
INSTA: An Ultra-Fast, Differentiable, Statistical Static Timing
Analysis Engine for Industrial Physical Design Applications

Yi-Chen Lu, Zhizheng Guo, Kishor Kunal, Rongjian Liang, and Haoxing Ren
NVIDIA Research
yilu@nvidia.com

Abstract—Existing GPU-accelerated Static Timing Analysis (GPU-
STA) efforts aim to build standalone engines from scratch but result
in poor correlation with commercial tools, limiting their industrial
applicability. In this paper, we present INSTA, a tool-accurate, dif-
ferentiable, GPU-STA framework that overcomes these limitations by
initializing timing graphs directly from reference STA tools (e.g., Synopsys
PrimeTime). INSTA’s core engine utilizes two custom CUDA kernels: a
forward kernel for statistical arrival time propagation, and a backward
kernel for gradient backpropagation from timing endpoints, enabling two
unprecedented capabilities: (1) high-fidelity, rapid timing analysis for in-
cremental netlist updates (e.g., gate sizing), and (2) gradient-based, global
timing optimization at scale (e.g., timing-driven placement). Notably,
INSTA demonstrates a near-perfect 0.999 correlation with PrimeTime on
a 15-million-pin design in a commercial 3nm node with runtime under
0.1 seconds. In the experiments, we showcase INSTA’s power through
three applications: (1) serving as a fast evaluator in a commercial gate
sizing flow, achieving 25x faster incremental update timing runtime with
almost no accuracy loss; (2) INSTA-Size, a gradient-based gate sizer that
achieves up to 15% better Total Negative Slack (TNS) than PrimeTime’s
default engine by sizing 68% fewer amount of cells; and (3) INSTA-Place,
a differentiable timing-driven placer that outperforms the state-of-the-
art net-weighting placer by up to 16% in Half-Perimeter Wirelegnth
(HPWL) and 59.4% in TNS.

I. INTRODUCTION
Static Timing Analysis (STA) is the heart of Physical Design (PD)
that drives the optimization at each stage from synthesis to signoff
to achieve precise trade-offs among Power, Performance, and Area
(PPA) objectives. With the relentless pursuit of high-performance
and low-power designs, STA’s role has become even more critical in
advanced technology nodes to ensure reliable chip operation under
stringent Process, Voltage, and Temperature (PVT) constraints. De-
spite its pivotal role, commercial STA tools face significant runtime
challenge due to the handling of complex constraints and intricate
delay calculations required for timing validation. Furthermore, every
fundamental netlist transformation, such as gate sizing and buffering,
demands iterative STA iterations to evaluate solution quality. While
incremental STA methods [13, 27] aim to improve STA runtime by
selectively re-propagating affected netlist portions, they often sacrifice
precision in optimization, leading to sub-optimal results.

Given the inherently parallel nature of timing propagation and
the growing accessibility of GPU programming, recent research
has explored GPU-accelerated STA (GPU-STA) engines, utilizing
GPU power for both graph-based (GBA) [7, 9, 25, 30] and path-based
(PBA) [4–6] timing analysis. Despite their promise, these approaches
often fail to meet the stringent accuracy requirements of industrial
applications. They typically rely on simplified delay models, such
as the Non-Linear Delay Model (NLDM) for cell delays and the
Elmore model for interconnect delays, which lack the precision
necessary for advanced technology nodes. In contrast, commercial
tools like Synopsys PrimeTime employ proprietary delay models
and robustly manage complicated timing constraints. Hence, existing
GPU-STA engines demonstrate limited correlation with commercial
tools, making them impractical for industrial PD applications.

In this paper, we address these limitations by introducing IN-
STA, a tool-accurate, differentiable, GPU-STA framework tailored

initialization & levelization

a

b
z

statistical
propagation

correlation: 0.999

ocv-aware ep slack from INSTA

e
p

 s
la

c
k
 f
ro

m
 t
o

o
l

GPU-based
propagation

netlist-change

(milliseconds)

re-annotate
arc delays

for impacted
timing arcs

cuda kernels

(e.g., gate sizing,
cell movement)

(incremental loop) by
gradient

Fig. 1: Overview of INSTA which begins with a one-time initialization
from a reference timing engine and performs fast, differentiable, and tool-
accurate STA propagation. Notably, INSTA enables gradient computation
of global timing metrics (e.g., TNS) with respect to leaf variables (e.g.,
gate sizes and cell locations) to drive critical PD optimization.

for industrial PD flows. INSTA is GBA-based and adopts a fun-
damentally different philosophy from previous works [7, 9, 25, 30]
by dividing STA into two distinct stages: delay calculation and
timing propagation. Rather than constructing an STA engine from
scratch to manage intricate delay computations as prior works, INSTA
directly “clones” arc delays from a reference tool such as Synopsys
PrimeTime and focuses exclusively on ultra-fast, differentiable timing
propagation using custom CUDA kernels. This approach combines
the strengths of both worlds: (1) unlike prior GPU-STA methods,
INSTA achieves high-fidelity correlation with commercial tools, and
(2) unlike commercial tools, INSTA enables rapid timing analysis of
incremental netlist change and supports gradient-based, truly-global
timing optimization subject to various leaf variables.

