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Abstract—Despite achieving orders-of-magnitude runtime speedup,
GPU-accelerated placers (GPU-Placers) still have extremely limited
industrial adoption, largely due to the wide gaps in Power, Performance,
and Area (PPA) metrics compared to those well-established CPU-
centric commercial Physical Design (PD) tools. To overcome this issue,
we introduce C3PO, the first commercial-quality, differentiable, multi-
objective global placer that performs concurrent timing, routability, and
wirelength optimization in a coherent manner with custom CUDA kernels.
Particularly, we propose a convex-based framework that dynamically
computes objective weights at each placement iteration by solving a
quadratic problem, eliminating the need of manual parameter tuning. In
the experiments, we rigorously validate C3PO with an industry-leading
commercial PD tool and demonstrate that on 8 designs from TILOS [6]
and IWLS [4] in ASAP 7nm [8], C3PO consistently outperforms the
commercial tool by up to 16.7% in routed wirelength and 19.6% in
switching power with complete full-flow validation.

I. INTRODUCTION

With the relentless pursuit of high-performance and low-power
designs, global placement remains an extremely critical challenge
in modern Physical Design (PD) as cell locations determined at
this stage dictate resistances and capacitances (RC) of intercon-
nects, which directly impacts end-of-flow Power, Performance, and
Area (PPA) metrics. Nonetheless, with the ever-increasing design
complexity pushed by Moore’s Law, the runtime of commercial
global placers have drastically inflated to maintain solution quality.
To overcome runtime bottlenecks of traditional CPU-centric plac-
ers, DREAMPlace [16] introduced the first differentiable, GPU-
accelerated placer (GPU-Placer) leveraging modern Machine Learn-
ing (ML) infrastructure PyTorch [23]. Recently, several GPU-Placers
were proposed to further optimize timing [10, 11, 13, 14, 20, 24] or
routability [2, 19, 21, 26] beyond simple wirelength reduction. How-
ever, they exhibit fundamental shortcomings:
• Timing. Most works still weight nets or arcs heuristically, yielding

noisy gradients and requiring delicate loss and parameter tuning
with routing being ignored. Hence, timing gains vanish once
designs are routed in the consideration of congestion.

• Routability. Most works rely on cell-inflation-based heuristics for
optimization, which is harmful to wirelegnth as white space will be
created. Other ML-based approaches differentiate through learned
surrogates that are design-specific and non-generalizable.
In this paper, we address all the limitations aforementioned in

commercial tools and state-of-the-art GPU-Placers by presenting
C3PO, the first commercial-quality GPU-Placer that performs con-
current and coherent timing, routability, and wirelength optimization
at each placement iteration. Particularly, we introduce novel custom
CUDA kernels that compute exact gradients of global timing metrics
including Total Negative Slack (TNS) and Worst Negative Slack
(WNS), and the widely-adopted routability score RUDY [25], making
each individual objective fully differentiable with respect to cell
locations. Furthermore, we introduce an Multi-Gradient Descent
Algorithm (MGDA) [9]-inspired objective weighting framework that
balances the weight of each individual objective by systematically
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Fig. 1: Commercial validation flow between an industry-leading commer-
cial placer and C3PO. Note that placement improvements are meaningless
without post-route justification. Our goal is to make placement improve-
ments that actually count in post-route.

solving a quadratic program at each placement iteration. To rigorously
validate the effectiveness and practicality of C3PO, we perform a
head-to-head comparison against the global placer of an industry-
leading commercial PD tool, as illustrated in Figure 1, where we
directly replace the commercial tool’s global placement engine with
C3PO while strictly following the identical downstream flow for fair
evaluation. Our main contributions are as follows:
• We present C3PO, the first commercial-quality, GPU-accelerated

global placer that concurrently optimizes timing, routability, and
wirelength in a GPU-accelerated and differentiable manner.

• We develop custom CUDA kernels enabling exact gradient compu-
tations of global timing metrics (TNS, WNS) and the RUDY-based
routability score with respect to cell locations.

• We propose a convex-based framework that systematically deter-
mines objective weights at each placement iteration by solving
a quadratic problem, which is design-agnostic and eliminates the
need of parameter tuning.

• We perform direct comparisons with state-of-the-art timing-driven
GPU-Placers [11, 20, 24] and demonstrate that C3PO not only
achieves 31.2% better TNS but also 55% better routability score.

