectives. Initially, there are oscillations as it explores the parameter space, but it eventually
converges asymptotically towards optimal values. After tuning, the results are evaluated through a
full P&R flow using Synopsys ICC2.

Table 8 presents the comparative results of our approach, with the "FastTuner" column reflecting
outcomes where all parameters were tuned without any prior fixed settings. Each result was opti-
mized using our PPA estimator and subsequently validated through real Synopsys ICC2 evaluations.
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Across all seven benchmarks, our approach consistently outperformed both ACO and BO, achieving
significant percentage improvements: up to 79.38% in Total Negative Slack (TNS), 12.22% in total
power, and over a 50x reduction in runtime.

A key advantage of FastTuner is its efficiency. Unlike alternative methods that require multiple
ICC2 runs, often extending over hours or even days, FastTuner necessitates only a single ICC2 run
for final evaluation. Our method delivers near-instantaneous results, with evaluations completed
in mere seconds to minutes, thanks to the real-time feedback provided by the PPA estimators.
In contrast, BO and ACO struggle with naturally incorporating netlist features into their tuning
process, leading to a lack of transferability across different designs.
In Figure 8, we compare our power-optimized design with the default settings of a commercial

tool applied to a standard process benchmark design. The analysis reveals that in our power-
optimized configuration, standard cell placements exhibit multiple clusters with a high placement
density of approximately 80%, in contrast to the tool’s default configuration, which shows a lower
placement density of around 70%. The more compact placement in our design leads to a routing
layout with reduced wire length, as observed from the visibility of metal layers, particularly in the
upper right corner where unused routing tracks are evident. This reduction in wire length, in turn,
decreases the overall power consumption.

For the second design objective, our framework was configured to optimize the worst negative
slack (WNS). Figure 9 provides a comparative overview of the WNS-optimized layout versus the
default tool design. A detailed evaluation of the routing and placement layouts for both designs
was performed, with the worst timing path highlighted in yellow. In the WNS-optimized design,
the critical path is significantly shorter than in the tool’s default flow where both paths originate
from the register and terminate at the memory macro. Additionally, the routing layout in the WNS-
optimized design shows reduced wire length compared to the tool’s default configuration, reflecting
more efficient standard cell placement and resulting in a shorter timing path with improved WNS.

In the third design objective, the goal was to optimize the total negative slack (TNS) of the design.
A comparative analysis between our TNS-optimized layout and the tool’s default design is illustrated
in Figure 10. The bar chart in the figure shows the distribution of negative timing paths. In the
TNS-optimized design, the leftmost bin of the distribution starts at -0.14, indicating an improvement
in the left tail compared to the tool’s default design, where the leftmost bin starts at -0.44. This
improvement in the left tail suggests that the worst timing paths in our optimized design have
significantly better slack than those in the default configuration. Additionally, the TNS-optimized
design exhibits fewer timing paths with negative slack, further demonstrating that our framework
effectively reduces the total negative slack across the design. When comparing the layouts, the
TNS-optimized design achieves a more compact placement, similar to the WNS-optimized design
but with even greater compactness. This difference arises because TNS optimization focuses on
improving the overall slack of all timing paths, whereas WNS optimization targets the single
worst-performing path.

4.8 Tuning a Subset of Parameters
Our Transformer framework offers users the flexibility to selectively fine-tune specific subsets of
parameters. This capability allows users to retain predetermined parameter subsets that meet their
requirements while fine-tuning the remaining parameters. This approach has two key advantages:
(1) It eliminates the need to train multiple models for different parameter subsets, and (2) it provides
an interface for integration with other tuning methods.

To assess the effectiveness of our selective tuning approach, we trained our FastTuner under two
distinct scenarios: (1) Fine-tuning from the CTS stage onwards while keeping default parameters
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Fig. 11. The learning curves for FastTuner with respect to four different objectives.

for the preceding stages, and (2) fine-tuning from the routing stage onwards while using default
parameters for the stages before routing.

The results, presented in Table 8, show that FastTuner delivers competitive outcomes when fine-
tuning subsets of parameters. Additionally, we observed that the more parameters we fine-tuned,
the better the final results, suggesting that increased parameter tuning flexibility contributes to
performance improvements.

5 DISCUSSION
5.1 Why does a sparse reward setting work?
A distinctive feature of parameter optimization with RL is the use of delayed reward settings,
where the reward is only observed at the final time step. This arises because, in parameter tuning,
defining a meaningful reward without specifying all parameters is inherently challenging. The QoR
is often ambiguous when some parameters remain undefined, as different configurations of those
parameters can lead to significantly varying outcomes. Arbitrarily shaping intermediate rewards
risks misleading the agent and offers no theoretical guarantees of success.