Figure 1 presents an overview of INSTA. Following a one-
time initialization from a reference STA engine, INSTA utilizes a
forward CUDA kernel for On-Chip Variation (OCV)-aware timing
propagation and a backward kernel for gradient back-propagation.
Experimental results demonstrate that INSTA achieves a near-perfect
correlation (0.9999) in individual endpoint slack values with an
industry-leading signoff tool (tool name is withheld in compliance
with license agreement) across several real-world high-performance
designs in signoff mode. Note that while INSTA is initialized from a
reference tool, achieving this level of correlation is far from trivial.
INSTA meticulously handles distribution-based timing propagation,
timing exceptions, and Common Path Pessimism Removal (CPPR) to
manage rise/fall conditions and unateness constraints. Beyond tool-
accurate correlation, INSTA supports gradient computations of leaf
optimization variables (e.g., gate sizes, cell locations) with respect
to global timing metrics including Worst Negative Slack (WNS) and
Total Negative Slack (TNS). This capability enables fast and precise
identification of timing bottlenecks across cells, nets, stages, etc.,
facilitating targeted and effective PD optimization. In this work, we

Synopsys PrimeTime

arcs
attributes

rise_fall

unateness

delay_mean

delay_std

timing
constraints

multi-cycle

false paths

margin

noTiming pins

SPs / EPs
attributes

launch clk arr

capture clk arr

min required

all critical paths

one-time

extraction

INSTA levelization & initialization

incremental STA

for transform eval.

differentiable global

timing optimization

eval
mode

opt.
mode

verilog SPEF LIB SDC

(distribution) (for corr.

study only)

c
ir
c
u

it
O

p
s

fo
rr

m
a

t
multi-

threaded

THREE APPLICATIONS WE SHOWCASE IN THIS WORK

1. sizing evaluation
in a commercial flow

2. differentiable gate sizing
3. timing-driven placement

Fig. 2: Overview of INSTA’s initialization process from a reference com-
mercial STA tool, along with its evaluation and optimization capabilities.

present related applications in gate sizing and global placement.
We envision INSTA as a powerful tool to reshape existing indus-

trial PD flows. In this paper, we specifically highlight three novel
applications of INSTA. First, we utilize INSTA’s fast timing analysis
capability within an iterative gate-sizing scheme, demonstrating sig-
nificant runtime improvements in each sizing iteration with almost no
compromise on accuracy or Quality of Results (QoR). Then, we apply
INSTA to differentiable gate sizing and differentiable timing-driven
placement, illustrating its potential for driving timing optimization in
PD tasks. The goal of this work is to demonstrate how INSTA can
transform existing CPU-centric PD flows. We believe this paves the
way for future works to revisit traditional PD tasks with INSTA.

Our main contributions are as follows:
• We present INSTA, the first-ever differentiable GPU-STA frame-

work that performs statistical timing propagation with near-
perfect endpoint slack correlation to Synopsys PrimeTime, an
industry-standard timing signoff tool, in a commercial 3nm node
with OCV enabled. On our largest block with 15 millions pins,
INSTA performs full-graph timing propagation in less than 0.1
seconds with 0.999 correlation to Synopsys PrimeTime.

• We develop a GPU-accelerated Top-K statistical arrival propaga-
tion CUDA kernel that efficiently manages CPPR, a must-handle
timing pessimism in advanced technology nodes.

• We demonstrate INSTA’s capability as a fast timing evaluator
in a commercial gate sizing flow, where it brings 25x runtime
improvement over PrimeTime’s incremental timing analysis.

• We propose the concept of “timing gradients” to enable truly-
global, differentiable timing optimization in traditional PD
tasks. We introduce INSTA-Size and INSTA-Place, showing that
INSTA-Size outperforms the signoff timing optimization engine
in PrimeTime by up to 15% in TNS with sizing 68% less amount
of cells, while INSTA-Place outperforms the state-of-the-art net-
weighting-based timing-driven placer [19] by up to 59.4% in
TNS and 16.2% in Half-Perimeter Wirelength (HPWL).

II. RELATED WORK
A. GPU-Accelerated Timing Propagation
GPU-STA engines have been proposed for graph-based [7, 9, 25, 30]
and path-based [4–6] timing analysis, achieving notable speedups on
academic benchmarks. However, they rely on over-simplified delay

parent
index

parent
arrival

thread-1 thread-2 thread-3

current
arrival

(pin-1) (pin-2) (pin-3)

1.7 1.4 1.9

arc
delay

0.4 0.8 0.1 0.5 0.2

2.2

2.4

1.6

unique

previous

& unate

can
duplicate

rise/fall

same

level

0 1 0 2 1

level

from

Fig. 3: Illustration (simplified) of arrival time merging in INSTA using
GPU, where each pin on the same timing level is mapped to a CUDA
thread. Refer to Algorithm 1 for the complete procedure.

models [20], omit essential industrial requirements such as OCV
and CPPR, and lack fidelity to commercial tools. While CPPR-
focused methods [8, 12] attempt to address these gaps, their accuracy
and runtime are impractical for industrial use. Furthermore, none
of these frameworks [4–9, 12, 25, 30] support differentiable timing
propagation, limiting their utility for modern PD applications.
B. Differentiable Timing Optimization
Differentiable STA has recently gained traction with the rise of Ma-
chine Learning (ML) frameworks like PyTorch [26]. [10] introduces
a differentiable placement framework, but its reliance on simplified
delay models again limits its usage. Another study [29] leverages
ML-based timing predictions [11] to enable gradient computation,
but its learning-based nature restricts generalizability, performing 60x
slower than commercial tools even on an outdated 130nm node.
These limitations [10, 29] underscore the need for a framework that
combines tool-level accuracy with efficient optimization.

III. ALGORITHM
A. INSTA’s Philosophy and Initialization
The core design principle of INSTA is to achieve tool-accurate, GPU-
accelerated timing analysis (GBA), while enabling gradient-based
optimization over various leaf variables. However, this alignment is
far from trivial. While arc delays can be cloned, replicating the exact
timing propagation procedure in a GPU-accelerated manner requires
careful handling of OCV, CPPR, and timing constraints. Figure 2
provides an overview of INSTA’s initialization process. Inputs include
arc attributes in consideration of rise/fall conditions and unateness,
timing exceptions (e.g., multi-cycle and false paths), and SP/EP
attributes (e.g., clock arrival times, minimum required times). All
are extracted using multi-threaded CPU processing in PrimeTime via
custom TCL scripts into the CircuitOps [18] format. Even on million-
gate industrial designs, this extraction only takes around 10 minutes.
Following extraction, INSTA constructs and levelizes its timing graph
for parallel arrival time propagation, where pins within the same level
are processed independently. This levelization process is achieved by
topological sort using Graph-Tool [28], which completes in just a
few seconds on a million-node graph.
B. OCV Consideration in INSTA: Arrival Times as Distributions
In modern industrial PD flows, STA engines must account for OCV
to ensure reliable chip operation under extreme PVT conditions.
Although various OCV models are employed across different com-
mercial tools, in this work, we choose to focus on replicating the Para-
metric OCV (POCV) propagation used in Synopsys PrimeTime [1].
To achieve this, INSTA models the arrival time at each pin as a
Gaussian distribution that is characterized by a mean and a standard
deviation (std). Based on the variational arc delay attributes extracted
from PrimeTime as shown in Figure 2, our forward CUDA kernel
propagates both the mean and standard deviation of these delay
distributions at each timing level, where for an arc j → i with its