• We conduct head-to-head full-flow comparisons against an
industry-leading commercial PD tool by replacing the entire global
placement stage and maintaining identical downstream optimiza-
tion recipes. Experimental results on IWLS [4] and TILOS [6]
benchmarks in ASAP 7nm [8] demonstrate that C3PO achieves
significant and consistent end-of-flow PPA improvements. On ARI-
ANE136 (TILOS), we observe C3PO outperforms the tool by 8.3%
in routed wirelength and 8.7% in switching power.



TABLE I: Key differences of recent works on timing-driven GPU-Placers. Red elements denote better scenarios.

Feature DREAMPlace 4.0 [14] DAC’22 [11] ICCAD’24 [10] DATE’25 [24] DAC’25 [20] C3PO (ours)
Native STA no (OpenTimer) Yes no (OpenTimer) no (OpenTimer) prop. only yes

STA platform CPU GPU CPU + GPU CPU CPU + GPU GPU
STA Style* calibration differentiable calibration calibration calib. + diff. differentiable

Statistical STA no no no no yes (POCV) yes (POCV)
Cell Delay Calc. interpolation interpolation interpolation interpolation interpolation solver-based
Weight Scaling momentum linear momentum momentum linear convex-based

Update Method† net-based graph-based arc-based arc-based arc-based graph-based
Update Metric slack gradient slack slack gradient gradient

Routability Aware no no no no no yes (differentiable kernel)
* “differentiable” denotes whether TNS/WNS are truly end-to-end differentiable with respect to cell locations, which is the preferred case.
† “graph-based” indicates the gradient is computed using the entire timing graph, whereas “arc-based” approaches do not account for slew effects.

II. RELATED WORK

A. GPU-Accelerated Timing-Driven Global Placement
Recently, GPU-accelerated Timing-Driven Placement (TPD) methods
have emerged to address the runtime barrier of traditional CPU-based
TDP by embedding timing information into vanilla GPU-Placers [16,
18] that solely focus on wirelength reduction. Particularly, several
works have improved upon DREAMPlace [16] by incorporating
momentum-driven net-weighting [14, 15], arc-weighting [13, 20, 24],
or differentiable STA [11] into global placement iterations. Nonethe-
less, despite significant runtime advantages over CPU-based methods,
these GPU-based TDP placers have critical limitations preventing
industrial-grade PPA performance, primarily due to:

i) Net-level weighting. With a single weight to an entire net [14,
15] blurs the boundary between critical and non-critical paths,
producing gradients that steer placement in the wrong direction.

ii) Arc-level weighting. Per-arc scaling [13, 20, 24] is finer, yet it
ignores the shared-RC coupling between sinks; a “non-critical”
branch can still drive slew and invalidate the estimate.

iii) Heuristic gradients. Both net- and arc-based schemes recom-
pute weights every iteration, add runtime, and deliver only
approximate ∇x{WNS,TNS}, limiting optimisation fidelity.

iv) Academic “differentiable” STA. The method in [11] provides
analytic gradients but relies on bilinear NLDM interpolation;
extreme load–slew pairs common in early placement collapse
to table corners, eroding accuracy.

v) Routing blind spot. All published GPU-TDP studies bench-
mark on ICCAD’15, which assumes congestion-free “virtual”
routing. The reported timing gains vanish once real routers
introduce detours.

In this work, we overcome all these limitations above by presenting
C3PO, a differentiable multi-objective GPU-Placer that truly meets
industrial standard. Table I summarizes the key distinctions between
our engine C3PO and state-of-the-art GPU-based TDP frameworks.
B. GPU-Accelerated Routability-Driven Global Placement
Routability-driven placement (RDP) has become increasingly critical
over the past decade, driven by escalating congestion challenges
in modern industrial designs [22]. In existing GPU-Placers, both
DREAMPlace [16] and Xplace [17] adopt the classical cell inflation
paradigm to optimize RUDY-based [25] routability metrics. Although
this simple technique can improve routability, it often comes at a
significant cost in wirelength, as the added whitespace undermines
density targets and disrupts placement quality. Recently, ML-based
data-driven approaches [2, 19, 21] leverage predictive models for con-
gestion estimation or end-of-flow cell density distribution to provide
early routability guidance during placement. However, these ML
models inherently suffer from inaccuracies and poor generalization
across diverse designs and technology nodes, which severely limits
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Fig. 2: Overview of the exact, differentiable multi-objective optimization
in C3PO. A convex-based weight scaling technique is introduced to
automatically determine objective weights at each iteration.