This challenge is common in the literature whenever intermediate rewards cannot be readily de-
fined before all steps have been completed. A widely adopted strategy is to utilize a computationally
efficient reward proxy, allowing fast estimation of the final reward and thus enabling more rapid
exploration iterations. Several successful RL applications have demonstrated effective learning
under similar—or even more demanding—conditions. For example, AlphaGo [41] depends on final
game outcomes obtained after hundreds of moves; neural architecture search (NAS) agents [42]
receive accuracy measurements only after fully training candidate architectures. These methods
commonly handle reward sparsity and delay by employing proxy models or rapid approximations
for reward estimation, such as training a reward prediction network or evaluating neural configu-
rations for fewer epochs. In our work, we follow similar practices by introducing a lightweight
proxy for rapid, end-of-episode reward evaluation.
Our experimental results (Table 8, Figure 7) demonstrate the effectiveness of our approach.

The proposed RL framework consistently identifies parameter sets outperforming state-of-the-art
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Table 7. Performance comparison of QoR predictors using Continuous Online Learning and Expert Ensembles,
evaluated on DMA, ECG, and Rocket designs. Metrics include the correlation coefficient (CC) and normalized
root mean squared error (NRMSE), showing improved accuracy over a single QoR predictor.

TNS Power WNS
CC NRMSE CC NRMSE CC NRMSE

Original (Single Expert)
DMA 0.91 0.25 0.93 0.23 0.90 0.24
ECG 0.94 0.20 0.95 0.18 0.90 0.23
Rocket 0.90 0.24 0.91 0.24 0.90 0.26
Continuous Online Learning (Additional Data Points)
DMA 0.92 0.22 0.93 0.20 0.91 0.18
ECG 0.96 0.16 0.95 0.15 0.93 0.20
Rocket 0.92 0.22 0.92 0.20 0.92 0.20

Expert Ensembles (3 Experts)
DMA 0.93 0.18 0.94 0.20 0.91 0.20
ECG 0.96 0.12 0.95 0.16 0.92 0.18
Rocket 0.92 0.18 0.92 0.22 0.92 0.22

baselines. Our lightweight PPA estimator enables rapid and cost-effective exploration, significantly
reducing overhead.

In Figure 7, by continuously exploring and evaluating new configurations based on its evolving
knowledge, the agent avoids premature convergence to suboptimal solutions. Figure 11 illustrates
this more clearly by highlighting the best solutions for each objective identified by the agent over
successive iterations. This consistent upward trend underscores the agent’s capacity to refine
its strategy and leverage exploration to overcome the challenges of sparse and delayed rewards,
ultimately discovering better solutions as training progresses.

5.2 Dealing with Distributional Shift in PPA estimators
PPA estimators played a crucial role in estimating design performance metrics during optimization.
However, distributional shifts can degrade predictor accuracy over time and lead to inaccurate
optimization. This subsection explores three approaches to address this challenge.

5.2.1 Continuous Online Learning with Additional Data Points. Continuous online learning involves
incrementally updating the PPA estimator dynamically as new data becomes available. By incorpo-
rating additional data points generated during the design optimization process, the predictor can
adapt to evolving distributions to minimize the risk of Distributional Shift and maintain predictor
stability.

5.2.2 Expert Ensembles for Robust Prediction. An ensemble of specialized predictors, or experts, can
be employed to handle distributional shifts. Each expert is trained on a subset of the dataset, allowing
it to specialize in specific regions. During inference, predictions from the experts are combined
using averaging or a voting scheme to ensure robust performance across varying distributions and
reduce prediction variance.

5.2.3 Trust Regions for Constrained Prediction. Trust region methods define a localized area in
the design space where the PPA estimator is most reliable. By constraining optimization steps
to remain within this region, the predictor can maintain higher accuracy, reducing the impact of
distributional shift. If exploration outside the trust region is necessary, additional safeguards, such as
uncertainty quantification or fallback mechanisms, can guide optimization while minimizing risks.
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Iteratively expanding or refining the trust region as confidence grows helps balance exploration
and exploitation.
Table 7 presents the results of experiments conducted using two of the proposed methods:

Continuous Online Learning with Additional Data Points and Expert Ensembles.
For the first method, 40 additional data points were collected and appended to the training set

for each of the DMA, ECG, and Rocket designs. For the second method, original training set is
used with additional data. An ensemble of three experts was trained, with each expert specializing
in a different subset of the training dataset. The final prediction was obtained by averaging the
outputs of the three experts. Two metrics, the correlation coefficient (CC) and normalized root mean
squared error (NRMSE), were used to evaluate performance. As shown in the table, both methods
effectively improved prediction accuracy. The correlation coefficient increased, and the NRMSE
decreased compared to the results from a single PPA estimator, demonstrating the effectiveness of
these approaches in mitigating the effects of distributional shifts.