Algorithm 1 CUDA Kernel for Top-K Statistical Unique Arrival Prop-
agation at Output Pins. Considering Rise/Fall and Unateness.
Input: TopK: Number of unique arrivals to store per pin, µarc: Arc

increment means, σarc: Arc increment standard deviations, U :
Arc unateness, Nσ : Level of pessimism, N : Number of pins,
outP in parent start: 1D output pins to input pins mapping array.

Output: Top-K arrival distributions per pin subject to unique startpoints.
Pre-Kernel Initialization of Final TopK Structures:

1: Initialize topK {rise/fall} {arrivals, means, stds, SPs} ∈ RN×2×K

Pre-Kernel Initialization of Temporary Priority Queues:
2: {A, µ, σ, SP}top-K ← {} ∈ RN×K ▷ arrival, mean, std, startpoint

CUDA Kernel Launch to Parallelize Arrival Merging of Arcs:
3: outPinID← blockIdx.x · blockDim.x + threadIdx.x
4: if outPinID ≥ N then return ▷ each maps to a CUDA thread
5: offsetL ← outP in parent start[outPinID]
6: offsetR ← outP in parent start[outPinID+1]
7: for each rf ∈ {rise,fall}, k ∈ {0,...,TopK−1} do
8: for each pID = offsetL to offsetR−1 do ▷ parent in prev level
9: pRF =∼ rf if U [pID] == negative unate else rf

10: pMean ← topK means[pID][pRF][k] ▷ from previous level
11: pStd ← topK stds[pID][pRF][k]
12: arr_mean← pMean+µarc[pID][rf]
13: arr_std←

√
pStd2+σarc[pID][rf]2

14: arrival← arr_mean+Nσ ·arr_std ▷ Anew

15: µnew ← arr_mean, σnew ← arr_std
16: SPnew ← topK SPs[pID][pRF][k]
17: Update {A, µ, σ, SP}top-K at outPinID with Algorithm 2
18: for each k ∈ {0,...,TopK−1} do
19: topK arrivals[outPinID][rf][k] ← Atop-K[outPinID][k]
20: topK means[outPinID][rf][k] ← µtop-K[outPinID][k]
21: topK stds[outPinID][rf][k] ← σtop-K[outPinID][k]
22: topK SPs[outPinID][rf][k] ← SPtop-K[outPinID][k]

23: Free {A, µ, σ, SP}top-K

specific variation attributes arc meanj→i and arc stdj→i, the final
arrival time at the sink i is calculated as:

arrival meani = arrival meanj+arc meanj→i, (1)

arrival std2i = arrival std2j+arc std2j→i, (2)

arrivali = arrival meani+Nσ∗arrival stdi, (3)

where Nσ controls the level of pessimism. Essentially, the arrival time
at the pin i denotes the corner value of its propagated distribution. In
the implementation, we set Nσ = 3.0 in alignment with PrimeTime.
C. CPPR Handling in INSTA via Priority Queues
CPPR is essential for accurate timing analysis in industrial design
flows, as it mitigates pessimism introduced by clock paths to provide
an accurate timing landscape. Prior CPU-based STA methods have
attempted to manage CPPR through branch-and-bound techniques for
search-space pruning [17, 31], block-based algorithms with alterna-
tive delay metrics to reduce pessimism [15], and Lowest Common
Ancestor (LCA) path tracing [12]. However, these methods often suf-
fer from substantial runtime overhead or accuracy trade-offs. Recent
efforts to utilize GPU parallelism for CPPR path tracing [8] have
improved performance but still fall short of industrial requirements.

In INSTA, CPPR is addressed through an efficient GPU-accelerated
method that employs Top-K arrival time propagation while ensuring
each arrival distribution is mapped to a distinct startpoint. Particularly,
priority queues are dynamically maintained at each pin to efficiently
track and update the Top-K critical arrival distributions with respect
to unique timing startpoints. The key rationale is that clock pessimism
arises when multiple timing startpoints converge at a single endpoint
along distinct clock paths, resulting in a scenario, where the startpoint
contributing to the maximum arrival time at an endpoint, differs from
the startpoint introducing the minimum required time, which causes a

Algorithm 2 GPU-Accelerated Priority Queue Update for Top-K Arrival
Propagation with Unique Startpoints. (Line 17 of Algorithm 1)
Input: (all from Algorithm 1): New arrival time Anew subject to

startpoint SPnew, top-K queues: arrival times Atop-K, means µtop-K,
standard deviations σtop-K, startpoints SPtop-K.