their real-world applications. In this work, we fundamentally address
and surpass the limitations of both cell-inflation-based and ML-
driven routability methods. Particularly, we present the first fully
differentiable, GPU-accelerated routability optimization kernel, which
computes exact gradients of the DREAMPlace routability metric with
respect to cell locations. In the experiments, we demonstrate that
our routability optimization kernel outperforms the predominant cell
inflation in literature in both wirelength and routability metrics.

III. ALGORITHM

A. Overview of C3PO
Figure 2 presents an overview of our differentiable, multi-objective
GPU placer, C3PO, which concurrently optimizes critical PPA met-
rics, including timing (TNS/WNS), routability, and wirelength, via
rigorous exact gradient computations. Unlike existing GPU-based
placers that heavily depend on indirect net- or arc-based weighting
schemes for timing optimization and cell inflation techniques for
routability improvement, we introduce custom CUDA kernels that
directly compute global timing and routability objectives and their
precise gradients for accurate cell location updates in addition to
DREAMPlace’s original wirelength and density kernels. To further
enhance placement stability and quality, we propose an MGDA-
inspired gradient scaling strategy that dynamically balances each
individual objective at each iteration, which eliminates the need for
manual parameter tuning and prevents placement divergence.
B. Our Differentiable STA Engine (Timing Kernels)
The design of our differentiable STA engine is inspired by the
philosophy of INSTA [20], which splits STA into two stages:

(i) Delay computation, where we derive closed-form, analytically
differentiable expressions for net and cell delays;

(ii) Timing propagation, which accumulates computed delays over
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the timing graph to derive global timing metrics (WNS/TNS)
and back-propagates gradients to cell coordinates.

However, unlike INSTA which relies on external third-party tools
for delay computation, our STA engine fully integrates differentiable
delay calculations directly into GPU kernels, with cell locations
explicitly serving as leaf optimization variables. This self-contained
approach significantly enhances optimization precision, runtime effi-
ciency, and stability, setting it apart from prior GPU-accelerated TDP
works as summarized in Table I. Figure 3 gives an overview of the key
components in our timing kernel, which includes a custom FLUTE-
based kernel for Steiner point insertion and backward gradient
distribution, an Elmore-based kernel for net delay computation, a
solver-based kernel for cell delay calculation, and propagation kernels
for graph-based timing analysis (GBA mode). Below we describe
each component of our differentiable STA engine.
1) Gradient Distribution of Steiner Points
Steiner point insertion critically affects interconnect length and rout-
ing quality. In C3PO, Steiner points are determined by FLUTE [7],
a widely-adopted technique for Rectilinear Steiner Minimal Tree
(RSMT) construction. Although FLUTE’s topology-insertion step is
non-differentiable, once Steiner nodes are placed, we can differentiate
subsequent RC-tree calculations with respect to node coordinates.
In this work, unlike the prior approach of periodically adjusting
Steiner coordinates with gradient updates [11], we propose a gradient
redistribution method of Steiner points, which pushes each Steiner
point’s gradient to its surrounding non-Steiner nodes, including
those on diagonals. Concretely, let ∇xs and ∇ys denote the partial
derivatives of some objective (e.g., Elmore delay) with respect to the
Steiner node s. For each neighboring node n, define:

∆xn = wx(n,s)sgn(xs−xn)
∣∣∇xs

∣∣, (1)

∆yn = wy(n,s)sgn(ys−yn)
∣∣∇ys

∣∣, (2)

where sgn(·) is the sign function (e.g., sgn(α) = +1 if α ≥ 0
and −1 otherwise), and wx(n,s), wy(n,s) are nonzero only if n is
horizontally, vertically, or diagonally aligned with s. Specifically:
• Horizontal neighbors receive ∆xn, pulling them along the x-axis.
• Vertical neighbors receive ∆yn, pulling them along the y-axis.
• Diagonal neighbors receive both ∆xn and ∆yn.
Intuitively, if a neighbor n is to the left of a Steiner node s (xn < xs),
it will be pushed to the right (positive ∆xn), whereas if n is to the
right (xn > xs), it will receive a negative shift, bringing n closer to
s. The key idea of this approach is to guide cell placement towards
the direction of RC minimization, which outperforms the simplistic
Steiner nodes’ gradient adjustments in [11] as such update can easily

worsen RC. Note we periodically re-compute RC-trees with FLUTE
to adapt the topology as cell locations evolve.
2) Differentiable Elmore Net Delay Kernel
Following [10, 11], we adopt the Elmore model during placement.
Each net’s RC tree is evaluated in a single CUDA thread via
alternating post-order DFS and pre-order BFS sweeps:

Lu = Cu+
∑

v∈ch(u)

Lv, Dv = Du+RuvLv, (3)

LDu = CuDu+
∑

v∈ch(u)

LDv, βv = βu+RuvLDv, (4)

Iv =
√

2βv−D2
v, Sv =

√
S2
u+I2v . (5)

Here u is the parent of v; Ruv and Cu grow linearly with
Manhattan wire length, so every term is differentiable w.r.t. cell
coordinates. Finally, reverse sweeps compute gradients: first a post-
order DFS accumulates ∂I , then a pre-order BFS propagates ∂L.
3) Solver-Based Cell Delay/Slew Calculation
With the effective load ℓ and input slew s from the Elmore kernel, we
query each cell-arc’s timing tables. Academic tools typically use bi-
linear interpolation between the four surrounding points [11, 12, 20].
During early placement, however, cells may be scattered or stacked,
producing extreme (ℓ,s) values that lie outside the grid; interpolation
then collapses to a corner lookup, yielding highly inaccurate delays
and misleading gradients. C3PO avoids this pitfall by adopting the
solver-based evaluation employed in Synopsys PrimeTime [1], which
stays accurate for arbitrary load-slew pairs.

Particularly, our solver-based method follows three steps:
(i) Bracket search. Given queries ℓ and s, we locate indices as:

Li ≤ ℓ ≤ Li+1, Sj ≤ s ≤ Sj+1, (6)

giving the four NLDM values fij ,fi+1j ,fij+1,fi+1j+1. Out-
of-range queries clamp to table corners.

(ii) Polynomial fit. Solve for

Z(ℓ,s) = A+Bℓ+Cs+Dℓs, (7)

Z(Li,Sj) = fij Z(Li+1,Sj) = fi+1j , (8)

Z(Li,Sj+1) = fij+1 Z(Li+1,Sj+1) = fi+1j+1. (9)

which uniquely determines the colored coefficients A, B, C,
and D and captures higher-order load–slew coupling.

(iii) Query and gradients. Delay or slew and its derivatives follow
directly:

Z(ℓ,s) = CellArcDelay/Slew(ℓ,s), (10)
∂Z

∂ℓ
= B+Ds,

∂Z

∂s
= C+Dℓ. (11)

This entire procedure runs in a custom CUDA kernel and, com-
bined with our differentiable Elmore model, produces delay/slew
estimates following commercial practice.
4) Differentiable Timing Propagation
Thus far, we have detailed the delay calculation kernels of our dif-
ferentiable STA engine, covering both Elmore kernels for net delays
and solver-based kernels for cell delays. The last piece of our STA
engine is timing propagation, where arrival times and slew values are
propagated across the timing graph, ultimately deriving global metrics
such as WNS and TNS. Building directly on INSTA [20], we view
every pin arrival as a Gaussian N (µ,σ2). Along a single arc (i→ j)
the statistics simply add: µj = µi+µij , σ

2
j = σ2

i +σ2
ij . Each CUDA

thread therefore updates (µ,σ) in one forward pass. At a multi-fanin
node we need a differentiable “latest-arrival” operator. Replacing the
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hard max with the max-normalized Log-Sum-Exp yields