5.3 How Does GNN help?
GNNs are essential for generalizing learning across different designs. Without GNNs, predictions
cannot be effectively shared across data from different designs, hindering knowledge transfer.
Additionally, without GNNs, each tuning process must start from scratch, wasting valuable insights
and efforts from prior tuning on other designs.
As shown in Table 6, GNNs enable effective transfer learning, significantly accelerating the

tuning process for new designs. The results also demonstrate that GNN-based representations
support strong zero-shot performance on unseen designs by capturing structural and connectivity
patterns that generalize across a family of related circuits. In practice, the model is most effective
when the target design shares broad characteristics—such as technology, library, and overall flow
setup—with cases it has seen before. Under such conditions, the learned policy adapts readily
to moderate variations in netlist structure, macro placement, or block composition, delivering
competitive PPA outcomes with minimal additional cost. For designs with characteristics that fall
outside this range, the same framework can incorporate additional treatment—such as fine-tuning
or re-embedding to capture new structural patterns—so that the learned representation remains
aligned with the target design. In contrast, without GNNs, the need to retune from scratch for each
design, as reflected in the runtime rows of the aco and bo columns in Table 8, incurs a prohibitively
high cost.
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5.4 Scalability
Table 8 reports the “runtime (#tool runs / hours)” for seven designs (13K–212K cells). Figure 12
summarizes the trend: on log–log axes, wall-clock time follows a power law with fitted exponents
𝛼 ≈ 1.20 (ACO), 𝛼 ≈ 1.12 (BO), and 𝛼 ≈ 0.91 (our framework). The second panel shows the driver
of this gap: ACO/BO require tens of full P&R trials per block (e.g., 65/344.5 h and 50/265 h for the
212K-cell CPU), whereas our framework uses a single ICC2 run for final verification (e.g., 1/5.3 h
on the same block), keeping the number of expensive tool invocations constant. This behavior is
consistent with the design of our framework: the RL loop uses a pretrained PPA estimator for reward
(seconds per iteration) and only performs one ICC2 run at the end. Per our architecture, the netlist is
encoded once by a GNN; a forward pass over a netlist graph with 𝑛 gates and average degree 𝑑 costs
𝑂 (𝐿 |𝐸| 𝑑)=𝑂 (𝐿 𝑑 𝑛 𝑑) time and 𝑂 (𝑛 𝑑) memory for 𝐿 message-passing layers and hidden width 𝑑 .
The decision model is a Transformer that decodes a short sequence of 𝑇 parameters; self-attention
therefore costs𝑂 (𝑇 2𝑑) per layer independent of 𝑛 (we do not attend over gates). The PPA estimator
is a small MLP on a ∼ 60-D feature vector, so its cost is constant in 𝑛. Therefore the dominant
term in end-to-end runtime is the full P&R call, not the GNN/Transformer/MLP; empirically this
is reflected by the constant #runs for our framework and the sublinear exponent we observe in
Figure 12. Recently, more and more EDA work has adopted GPU acceleration [43–49, 49–52] to
speed up tasks such as parameter optimization, sizing, and placement, which offers another avenue
to further alleviate scalability concerns for very large designs.

6 CONCLUSION
We propose the FastTuner framework to address the parameter tuning problem in physical de-
sign. Our framework combines online reinforcement learning with offline-trained PPA estimators,
eliminating the need for time-consuming P&R processes and reducing tuning times from hours
to mere seconds. Additionally, FastTuner incorporates transfer learning via GNNs, enabling it
to generalize effectively across diverse design scenarios and achieve academic state-of-the-art
performance without requiring complete retraining.
Built on a Transformer architecture, the FastTuner framework enables context-aware tuning,

providing users with the flexibility to fine-tune specific parameter subsets and seamlessly integrate
with other frameworks. Across seven industrial benchmarks and four distinct optimization objec-
tives, our methods consistently outperform academic state-of-the-art approaches, demonstrating
their effectiveness and robustness in various practical applications.
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Table 8. PPA and runtime comparison between FastTuner and SOTA [3, 36] methods. TSMC 28nm is used.
The ’imp (%)’ column indicates the improvement over commercial auto setting in PPA metrics and over SOTA
methods in runtime. FastTuner (all) means FastTuner tunes the parameters for all physical design stages,
namely, placement, CTS, and routing. FastTuner (CTS+route) means the placement parameters are tuned by
ICC2, and CTS and routing parameters by FastTuner. FastTuner uses ICC2 once at the end to collect the final
PPA data for verification.

metrics tool auto ACO [36] BO [3] FastTuner imp. % FastTuner imp. % FastTuner imp. %
(all) (CTS+route) (route)