Output: In-place update of Top-K queues.
At Each GPU Parallel Thread Assigned to an Output Pin:

1: inserted← false, idx← −1 ▷ Initialize control flags
Step 1: Check for Startpoint Uniqueness and Update if Found

2: for each (Aj ,SPj) ∈ zip(Atop-K, SP top-K) do
3: if SPj = SPnew then
4: if Anew > Aj then
5: Atop-K[j]← Anew, SP top-K[j]← SPnew
6: µtop-K[j]← µnew, σtop-K[j]← σnew
7: inserted← true
8: break ▷ Exit once an existing SPnew is found

Step 2: Insert New Startpoint if Unique
9: if not inserted then ▷ Only if SPnew is not found

10: for j = 0 to K−1 do
11: if Anew > Aj then ▷ Found the first lower value
12: for l = K−1 down to j+1 do ▷ Shifting in reversal!
13: Atop-K[l]← Atop-K[l−1]
14: Atop-K[j]← Anew, SP top-K[j]← SPnew
15: µtop-K[j]← µnew, σtop-K[j]← σnew
16: inserted← true
17: break

shift in the endpoint’s slack. Hence, with the Top-K arrival times that
are mapped to unique startpoints and by initializing endpoint required
times from a commercial reference tool that are also associated with
respective startpoints (as illustrated in Figure 2), INSTA ensures that
the correct arrival time is used to compute endpoints’ slack values
for tool-accurate timing analysis.
D. GPU Kernel Implementation of Top-K Arrival Propagation
Figure 3 shows how INSTA uses GPU parallelism to perform arrival
time propagation in large-scale timing analysis. At each timing level,
an index array in GPU shared memory maps each thread, representing
a pin at the current level, to its parent pins. This mapping enables
accurate merging of arrival distributions across multiple incoming
arcs while handling rise/fall conditions and unateness constraints.
Algorithm 1 provides the detailed steps for this process, focusing
on output pins where multiple arcs converge. Note that for input
pins, GPU kernels are not required, as each input pin is connected to
a single parent in modern digital designs. Hence, INSTA employs a
CPU-based vectorized approach, which avoids the overhead of data
transfer to GPU while being computationally efficient.

The update of priority queues for CPPR handling is detailed in
Line 17 of Algorithm 1, with the specific procedures outlined in
Algorithm 2, which ensures that each Top-K entry corresponds to
a unique startpoint while dynamically maintaining the Top-K arrival
times. The update procedure works as follow. If the new incoming
startpoint SPnew already exists in the queue, its arrival time Anew is
compared with the existing value, and the entry is updated if Anew

is larger. If SPnew is not found in the queue, the algorithm checks
whether Anew exceeds the smallest arrival time in the current list. If
so, the new values are inserted in the appropriate position to maintain
descending order, with entries shifted as needed.
E. INSTA Complexity Analysis: Why not Heaps for Priority Queues?
In conventional priority queue implementations, heaps are commonly
used due to their O(logK) complexity for insertions and deletions.
However, implementing a heap on GPUs incurs substantial overhead
because maintaining a binary tree structure requires frequent reorder-
ing and re-balancing of elements. These operations are computation-
ally intensive and poorly suited to the highly parallel architecture of

comb.
logic

a

b
z D Q D Q ...

fanout endpoints

TNS

(various

levels)

D Q

timing arc
gradient

PyTorch backprop.

from
backprop.

INSTA kernel
(see Eq.6)

gradient as

sensitvity

what we care

key philosophy:

Fig. 4: Illustration of timing gradients in INSTA. For either cell arc or net
arc, we can compute the “timing gradient” that quantifies its contribution
to global timing metrics such as WNS and TNS.

GPUs, where hundreds thousands of threads operate simultaneously.
In INSTA, we use a fixed-size list to manage the Top-K elements,
avoiding the overhead of heap-based operations. As shown in the
two algorithms, each CUDA thread operates independently on its
own lists, performing O(K2) comparisons and shifts to maintain the
sorted order. Hence, with the GPU ensuring parallel processing across
threads in O(1) per level, the overall time complexity of INSTA’s
timing propagation is O(K2 ·L), where K denotes Top-K and L is
the number of timing levels.
F. Enabling Differentiable Timing Propagation
In Algorithm 1 and Algorithm 2, the “greater than” operation identi-
fies the maximum arrival time at a pin from multiple incoming paths.
While effective for evaluation, it introduces non-differentiability,
making it unsuitable for optimization. The limitation arises from its
exclusivity, propagating only the arrival distribution of the most criti-
cal path and blocking gradient flow from other inputs. This approach
is particularly problematic when multiple input paths provide near-
critical arrival times, as it disregards opportunities to optimize other
sub-critical paths to improve overall timing. To overcome this, we
adopt the numerically stable Log-Sum-Exponential (LSE) operator,
a differentiable approximation of the maximum function. The LSE
operator ensures smoother gradient distribution across all inputs,
enabling more comprehensive optimization. It is defined as:

LSE({Ai}ni=1) = M+τ ·log

(
n∑

i=1

exp

(
Ai−M

τ

))
, (4)

where {Ai} denotes the set of arrival times at a given pin, M =
max({Ai}ni=1) ensures numerical stability, and τ > 0 is a tempera-
ture parameter controlling the degree of smoothness. As τ → 0, the
LSE operator converges to the standard maximum operator as:

lim
τ→0

LSE({Ai}ni=1) = max({Ai}ni=1). (5)

With Equation 4, the gradient of LSE can be computed in INSTA’s
backward kernel with respect to each arrival time Ai as:

∂LSE({Ai}ni=1)

∂Ai
=

exp
(Ai−M

τ

)∑n
j=1exp

(
Aj−M

τ

) , (6)

which effectively assigns a softmax-like weight to each path. The
term exp

(Ai−M
τ

)
ensures that paths with larger arrival times receive

higher contributions, while smaller paths contribute proportionally
less. Notably, this formulation ensures full differentiability, allowing
gradient descent to consider full timing graph during optimization.
G. Timing Gradient: Key for Truly-Global Timing Optimization
For the first time, in the realm of PD, INSTA introduces the
concept of “timing gradients” to enable arc-based, truly-global timing
optimization for industrial-grade PD applications. The key idea is
that the timing gradient of each arc, accounting for rise/fall and
unateness conditions, precisely quantifies its contribution to global

-10

10
-5

-10
-10 -10

10
-5

-10
-10

net-weighting [14]

accumulated

INSTA-Place (ours)

shouldn’t weightall arcs equal

by gradient

(number as slack)

weighted

1.

2.