LSE(A) = M+τ ln
∑
k

exp
(
(Ak−M)/τ

)
, M = max

k
Ak, (12)

whose gradient is the usual softmax. With a tiny temperature
(τ = 0.1) the result is numerically stable yet converges to max as
τ → 0, giving smooth, placement-aware timing curves. Combining
the Elmore kernels with this soft-merge pass produces an end-to-
end differentiable STA that delivers exact gradients of WNS/TNS
w.r.t. cell coordinates, enabling sub-second timing optimization that
surpasses prior TDP placers in both accuracy and scale.
C. Differentiable Routability Kernel
Until now, RUDY [25] remains a reliable analytic proxy for routing
demand, yet the only published gradient derivation [19] is not exact.
In this paper, we give complete derivation of RUDY gradients, all of
which are implemented with custom CUDA kernels:
Bounding box and spans. For a net n whose pins are {(xp,yp)},
xmin,n = minpxp, xmax,n = maxpxp and ymin,n,ymax,n are
defined analogously. Padding with a small ε avoids zero width:

xspan,n = (xmax,n−xmin,n)+ε, yspan,n = (ymax,n−ymin,n)+ε.
(13)

Per–bin usage. Let bin (i,j) span [xℓ
i ,x

h
i ]×[yℓ

j ,y
h
j ]. The planar

overlap is defined as:

overlapn(i,j) = max
(
0, min(xmax,n,x

h
i ) − max(xmin,n,x

ℓ
i)
)

×max
(
0, min(ymax,n,y

h
j ) − max(ymin,n,y

ℓ
j)
)
.

(14)
With net weight wn, we can derive:

Hn(i,j) =
wnovn

yspan,n
, Vn(i,j) =

wnovn

xspan,n
, RUDYn = Hn+Vn.

(15)
Exact gradients. Using the chain and quotient rules we obtain, for a
pin coordinate xp,
∂RUDYn

∂xp
=

wn

yspan,n

∂ovn

∂xp
+

wn

x2
span,n

[
xspan,n

∂ovn

∂xp
−ovn

∂xspan,n

∂xp

]
.

(16)
Here ∂ovn/∂xp = ±yspan,n if moving xp shifts the left (−) or right
(+) edge of the box, otherwise 0; and ∂xspan,n/∂xp = ±1 for those
edges. If several pins share an edge (e.g. multiple sinks at xmax,n),

the edge’s gradient is divided equally among them, following the
subgradient of max(·). Derivatives w.r.t. yp are analogous.

Figure 4 compares our differentiable routability kernel with vanilla
DREAMPlace [16] and the widely used cell-inflation heuristic. Cell
inflation reduces congestion but enlarges wirelength by inserting
whitespace. Our approach lowers RouteOverflow by up to 45.4 %
relative to it with negligible HPWL overhead.
D. MGDA-Based Objective Weighting in C3PO
C3PO optimizes wirelength and density simultaneously with timing
(TNS, WNS) and routability (RouteOverflow) at every global place-
ment iteration (Figure 2). Unlike existing GPU-TDP/RDP placers
tuning objective weights with heuristics, in this work, we devise an
MGDA-based objective scaling strategy. A classical MGDA problem
solves {w} in the following equation:

min
{wi≥0,

∑
wi=1}

∥∥∥K−1∑
i=0

wigi

∥∥∥2

, (17)

where gi is the gradient of objective i. However, in placement,
directly solving (17) might cause secondary goals (timing, routability)
to conflict with the primary objectives, leading to placement diver-
gence. Hence, we recast the MGDA formulation as follows:

Relaxed scheme
We fix g0 ≡ gWL+DEN (scaled as in RePlAce [5]) and seek non-

negative weights for the remaining gradients:

gcomb = g0+

K−1∑
i=1

αigi. (18)

To keep gradient updates at each placement iteration stable, we set:

αi = ω
(0)
i

∥g0∥
∥gi∥+ε

, i = 1,...,K−1, (19)

where ω
(0)
i encodes user emphasis and ε > 0 avoids division by zero.

Next, we leverage geometric insights of gradients by constructing the
following matrices and vectors to encode interactions:

Hij = gTi gj , i,j = 1,...,K−1, (20)

bi = gT0 gi, i = 1,...,K−1. (21)

We then formulate a regularized linear system to dynamically
compute the optimal secondary weights αi at each iteration:(

H+λI
)
α = −b + λβ, (22)

where λ > 0 controls the anchoring strength toward the initial
guidance vector β. The closed-form solution to this system is:

α∗ =
(
H+λI

)−1(−b+λβ
)
. (23)

Finally, to maintain numerical stability and physical meaningfulness,
we enforce non-negativity constraints by clamping:

αi = max{α∗
i ,0}, i = 1,...,K−1 (24)

The outcome of our effort is a smooth and scalable weighting scheme
that eliminates the need of manual parameter tuning while ensuring
placement convergence and effective PPA optimization.