Commercial CPU (#cells: 212K, #nets: 216K, #IO: 3.2k)
power (105 uW) 1.54 1.46 1.42 1.39 10.01 1.41 8.44 1.46 5.19
tns (ns) -70.20 -41.92 -37.66 -18.34 73.87 -26.84 61.77 -45.30 35.47
wns (ns) -0.22 -0.15 -0.09 -0.08 63.58 -0.09 59.09 -0.17 22.73
pdp (105W * ns) 1.73 1.53 1.43 1.34 22.26 1.41 18.50 1.60 7.51
runtime (#tool runs/ hours) 1/5.3 65/344.5 50/265 1/5.3 - 1/5.3 - 1/5.3 -

AES (#cells: 112K, #nets: 112K, #IO: 390)
power (105 uW) 6.71 6.32 6.31 5.94 11.48 6.31 5.96 6.38 4.92
tns (ns) -101.25 -55.85 -43.56 -28.74 71.62 -35.70 64.74 -56.00 44.69
wns (ns) -0.08 -0.05 -0.05 -0.03 62.77 -0.05 42.50 -0.06 30.00
pdp (105W * ns) 1.51 1.40 1.26 1.20 20.30 1.27 15.89 1.45 3.97
runtime (#tool runs/ hours) 1/2 55/110 45/108 1/2 - 1/2 - 1/2 -

DMA (#cells: 13K, #nets: 14K, #IO: 961)
power (105 uW) 1.52 1.43 1.40 1.37 10.16 1.40 7.89 1.43 5.92
tns (ns) -96.67 -52.24 -29.13 -25.74 73.38 -40.53 58.07 -56.95 41.09
wns (ns) -0.21 -0.11 -0.13 -0.12 42.86 -0.16 23.81 -0.17 19.05
pdp (105W * ns) 5.08 4.66 4.49 4.25 17.32 4.51 11.22 4.67 8.07
runtime (#tool runs/ hours) 1/0.4 30/12 30/12 1/0.4 - 1/0.4 - 1/0.4 -

ECG (#cells: 83K, #nets: 84K, #IO: 1.7K)
power (105 uW) 6.21 5.83 5.66 5.56 10.49 5.56 10.47 5.86 5.64
tns (ns) -100.80 -54.37 -41.28 -20.30 79.86 -31.20 69.05 -46.28 54.09
wns (ns) -0.20 -0.11 -0.12 -0.08 60.35 -0.11 45.00 -0.12 38.00
pdp (105W * ns) 2.44 2.25 2.05 1.94 20.40 1.97 19.34 2.26 7.21
runtime (#tool runs/ hours) 1/1.7 40/68 35/59.5 1/1.7 - 1/1.7 - 1/1.7 -

LDPC (#cells: 39K, #nets: 41K, #IO: 4.1K)
power (105 uW) 2.82 2.66 2.58 2.50 11.35 2.65 6.03 2.70 4.26
tns (ns) -150.20 -65.21 -74.77 -32.52 78.35 -50.20 66.58 -91.20 39.28
wns (ns) -0.22 -0.11 -0.10 -0.08 64.38 -0.12 47.27 -0.14 37.73
pdp (105W * ns) 2.56 2.35 2.31 1.99 22.45 2.12 17.07 2.39 6.64
runtime (#tool runs/ hours) 1/1.2 40/48 35/42 1/1.2 - 1/1.2 - 1/1.2 -

VGA (#cells: 52K, #nets: 52K, #IO: 184)
power (105 uW) 4.01 3.81 3.68 3.52 12.22 3.62 9.73 3.82 4.74
tns (ns) -88.26 -50.69 -36.54 -18.20 79.38 -29.00 67.14 -58.50 33.72
wns (ns) -0.38 -0.20 -0.16 -0.15 60.60 -0.18 52.63 -0.21 44.74
pdp (105W * ns) 2.89 2.68 2.64 2.27 21.50 2.36 18.34 2.64 8.65
runtime (#tool runs/ hours) 1/1 50/50 40/40 1/1 - 1/1 - 1/1 -

Rocket Core (#cells: 120K, #nets: 120K, #IO: 379)
power (mW) 250.80 233.48 229.29 228.04 9.07 236.20 5.82 238.19 5.03
tns (ns) -66.81 -32.45 -21.47 -19.05 71.48 -24.20 63.78 -36.41 45.50
wns (ns) -0.16 -0.09 -0.07 -0.06 60.45 -0.07 55.63 -0.09 43.21
pdp (mW * ns) 140.00 127.28 124.17 113.02 19.27 114.80 18.00 130.78 6.59
runtime (#tool runs/ hours) 1/4 65/260 50/200 1/4 - 1/4 - 1/4 -
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