(two drawbacks solved)(node as pin)

Fig. 5: Illustration of arc-based gradient for timing-driven placement in
INSTA-Place that solves the two key drawbacks of the state-of-the-art
net-weighting-based approach [19].

timing metrics such as WNS and TNS, which enables targeted and
fine-grained PD optimization. If we draw an analogy between INSTA
and modern ML models, each pin in the timing graph corresponds
to a neuron, and the pin-to-pin arc delays can be thought as weights.
Similar to how forward propagation in a ML model that computes
a differentiable loss function with respect to the weights, INSTA
computes timing metrics in a fully differentiable manner.

Figure 4 illustrates the computation of timing gradients in IN-
STA. Leveraging PyTorch’s C++/CUDA extension [26] (similar to
DREAMPlace [21]), INSTA integrates PyTorch’s auto-differentiation
capabilities to perform efficient gradient backpropagation. This design
choice allows INSTA to delegate the complicated global gradient
flow to the PyTorch framework while focusing solely on gradient
computations with a custom backward CUDA kernel at each timing
level. As illustrated in the purple box of Figure 4, INSTA’s backward
kernel computes the gradient of merged arrival times at a destination
pin to incremental changes in arc delays (e.g., ∂Arrz

∂delayb→z
), following

the formulation in Equation 6. The timing gradient of each arc is
subsequently derived by combining this kernel’s output with the
backpropagated gradient contributions from the previous fanout level.
In the experiments, we demonstrate how to leverage “timing gradient”
to drive critical PD optimization including gate sizing and placement.
H. INSTA-Size: Pinpoint Gate Sizing with Timing Gradients
As INSTA computes the “timing gradient” of each arc in a GPU-
accelerated manner, it enables instantaneous identification of timing-
critical cells or nets within a design. This capability allows us to
quickly pinpoint which elements contribute most significantly to
global timing metrics such as TNS and prioritize them ‘for timing
improvement. Leveraging this concept, we introduce INSTA-Size,
a fast, gradient-based gate sizing framework designed to optimize
timing using the gradients calculated by INSTA. The core idea is
that following the one-time initialization, a backward pass on the
TNS metric computed by INSTA yields the timing gradient of each
“stage” (i.e., the gradient sum of a cell arc and its driving net arc),
which quantifies its contribution to the overall TNS. Stages with
gradients above a pre-defined threshold are prioritized by magnitude.
Starting with the most critical stage, PrimeTime’s estimate_eco
is used to determine the library cell that provides the most delay
improvement for that stage, which is then committed and rolled
back if TNS degrades. Note that estimate_eco is a highly par-
allelizable command, which computes local delay change estimates
of gate sizing for millions of arcs within seconds [1]. A recent
work [23] has shown that the accuracy of estimate_eco is good
enough to drive commercial sizing optimization. Nonetheless, as
estimate_eco operates under the assumption that the neighboring
cells remain unchanged for estimation, INSTA-Size blocks the 3-
hop neighborhood of a committed stage from further consideration to
mitigate interference, which aligns with the strategies used in [23, 24].

TopK=1 (no CPPR)

corr: 0.999624

runtime: 0.1s

mem: 11GB

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

TopK=128 (with CPPR)

0.0

0.2

0.4

0.6

0.1

0.3

0.5

endpoint slack from INSTA (ns)

P
ri
m

e
T

im
e

 s
la

c
k
 (

n
s
)

m
a

x
 l
o

g
ic

 l
e

v
e

l

1

140
corr: 0.999992

runtime: 1.2s

mem: 43GB

ep mismatch:

avg: 2e-2ps

wst: 48ps

ep mismatch:

avg: 1e-5ps

wst: 4ps

Fig. 6: INSTA vs. Synopsys PrimeTime endpoint slack correlation on
block-1 with 4M cells and 15M pins. Top-K=1 and Top-K=128 propa-
gation are compared, showing the trade-off of CPPR consideration.

I. INSTA-Place: INSTA for Timing-Driven Placement
Now, we introduce INSTA-Place, which is a timing-driven placer
that leverages timing gradients from INSTA for global placement
optimization. By integrating with DREAMPlace [21] and Open-
Timer [14], INSTA-Place addresses the fundamental limitations in the
state-of-the-art net-weighting approach [19], as shown in Figure 5,
via an arc-specific weighting strategy guided by timing gradients.
Particularly, the two critical issues that INSTA-Place solves are:

• Locality of slack-based adjustment: Current methods assign
net weights primarily based on the most critical sink, leading
to near-uniform weighting for arcs along the same worst critical
path. However, instead of relying on “slack values”, the weight-
ing strategy should reflect each arc’s contribution (i.e., gradient)
to global timing metrics such as TNS.

• Equal weighting for all arcs in a net: Existing methods
assign the same weight to all arcs in a net, which is inherently
suboptimal. Often, only a subset of sinks in a net are timing-
critical, while the others are not. Blindly forcing all pins closer
together degrades overall placement quality.

INSTA-Place elegantly resolves these limitations by using an arc-
based, “gradient as sensitivity” approach by weighting pin-to-pin
Manhattan distances by their respective timing gradients from IN-
STA. Specifically, at each placement iteration, given the current
pin locations P = {(xi,yi)}Ni=1, the critical timing arc indices
I = {(fk,tk)}Mk=1 (where fk and tk denote the indices of the
driver and sink of the k-th arc), and the associated timing gradients
G = {gk}Mk=1 from INSTA, we define the timing objective as:

Ltiming = λRC ·
M∑
k=1

(
|xfk−xtk |+|yfk−ytk |

)
·gk, (7)

where λRC denotes the global time constant scaling that reflects
the RC delay per wirelength. To integrate timing-awareness into
the global placement process, we combine Ltiming with the default
wirelength LWL and density LDEN objectives as:

L = LWL+λ1Lden︸ ︷︷ ︸
default objective

+λ2Ltiming︸ ︷︷ ︸
INSTA-Place

, s.t. λ2 =
∥∇(LWL+λ1Lden)∥

∥∇Ltiming∥ (8)

where λ1 is the default density scaling factor, and λ2 dynamically
adjusts the contribution of Ltiming relative to the default wirelength and
density objectives by aligning the Euclidean norm ∥·∥ of their gradi-
ents. For computational efficiency, INSTA-Place refreshes the timing
graph with OpenTimer [14] every 15 iterations as the practice in [19],
while reusing last-computed timing gradients for the remaining 14
iterations. This approach ensures accurate timing analysis without
incurring excessive computational overhead.

