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Abstract—State-of-the-art (SOTA) 3D physical design (PD) flows extend
commercial 2D place-and-route (P&R) tools to enable signoff-quality 3D
IC implementation through double metal stacking and inter-die metal
layer sharing. While metal layer sharing introduces additional routing
resources, the substantially higher manufacturing cost of face-to-face
(F2F) inter-die vias compared to intra-die vias necessitates 3D-aware
routing strategies to manage routability—cost trade-offs. To address this,
we propose differentiable routing guidance for 3D ICs (DRG-3D), a GPU-
accelerated differentiable optimization framework that provides routing
guidance for 3D ICs. DRG-3D formulates a fully differentiable objective
that simultaneously optimizes key 3D design metrics: routing congestion,
wirelength, via cost, and F2F-via cost, which enables efficient and scalable
gradient-based optimization over large-scale netlists. Experimental results
show that DRG-3D outperforms the SOTA Pin-3D flow, achieving up to
8.37% reduction in routing overflow, 23.99% reduction in total negative
slack (TNS), and 18.05% reduction in post-route timing violations.

I. INTRODUCTION

With the diminishing returns of 2D scaling and the deceleration
of Moore’s Law, 3D integrated circuits (ICs) have emerged as a
promising path to extend performance, power efficiency, and area
(PPA) scaling through vertical stacking. As full-stack commercial 3D
IC solutions remain under development, pseudo-3D approaches have
become the state of the art (SOTA) by leveraging well-established
2D place-and-route (P&R) tools for practical 3D integration. Among
these, Pin-3D offers significant advantages over traditional die-by-
die optimization flows by incorporating full 3D-context routing and
optimization. While 3D metal layer sharing routing in pseudo-3D
flows introduces additional routing resources, the substantially higher
manufacturing cost of face-to-face (F2F) inter-die vias relative to
intra-die vias introduces a critical trade-off between routability and
cost. However, the lack of global routing guidance specific to 3D
integration often leads to poor via distribution, routing congestion,
and post-route timing violations.

In parallel, global routing in 2D ICs has been extensively studied
over the past decades. State-of-the-art routers [1], [2], [3], [4], [5],
[6], [7], [8] typically project the routing problem onto a 2D plane
consisting of 2-pin sub-nets, and subsequently restore the solution to
the multi-layer routing space through a separate layer assignment
[9], [10], [11], [12], [13], [14], [15] process. However, due to
their inherently sequential nature, these methods are highly sensitive
to net ordering and perform routing on a per-net basis without a
holistic view of the design. This often results in suboptimal solutions
driven by local decisions. Concurrent routing techniques—such as
those based on integer linear programming (ILP)[16], [17], [18],
[19]—offer improved solution quality by jointly considering multiple
nets, but suffer from scalability limitations in large designs. [20]
presents a promising alternative by relaxing the problem into a
differentiable form [21], [22], [23], [24], [25], [26], [27], enabling
scalable, GPU-accelerated [28], [29], [30], [31], [32], [33], [34], [35],
[36] optimization via gradient-based methods. Recently, learning-
based routing [37], [38], [39], [40] has demonstrated the potential
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to model complex routing heuristics through data-driven approaches.
Nevertheless, existing techniques are not directly applicable to 3D
ICs, where routing must additionally consider vertical design con-
straints such as tier assignment, inter-die via minimization, and
metal layer sharing. These challenges call for a new approach that
effectively handles global routing in the 3D context.