IV. EXPERIMENTAL RESULTS

In the experiments, we validate C3PO against an industry-leading
commercial PD tool as well as several state-of-the-art academic GPU-
based timing-driven placement (TDP) methodologies [11, 20, 24]. To
thoroughly evaluate our framework, we leverage 9 representative
designs selected from the well-established IWLS [4] and TILOS [6]
benchmark suites, which encompass a diverse set of designs from
standard-cell-only to macro-heavy ones. The goal of this work is
to introduce a robust GPU-Placer that performs commercial-quality,
concurrent, concurrent multi-objective placement optimization which
can be adopted in modern industrial design flows. Finally, C3PO is
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Fig. 5: Comparisons between C3PO and state-of-the-art GPU-based TDP works including DAC’22 [11], DATE’25 [24], and DAC’25 [20] on three
renowned TILOS benchmarks [6]: MEMPOOL, ARIANE133, and ARIANE136. For DAC’22 [11], we reproduce the work to the best of our
knowledge. For DATE’25 [24] and DAC’25 [20], we perform the validation using the open-source code. Finally, for C3PO, we perform concurrent
timing and routability optimization as described in the Algorithm section. All methods have the exact same stopping criteria of 0.08 overflow.

TABLE II: Runtime (second) comparison of a timing update among state-
of-the-art GPU-based TDP. Refer to Figure 6 for complete metrics.

Benchmark DAC’22 [11] DATE’25 [24] DAC’25 [20] C3PO
MEMPOOL 6.08 717.3 35.7 6.19
ARIANE133 4.51 120.6 31.1 4.95
ARIANE136 4.02 88.0 20.9 4.22
* we include Steiner point insertion runtime for [11] and C3PO.
† we use 8 threads in OpenTimer for [24] and [20].

implemented with PyTorch 2.1 and CUDA 11.8, where the timing
and routability kernels are implemented with PyTorch’s C++/CUDA
extension. All evaluations are conducted on a high-performance
Linux platform with a single NVIDIA A100 GPU (96GB memory)
and an AMD EPYC 7742 processor (64 cores) with 2TB of RAM.
A. Comparisons with Academic GPU-based TDP Works
Figure 5 shows the comparisons between DREAMPlace [16], state-
of-the-art academic GPU-based TDP works [11, 20, 24], and our
placer C3PO at each placement iteration on 3 renowned TILOS [6]
designs with macros synthesized in the ASAP7 [8] technology. It is
shown that C3PO consistently achieves the best TNS and routability
score across each benchmark compared to other state-of-the-art TDP
methods with minimum overhead in HPWL compared with DREAM-
Place. Note that for fair comparison, all global placement runs utilize
the exactly same stopping criteria based on Overflow (i.e., cell
density), which is a standard practice. Finally, the runtime comparison
for timing updates is presented in Table II, clearly highlighting the
substantial benefits of utilizing a native GPU-accelerated STA engine.
Specifically, on the MEMPOOL benchmark, C3PO and DAC’22 [11]
achieve speedups exceeding 100× compared to DATE’25 [24], and
approximately 7× compared to DAC’25 [20].
Academic TDP Results Discussion. The experimental results pre-

sented in Figure 5 confirm the limitations we have identified in
Table I and discussed in Section II-A. Specifically, the arc-based
TDP method proposed in [24], while effective at optimizing timing,
does so at the great cost of wirelength and routability, as clearly
demonstrated by design ARIANE136. Moreover, we observe severe
runtime degradation when applying [24] to logically complex designs
such as MEMPOOL, where multiple endpoints share substantial
overlapping fan-in cones. In such scenarios, even a single iteration
of timing evaluation requires over 10 minutes, despite leveraging the
highly parallelized report_timing_topk implementation intro-
duced in [24]. As for DAC’25 [20], which employs a timing-update
scheme similar to [24], achieves only marginal timing improvements,
although it does not incur the significant wirelength penalties ob-
served in [24]. The differentiable placement method in [11] exhibits
comparatively smaller timing gains than C3PO. We attribute this
difference to the observation that routability optimization inherently
supports timing improvement, since reducing net bounding boxes
through routability-driven gradient updates often results in reduced
RC delays, beneficially influencing timing metrics. These empirical
insights strongly support our central hypothesis: that concurrent and
coherent optimization of timing and routability within a differentiable
framework is essential for achieving optimal placement quality.
B. Comparisons with an Industry-Leading PD Tool
Table III presents a comprehensive, full-flow head-to-head compar-
ison between C3PO and an industry-leading commercial PD tool,
where we directly replace the entire global placement stage with
our framework while maintaining identical downstream recipes as
illustrated in Figure 2. It is shown that C3PO consistently achieves
significant end-of-flow PPA improvements over all benchmarks,