IV. EXPERIMENTAL RESULTS
In this section, we first present a detailed correlation analysis between
INSTA and Synopsys PrimeTime with 5 real-world million-gate

TABLE I: Timing correlation study between INSTA and PrimeTime (in
signoff mode) on 5 industrial designs in a commercial 3nm node. UT
refers to the runtime of PrimeTime’s update_timing with 32 threads.

designs (TopK=32) ep slack corr. runtime memory ep mismatch
cells, # pins, UT(min) (top 5 digits) (second) (GB) (avg, wst) ps
block-1 (4M, 15M, 68) 0.99994 0.39 21.13 (7e-4, 17)
block-2 (2M, 6M, 32) 0.99999 0.35 5.98 (1e-4, 3)
block-3 (3M, 9M, 39) 0.99992 0.37 11.94 (1e-3 , 9)
block-4 (2M, 7M, 29) 0.99996 0.35 9.47 (2e-4, 6)
block-5 (2M, 6M, 33) 0.99999 0.33 5.81 (1e-4, 5)

0 5 10 15 20 25 30
sizing iteration

2k

4k

6k

8k

10k

0 0

100

200

300

400

500

600

700

ru
n

ti
m

e
 (

s
e

c
o

n
d

)

In-House Incremental STA Tool

PrimeTime (32 threads)

INSTA (full-graph) + estimate_eco

Fig. 7: Incremental STA runtime comparison (same changelist) on block-
2 among an in-house CPU-based STA engine, Synopsys PrimeTime with
32 threads, and INSTA with estimate_eco for arc delay re-annotation.
See Figure 8 for INSTA’s correlation impact with estimate_eco.

industrial designs in a commercial 3nm technology node. Then,
we demonstrate INSTA’s capabilities across three PD applications
as illustrated in Figure 2. INSTA is implemented using PyTorch [26]
2.1.2 and CUDA 12.1. All experiments are conducted on a Linux
system equipped with a single NVIDIA A100 GPU (96GB memory)
and an AMD EPYC 7742 64-core processor with 2TB RAM.
A. Correlation Study: INSTA vs. PrimeTime in Signoff Mode
In this experiment, we validate INSTA’s timing correlation against
Synopsys PrimeTime. Figure 6 shows the endpoint slack correlation
results as scatter plots on block-1 (4M cells, 15M pins), with the
left plot achieved without CPPR handling (Top-K=1) and the right
plot with consideration of CPPR (Top-K=128). Each dot in the figure
represents an endpoint and is colored by its maximum level, high-
lighting INSTA’s accuracy across varying timing depths. With CPPR
handling, correlation is improved with expected trade-offs in runtime
and memory. However, even without CPPR (Top-K=1), INSTA shows
exceptional accuracy, with an average absolute mismatch per endpoint
of only 0.02ps, indicating near-perfect alignment with the 45-degree
line. Table I presents detailed timing correlation results across 5
industrial designs with a fixed Top-K=32. Notably, the PrimeTime’s
update_timing runtimes are listed only for reference rather for
direct comparison with INSTA, as INSTA focuses solely on timing
propagation using arc delays initialized from PrimeTime to enable
incremental timing evaluation and differentiable timing optimization.
However, it is worth to note that since GPU parallelism amortizes the
computation at each timing level to O(1) , INSTA’s runtime scales
with the number of timing levels under a fixed Top-K rather than the
total number of pins or cells as PrimeTime.
B. Application-1: Timing Evaluation in a Commercial Sizing Flow
Now, we evaluate INSTA’s capability as a timing evaluator within
a commercial gate sizing flow for timing-constrained power op-
timization in a 3nm node, where incremental STA is used after
each iteration to ensure timing consistency. In this experiment, we
benchmark INSTA’s runtime and correlation against two other STA
engines in incremental mode: an in-house, highly-optimized STA

before sizing

corr: 0.999999

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

end-of-sizing (iter=32)

0.0

0.1

0.2

0.3

0.05

0.15

0.25

endpoint slack from INSTA (ns)

P
ri
m

e
T

im
e

 s
la

c
k
 (

n
s
)

m
a

x
 l
o

g
ic

 l
e

v
e

l

1

93
corr: 0.999980

ep mismatch:

avg: 1e-4ps

wst: 3ps

ep mismatch:

avg: 1e-3ps

wst: 59ps

corr: 0.999980

ep mismatch:i t h

avg: 1e-3ps

wst: 59ps

corr: 0.999999

ep mismatch:i t h

avg: 1e-4ps

wst: 3ps

purely by estimate_eco (fast, see Fig. 7)

Fig. 8: INSTA correlation impact with estimate_eco re-annotation
before and after a commercial gate sizing flow for power optimization.
The correlation is still high enough to drive the optimization.

TABLE II: Gate sizing for timing optimization results between INSTA-
Size and Synopsys PrimeTime on the IWLS benchmark [2]. bRT denotes
INSTA’s runtime of identifying critical stages via the backward kernel.