In this work, we propose a novel framework, differentiable routing
guidance for 3D ICs (DRG-3D), that provides routing guidance for
3D IC design flows, as illustrated in Figure 1. The flow begins by
constructing a 3D routing DAG forest that models the complete 3D
pattern routing space—comprising conventional 2D routing space
along with candidate tier assignments in the vertical dimension. For
each net, we first generate a rectilinear Steiner minimum tree (RSMT)
to approximate the minimal wirelength topology in 2D. To extend
this topology into the 3D context, we augment each Steiner point
by duplicating it across both tiers—creating mirrored nodes on the
top and bottom tier candidates. This tier duplication allows the DAG
to encode all feasible topologies of the net within the 3D routing
space, as illustrated in Figure 4. Each edge in the DAG represents
a candidate 3D routing solution for a 2-pin sub-net, defined by a
selected 2D L-shaped path and its associated tier assignment. This
representation allows us to formulate the 3D global routing problem
as the task of selecting one 3D routing candidate per 2-pin sub-
net, aiming to minimize congestion overflow, total wirelength, via
count, and face-to-face (F2F) via count. By probabilistically modeling
the candidate selection, we construct a differentiable multi-objective
loss function that can be directly optimized using gradient descent,
with GPU acceleration enabled by deep learning toolkits. Following
optimization, we extract net-level tier assignment information to serve
as early-stage routing guidance for the subsequent stages of the flow.

Our contributions are summarized as follows:

o We propose DRG-3D, the first framework to provide timing- and
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Fig. 2: Overview of the proposed DRG-3D framework. Soft selection over 3D routing candidates is performed hierarchically (topology, path, tier
assignment), guided by softmax probabilities and differentiable loss minimization. Final routing decisions are derived from the highest-probability

candidates as routing guidance to commercial tool.

congestion-aware routing guidance for SOTA 3DIC flows.

o We present the first differentiable multi-objective optimization
framework for 3D ICs that enables concurrent exploration of
routing solutions across all nets with GPU acceleration.

o Our method outperforms the SOTA 3D IC flow, reducing routing
overflow by 8.37%, post-route total negative slack (TNS) by
23.99%, and timing violations by 18.05%, without increasing
wirelength or F2F via count.

II. PRELIMINARIES

A. Probabilistic Routing Resource Model

A gcell is a routing bin used in global routing, where the chip layout
is partitioned into a grid to estimate routing demand, capacity, and
congestion. Each gcell corresponds to a vertex v in the routing graph,
and each edge e between adjacent geells is assigned a capacity cape,
defined as the number of available tracks minus pin density and local
net congestion:

cap, = track, — 3, - pin_density, — local_net. D

The weight 3, [4] is a scaling factor derived from standard cell
layout information. The demand d. on edge e is calculated as the
aggregated contribution from all 2-pin path candidates traversing that
edge. Each candidate is weighted by its soft selection probability p;
and the probability of its associated routing tree G¢ree(s). TO account
for the via usage overhead, an additional term is included based on
the number of turning points.

de = Z Gree(i) Pi + BU Z Gree(k) Pk ()

i€ Pe keP,

Here P. denotes the set of 2-pin path candidates that traverse edge
e, and P, denotes those with a turning point at vertex v.

To model the overflow cost in a differentiable form, [20] introduces
a smooth overflow cost function f(cap, — de), where f is typically
implemented as a sigmoid or ReLU. This continuous formulation
enables the estimation of expected routing cost—including wirelength
and via count—under soft selection, allowing the routing problem to
be optimized via gradient descent.
B. Routing DAG Forest for 2D IC
To compactly represent the routing solution space of a net, most
global routing frameworks begin by constructing a Routing Directed
Acyclic Graph (DAG), as illustrated in Figure 3(a—c). Each DAG
corresponds to a distinct rectilinear Steiner minimum tree (RSMT)
topology [42], [43], [44], typically generated using FLUTE [44], and
is decomposed into a set of two-pin sub-nets. Within each DAG,
vertices represent pins, Steiner points, or turning points, while edges
denote feasible two-pin routing candidates, as shown in Figure 3(d).

III. METHODOLOGIES
A. DRG-3D Overview

We propose DRG-3D, a differentiable framework for routing guid-
ance in 3D IC design flows, aimed at reducing congestion and
improving post-route quality on top of the state-of-the-art pseudo-3D
flow, Pin-3D. As shown in Figure 5, the framework performs iterative,
gradient-based optimization over the full 3D routing candidate space.
The overall process is illustrated in Figure 2 and detailed below.