TABLE III: Key Optimization Results. Full-flow head-to-head PPA comparisons between an industry-leading commercial PD tool and C3PO where
C3PO replaced the entire global placement stage, including macro placement (if any), of the commercial tool. For designs with macros, C3PO
performs concurrent macro and standard cell placement. Note that all tools go through the exact same PD recipe after global placement and
we use the exact same seed across all experiments to remove non-deterministic run-to-run variation.

design (7nm) PD industry-leading commercial PD tool C3PO (ours, directly replace tool’s global place)

(# cells) stage routed WL WNS TNS # ep internal switching cell area routed WL WNS TNS # ep internal switching cell area
(um) (ns) (ns) vios (mW) (mW) (um2) (um) (ns) (ns) vios (mW) (mW) (um2)

ARIANE133 place-opt 930622 -0.014 -0.327 168 453.3 26.2 16068.9 816641 -0.004 -0.054 41 451.0 24.1 15749.2
(117k cells) clock-opt 949833 0.0 0.0 0 460.9 41.2 16077.1 868539.8 0.0 0.0 0 458.3 38.28 15788.9

(133 macros) route-opt 1003527 -0.003 -0.009 7 452.6 40.80 16127.2 921253(-8.3%) -0.003 -0.004 2 450.2 39.15 15856.6
ARIANE136 place-opt 898275 -0.009 -0.986 477 462.8 22.9 16069.4 801139 -0.036 -5.818 1338 461.7 20.8 15736.2
(113k cells) clock-opt 919735 0.0 0.0 0 451.6 41.2 16179.0 817556 -0.033 -1.170 212 450.5 39.4 15664.3

(136 macros) route-opt 970236 -0.008 -0.035 14 461.3 40.06 16321.9 891853(-8.0%) -0.007 -0.101 38 458.6 36.58 15964.2
MEMPOOL place-opt 1177113 -1.208 -12.8k 19.1k 24705.4 9399.7 20829.7 1139195 -1.206 -12.9k 19.1k 24668.9 9264.2 20739.0
(162k cells) clock-opt 1282571 -1.168 -12.4k 17.6k 25111.9 12225.8 22806.9 1228725 -1.157 -12.6k 19.1k 25042.1 12036.9 22442.4
(20 macros) route-opt 1400162 -1.193 -12.2k 18.1k 26090.8 12762.3 24659.1 1346411 (-3.8%) -1.191 -12.4k 19.2k 26077.2 12678.8 24312.6

mc top place-opt 22651 -0.173 -78.1 582 9.76 2.82 760.2 20759 -0.175 -93.1 777 9.25 2.31 676.9

(6.1k cells) clock-opt 23198 -0.181 -83.1 600 9.79 5.11 783.78 21949 -0.181 -80.9 714 9.22 4.58 688.2
route-opt 23161 -0.181 -79.1 559 9.88 4.99 801.1 21458(-7.4%) -0.180 -77.3 674 9.33 4.50 702.3

aes cipher place-opt 43107 -0.094 -26.8 480 8.36 8.83 1161.6 42920 -0.089 -25.4 449 8.04 8.71 1149.7

(12.5k cells) clock-opt 45893 -0.117 -30.8 517 8.28 10.23 1170.6 44845 -0.104 -29.3 513 8.25 10.06 1162.0
route-opt 48671 -0.117 -27.2 502 8.69 10.09 1188.0 47034(-3.3%) -0.102 -26.5 479 8.41 9.96 1181.1

i2c master place-opt 1501 -0.091 -4.13 82 2.33 0.65 89.2 1457 -0.066 -3.66 84 2.30 0.63 88.8

(663 cells) clock-opt 1678 -0.104 -4.79 84 2.33 1.23 90.3 1635 -0.104 -4.26 83 2.30 1.21 89.4
route-opt 1715 -0.123 -4.83 84 2.32 1.22 91.8 1638(-4.5%) -0.087 -3.94 83 2.34 1.20 91.4