design (# pins) method WNS TNS # vio. # cells
(bRT , RTpt) (ps) (ps) eps sized

aes (24k) initial state -27.59 -1115.81 149 –

(0.02s, 33s) PrimeTime -27.59 -1206.12 152 182
INSTA-Size -27.59 -1025.15 137 113 (-38%)

cipher top (50k) initial state -69.24 -11232.28 317 –

(0.02s, 42s) PrimeTime -69.00 -11187.22 314 431
INSTA-Size -68.07 -10924.20 311 254 (-41%)

des (11k) initial state -114.61 -5546.59 113 –

(0.03s, 14s) PrimeTime -114.50 -5498.41 112 186
INSTA-Size -113.54 -5360.59 110 121 (-35%)

mc top (25k) initial state -203.01 -77653.10 776 –

(0.02s, 22s) PrimeTime -203.00 -77694.79 774 156
INSTA-Size -203.01 -75307.32 776 49 (- 68%)

tool and Synopsys PrimeTime with 32 threads. Figure 7 shows
the incremental STA runtime comparison at each sizing iteration
over the exact same changelist across these three tools. Particularly,
it is important to note that the runtime of INSTA includes both
timing propagation time and the arc delay re-annotation time from
PrimeTime’s estimate_eco. Figure 8 further evaluates INSTA’s
correlation before and after the complete gate sizing flow against
PrimeTime. While estimate_eco introducing minor inaccuracies
which can be observed in the right figure, INSTA maintains extremely
high correlation throughout the entire optimization process for the
vast majority of endpoints, delivering a 14x speed-up over the highly-
optimized in-house STA engine, and a 25x runtime improvement over
PrimeTime’s incremental update_timing. We want to emphasize
that in practice, any significant accuracy concerns can be addressed
by re-synchronizing INSTA with PrimeTime-calculated arc delays,
as shown in Figure 2, which takes only 10 minutes for million-gate
industrial designs. Note that in this experiment, we do not perform
this re-synchronization for benchmarking purpose.
C. Application-2: INSTA-Size for Timing Optimization
In this experiment, we assess INSTA-Size’s capability in gate sizing
for timing optimization using the “timing gradients” as described
in Section III-H. A head-to-head comparison between INSTA-Size
and PrimeTime is conducted on the IWLS benchmark suite [2] in
the ASAP 7nm[3] node, with τ = 0.01 set in Equation4 for INSTA-
Size. Table III-H presents the optimization results, demonstrating that
INSTA-Size achieves up to 15% improvement in TNS compared to
PrimeTime’s default timing optimization engine, while requiring sig-
nificantly fewer cell modifications across all benchmarks (42% less
on average). We attribute this significant success to the effectiveness
of INSTA’s timing gradients, which offer a precise and instantaneous
identification of the most critical stages in the design and their

TABLE III: Timing-driven placement results after legalization between
INSTA-Place and the state-of-the-art net-weighting-based approach [19]
on ICCAD 2015 benchmarks [16]. The unit for TNS is 105ps. DP denotes
DREAMPlace. Refer to Figure 5 for detailed runtime comparison.

ICCAD’15 DP [21] DP 4.0 [19] INSTA-Place (ours)
benchmark HPWL TNS HPWL TNS HPWL TNS
Superblue1 410.4 -312.5 481.6 -85.3 443.1(-8.0%) -34.6(-59.4%)
Superblue3 469.3 -70.3 482.7 -50.4 472.2(-2.2%) -40.4(-19.8%)
Superblue4 317.3 -191.1 343.7 -144.0 333.9(-2.9%) -114.5(-21%)
Superblue5 487.9 -211.6 533.5 -102.1 478.5(-10.3%) -93.7(-8.2%)
Superblue7 600.2 -167.3 604.1 -64.7 593.0(-1.8%) -57.6(-10.9%)
Superblue10 916.0 -756.0 1088.3 -671.3 911.9(-16.2%) -628.2(-6.4%)
Superblue16 424.4 -250.1 460.2 -71.4 458.7(-0.3%) -37.6(-47.3%)
Superblue18 237.1 -92.2 248.6 -47.5 242.6(-2.4%) -35.8(-24.6%)

avg. -5.5% avg. -24.7%

DP 4.0

INSTA-
Place

RC
tree

delay
calc.}

OpenTimer 28s

arc data
transfer

14s

INSTA
prop.

0.1s

OT
prop.

can be optimized

tighter integration

}
a timing
update
iteration
via

Fig. 9: Detailed runtime comparison between [19] and INSTA-Place on
Superblue10 (largest benchmark, 5.6M pins) in a timing update iteration.

corresponding sensitivities to TNS (i.e., gradients as sensitivities).
D. Application-3: INSTA-Place for Timing-Driven Global Placement
In this experiment, we evaluate INSTA-Place against DREAM-
Place 4.0 [19], the state-of-the-art open-source net-weighting-based
timing-driven placer, using the well-established ICCAD 2015 bench-
marks [16]. The methodology of INSTA-Place is detailed in Sec-
tion III-I, with post-legalization results (by ABCDPlace [22]) sum-
marized in Table III with λRC set to around 0.001. It is shown that
INSTA-Place achieves up to 59.4% TNS improvement and 16.2%
wirelength reduction compared to [19]. Figure 9 details the runtime
comparison between INSTA-Place and [19] on Superblue10 over a
timing update iteration. While INSTA-Place incurs a 50% runtime
overhead due to the data transfer between OpenTimer [14] and
INSTA, this overhead can be minimized through tighter integration
(e.g., shared data structures). Notably, runtime is not the focus of this
experiment. What we aim to demonstrate is that by addressing the
fundamental shortcomings of [19] as highlighted in Figure 5 through
the arc-based weighting strategy (Equations 7 and 8), INSTA-Place
can significantly advance the timing quality of global placement.
Finally, while prior work [10] also attempts differentiable timing-
driven placement by approximating gradient propagation over non-
differentiable variables such as Steiner points, this approach is error-
prone and poorly correlates with reference STA tools. In contrast,
INSTA-Place employs arc-based timing gradients for distance-based
weighting, providing a more elegant and robust approach. On bench-
marks like Superblue1 and Superblue16, INSTA-Place achieves over
50% TNS improvement compared to [10], while achieving parity
results on other benchmarks.

V. CONCLUSION AND FUTURE WORK
We have proposed INSTA, a GPU-accelerated, differentiable STA
engine tailored for industrial PD flows. INSTA achieves near-perfect
correlation with PrimeTime in signoff mode while delivering excep-
tional computational efficiency. By utilizing timing gradients, INSTA
enables highly effective optimization in critical PD tasks, including
gate sizing and timing-driven placement, achieving significant im-
provements in QoR and resource utilization. We believe INSTA shall
pave the way for transforming existing CPU-centric PD flows with
high-fidelity GPU-STA. In the future, we aim to investigate INSTA
for buffering and restructuring.