1) 3D Routing Space Construction: The flow begins by hierarchi-
cally constructing a 3D routing DAG forest, as described in earlier
sections and shown in Figure 2(a). For each multi-pin net, we
generate several 3D topology candidates by combining Steiner tree
construction with mirrored duplication of Steiner points across
tiers. Each topology is then decomposed into two-pin subnets,
for which we derive 3D path candidates consisting of different
combinations of 2D L-shaped paths and tier assignments.

2) Variable Initialization: As shown in Figure 2(b), for every
candidate in the three-layer structure (topology, path, and tier as-
signment), we associate a trainable real-valued variable, randomly
initialized.

3) Probability Assignment via Softmax: Each candidate group is
normalized through a softmax function (as defined in Equations
4 and 5) to obtain a probability distribution over all routing
candidates (Figure 2(c)). These probabilities are used to compute
the expected contribution of each candidate to routing demand
and cost.

4) Loss Computation: Using the selection probabilities P; (as de-
fined in Equations 6) of each candidate, we compute the expected
cost values—OverflowCost, F2FViaCountCost, WireLengthCost,
and ViaCountCost (Figure 2(d)). The overall differentiable loss
function is then computed as shown in Equation 10.

5) Gradient-Based Optimization: As shown in Figure 2(e), we
use the back-propagation algorithm to compute gradients of the
total loss with respect to all parameters. The parameters are then
updated using gradient descent.

6) Convergence Check: As shown in Figure 2(f), we repeat Steps 3
to 5 iteratively. The optimization process terminates when either
the loss improvement falls below a predefined threshold § or the
maximum number of iterations Ty is reached:

LD —£ED|< s or t =T 3)

7) Routing Guidance Deployment: After convergence, we extract
the most probable routing candidates to generate net-level guid-
ance, including preferred tiers and routing paths. This guidance is
integrated into the 3D P&R flow to improve routing quality.
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Fig. 4: An example of pin tier assignment for a Steiner point. By
exhaustively enumerating feasible tier assignments for all Steiner points,
the initial RSMT is expanded into multiple 3D topology candidates, each
representing a unique configuration in the tier assignment domain.

B. 3D Routing DAG Forest Constructon

We construct a 3D routing DAG forest, a data structure that extends
the traditional 2D routing DAG forest by incorporating 3D tier
assignments, as illustrated in Figure 3(e). For each multi-pin net, we
first generate a 2D rectilinear Steiner minimum tree (RSMT) using
FLUTE. To extend the topology into 3D, we introduce mirror nodes
on both tiers for each Steiner point, which expands the initial RSMT
into a set of 3D topology candidates, as shown in Figure 4. Each 3D
topology candidate is then decomposed into a set of two-pin subnets,
which serve as the fundamental units for downstream routing.

For each 2-pin net, we adopt L-shape pattern to generate a set of 2D
path candidates, as illustrated in Figure 5(b). Each 2D path candidate
is then combined with a set of possible tier assignment scenarios for
vias and trunks to produce corresponding 3D routing candidates, as
shown in Figure 5(c). These candidates collectively define the 3D
routing space. As a result, each net is associated with multiple 3D
DAGs that represent distinct RSMT topologies and tier assignment
combinations, forming a DAG forest that compactly encodes diverse
routing alternatives.

C. Pattern Routing for 3D IC

With the 3D routing DAG forest in place, we formulate the 3D global
routing problem as a hierarchical candidate selection: topology, path,
and tier assignment. This structure enables comprehensive exploration
of routing solutions across the entire netlist.