FPU place-opt 76817 -0.929 -27.7 35 3.65 4.62 2640.9 66066 -0.968 -29.1 35 2.74 3.81 2325.4

(28.5k cells) clock-opt 83832 -1.013 -30.6 36 4.30 5.19 2916.7 71009 -0.995 -29.9 36 3.00 4.16 2490.3
route-opt 84129 -0.947 -28.1 35 4.21 5.01 2920.3 71536(-16.7%) -0.950 -27.7 34 3.01 4.03 2495.2

DES place-opt 12846 -0.112 -6.06 66 5.20 6.35 390.9 12666 -0.098 -5.84 65 6.22 5.53 332.6

(4.1k cells) clock-opt 13559 -0.107 -6.50 66 6.66 7.00 414.3 12994 -0.095 -5.83 64 5.69 6.30 353.1
route-opt 13429 -0.102 -6.21 66 6.79 6.72 421.1 12836(-4.4%) -0.093 -5.24 64 5.87 6.07 363.2

Runtime Note: C3PO delivers 10-30x faster global placement than the commercial tool with similar full-flow runtime on the exact same P&R recipe.

commercial tool ours

max hotspot area: 60.06 max hotspot area: 19.02 (-68.3%)
*max hotspot area is reported from the tool, denoting contiguous area with gcell overflow

Fig. 6: Congestion comparison between an industry-leading commercial
tool vs. C3PO on ARIANE136. Our routability optimization kernel
improves a key congestion score by 68.3%.

most notably we demonstrate up to 8.3% wirelength reduction for
macro-based TILOS designs, and 16.7% improvement for standard-
cell-only designs. These remarkable wirelength gains come with
either comparable timing performance or only marginal degradations,
which translate well into dynamic power reduction. We note that
AutoDMP [3] also compares its results to the TILOS benchmark.
However, unlike AutoDMP heavily relying on extensive and im-
practical parameter sweeps, C3PO consistently delivers superior PPA
results through its elegant convex-based objective weighting scheme,
which simultaneously and dynamically optimizes critical PPA metrics
without manual intervention, entirely eliminating the tedious and
error-prone parameter tuning procedure. Finally, to evaluate our
differentiable routability kernel, we leverage the exact same floorplan
of ARIANE136, and perform head-to-head comparison between
commercial tool’s global placer and C3PO. Figure 6 highlights the
promising results that our kernel reduces the hotspot reported by the

commercial tool by 68.3% relative to the tool’s own global placement.
Industrial Results Discussion. Besides the fact that modern com-
mercial placers still cannot efficiently handle designs with excessive
macros (e.g., ARIANE133 and ARIANE136) as described in [3, 6],
we attribute the exceptional success of C3PO to our differen-
tiable, gradient-driven, multi-objective global placement methodology
thanks to the power of modern ML infrastructure. Particularly, by
leveraging PyTorch [23], C3PO can coherently manage complex,
multi-objective gradients at scale to update leaf optimization variables
(e.g., cell locations) efficiently, which is a capability fundamentally
absent from traditional CPU-based PD tools. We believe that beyond
obvious runtime advantages, our gradient-guided, coherent global
placement paradigm clearly shows profound opportunity to signif-
icantly enhance existing industrial CPU-centric PD methodologies.

V. CONCLUSION

We have presented C3PO, a GPU-accelerated, differentiable multi-
objective global placer that concurrently optimizes timing, routability,
and wirelength in a unified and coherent manner through dynamic,
convex-based weight scaling. To address critical shortcomings in
existing GPU-based TDP methods, we introduce a fully differentiable
STA engine, featuring a solver-based CUDA kernel for industry-
standard cell delay computation. Furthermore, we develop the first
differentiable routability optimization kernel that computes exact
gradients of routability metrics with respect to cell locations. Compre-
hensive experiments validated on a diverse set of designs demonstrate
that C3PO consistently outperforms state-of-the-art academic GPU-
based TDP methods in both timing and routability without degrading
HPWL. Notably, compared with an industry-leading commercial PD
tool, C3PO demonstrates much better end-of-flow PPA metrics by
replacing the entire global placement step. We envision C3PO to
transform existing CPU-centric commercial global placers into GPU-
accelerated and differentiable paradigms.
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