REFERENCES

[1] Primetime user guide: Advanced timing analysis. V-2023.03, Synopsys
online Documentation, 2023.

[2] C. Albrecht. Iwls 2005 benchmarks. In International Workshop for
Logic Synthesis (IWLS), volume 9, 2005.

[3] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric. Asap7: A 7-nm finfet predictive process
design kit. Microelectronics Journal, 53:105–115, 2016.

[4] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D.
Wong. A gpu-accelerated framework for path-based timing analysis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 42(11):4219–4232, 2023.

[5] G. Guo, T.-W. Huang, Y. Lin, and M. Wong. Gpu-accelerated critical
path generation with path constraints. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pages 1–9. IEEE,
2021.

[6] G. Guo, T.-W. Huang, Y. Lin, and M. Wong. Gpu-accelerated path-
based timing analysis. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pages 721–726. IEEE, 2021.

[7] Z. Guo, T.-W. Huang, and Y. Lin. Gpu-accelerated static timing analysis.
In Proceedings of the 39th international conference on computer-aided
design, pages 1–9, 2020.

[8] Z. Guo, T.-W. Huang, and Y. Lin. Heterocppr: Accelerating common
path pessimism removal with heterogeneous cpu-gpu parallelism. In
2021 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). ACM, 2021.

[9] Z. Guo, T.-W. Huang, and Y. Lin. Accelerating static timing anal-
ysis using cpu–gpu heterogeneous parallelism. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
42(12):4973–4984, 2023.

[10] Z. Guo and Y. Lin. Differentiable-timing-driven global placement. In
Proceedings of the 59th ACM/IEEE Design Automation Conference,
pages 1315–1320, 2022.

[11] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin. A timing engine
inspired graph neural network model for pre-routing slack prediction.
In Proceedings of the 59th ACM/IEEE Design Automation Conference,
pages 1207–1212, 2022.

[12] Z. Guo, M. Yang, T.-W. Huang, and Y. Lin. A provably good and
practically efficient algorithm for common path pessimism removal
in large designs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 41(10):3466–3478, 2021.

[13] T.-W. Huang, G. Guo, C.-X. Lin, and M. D. Wong. Opentimer v2: A
new parallel incremental timing analysis engine. IEEE transactions on
computer-aided design of integrated circuits and systems, 40(4):776–
789, 2020.

[14] T.-W. Huang and M. D. Wong. Opentimer: A high-performance
timing analysis tool. In 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 895–902. IEEE, 2015.

[15] B. Jin, G. Luo, and W. Zhang. A fast and accurate approach for
common path pessimism removal in static timing analysis. In 2016
IEEE International Symposium on Circuits and Systems (ISCAS), pages
2623–2626. IEEE, 2016.

[16] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan. Iccad-2015 cad con-
test in incremental timing-driven placement and benchmark suite. In
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 921–926. IEEE, 2015.

[17] P.-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang. itimerc
2.0: Fast incremental timing and cppr analysis. In 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
890–894. IEEE, 2015.

[18] R. Liang, A. Agnesina, G. Pradipta, V. A. Chhabria, and H. Ren.
Circuitops: An ml infrastructure enabling generative ai for vlsi circuit
optimization. In 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 1–6. IEEE, 2023.

[19] P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin, and B. Yu. Dreamplace 4.0:
Timing-driven global placement with momentum-based net weighting.
In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 939–944. IEEE, 2022.

[20] S. Lin, G. Guo, T.-W. Huang, W. Sheng, E. F. Young, and M. D. Wong.
Gcs-timer: Gpu-accelerated current source model based static timing
analysis. In Proceedings of the 61th ACM/IEEE Design Automation
Conference, 2024.

[21] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan. Dreamplace: Deep learning toolkit-enabled gpu acceleration for

modern vlsi placement. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 40(4):748–761, 2020.

[22] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan. Abcdplace:
Accelerated batch-based concurrent detailed placement on multithreaded
cpus and gpus. IEEE transactions on computer-aided design of integrated
circuits and systems, 39(12):5083–5096, 2020.

[23] Y.-C. Lu, K. Kunal, G. Pradipta, R. Liang, R. Gandikota, and H. Ren.
Lego-size: Llm-enhanced gpu-optimized signoff-accurate differentiable
vlsi gate sizing in advanced nodes. In Proceedings of the 2025
International Symposium on Physical Design. ACM, 2025.

[24] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim. Rl-sizer: Vlsi gate
sizing for timing optimization using deep reinforcement learning. In
2021 58th ACM/IEEE Design Automation Conference (DAC), pages
733–738. IEEE, 2021.

[25] K. E. Murray and V. Betz. Tatum: Parallel timing analysis for faster de-
sign cycles and improved optimization. In 2018 International Conference
on Field-Programmable Technology (FPT), pages 110–117. IEEE, 2018.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Advances in
neural information processing systems, 2019.

[27] C. Peddawad, A. Goel, B. Dheeraj, and N. Chandrachoodan. iitrace: A
memory efficient engine for fast incremental timing analysis and clock
pessimism removal. In 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 903–909. IEEE, 2015.

[28] T. P. Peixoto. The graph-tool python library. figshare, 2014.
[29] P. Pham and J. Chung. Agd: A learning-based optimization framework

for eda and its application to gate sizing. In 2023 60th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2023.

[30] H. H.-W. Wang, L. Y.-Z. Lin, R. H.-M. Huang, and C. H.-P. Wen. Casta:
Cuda-accelerated static timing analysis for vlsi designs. In 2014 43rd
International Conference on Parallel Processing, pages 192–200. IEEE,
2014.

[31] Y.-M. Yang, Y.-W. Chang, and I. H.-R. Jiang. itimerc: Common path pes-
simism removal using effective reduction methods. In 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
600–605. IEEE, 2014.