The first stage, referred to as the topology candidate stage (g-
selection stage), involves choosing the global topology for each multi-
pin net. Starting from RSMTs, we generate multiple 3D topology
candidates by enumerating feasible tier assignments for Steiner
points. Each candidate defines a distinct interconnection structure
and is assigned a trainable weight. These weights are normalized
via a softmax function to produce a probability distribution over the

topology candidates, enabling differentiable selection. As shown in
Figure 5(a), this stage determines how pins are globally connected
in 3D space and forms the structural foundation for subsequent path
and tier-level decisions. The second stage, referred to as the path
candidate stage (p-selection stage), refines routing for each two-
pin subnet derived from the selected topology. For each subnet,
we generate multiple legal 2D L-shape path candidates capturing
different geometric patterns. A trainable weight is assigned to each
path, and softmax is applied to compute a probabilistic selection,
as shown in Figure 5(b). The third stage, referred to as the tier
assignment candidate stage (r-selection stage), determines how each
selected 2D path is mapped to specific metal tiers in the 3D stack.
Each path candidate is paired with multiple tier assignment options,
specifying how to distribute its horizontal and vertical segments
across tiers, as shown in Figure 5(c)

Together, the three levels—topology, path, and tier assign-
ment—form a comprehensive candidate space for each net. The 3D
pattern routing task is defined as selecting: (1) one topology candidate
per net, (2) one path candidate per two-pin subnet within that topol-
ogy, and (3) one tier assignment for each selected path. These steps
correspond to the g-, p-, and r-selection stages, respectively—each
associated with a trainable weight and softmax-normalized prob-
ability. This hierarchical selection defines a complete 3D routing
realization for each net. By applying this selection process in parallel
across all nets, we obtain a full-chip 3D global routing solution. This
formulation enables a differentiable optimization process, where each
candidate is treated as a soft (probabilistic) variable. This allows the
use of gradient-based methods to achieve globally optimzed routing
decisions across the entire design.

Figure 6 illustrates the adaptability of our framework for different
routing scenarios. In (a), multiple equivalent topology candidates are
available, and the framework selects the one with lower routing cost.
In (b), when congestion arises on a specific tier, the optimizer reroutes
through alternative paths on less congested tiers. These examples
demonstrate the framework’s flexibility in resolving redundancy and
mitigating congestion.

D. Probabilistic Modeling over 3D Routing Candidates

To enable differentiable optimization across the full 3D routing space,
each candidate in the three-level hierarchy—topology, path, and tier
assignment—is assigned a trainable variable. A softmax operation is
applied within each mutually exclusive candidate set to produce a
probability distribution over selections.

Let W, = {wq,,wqs,...,W,,, } denote the trainable weights
assigned to the m topology candidates for a given net. The corre-
sponding softmax selection probabilities are computed as:

= W) ey )
ZJ’:1 eXp(wq]’)
Similarly, for a given 2-pin subnet, let W, = {wp,,Wp,,...}

and W, = {wy,,wr,, ...} represent the sets of trainable weights
associated with path and tier assignment candidates, respectively. The
corresponding selection probabilities are computed as:

_exp(wy)) __exp(wr)
Pi= = ==y (&)
> exp(wp,, ) > n exp(wr,)
Each final routing candidate corresponds to a unique combination
of one topology, one path, and one tier assignment. The probability
of selecting the ¢-th candidate is given by:

P = qu(i) - Py(s) " Tz(d) (6)
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where qu(i), Dy(i)> and r.(;) denote the softmax probabilities
of the selected topology, path, and tier assignment components
associated with candidate ¢, respectively. Each final routing candidate
i contributes a deterministic routing demand matrix D;, determined
by its associated 2-pin sub-net, path geometry, and tier assignment.
We define two separate 3D demand matrices—one for horizontal
tracks and one for vertical tracks—each indexed by (z, y, t), where ¢
denotes the tier (e.g., top or bottom die), as illustrated in Figure 5(d).

The expected demand matrix E(D) is then computed as the
weighted sum of all candidate demands:

E(D)=Y_P,-D; )

Given a capacity matrix C' that encodes the routing capacity
available per grid location (z, y, t), the element-wise overflow matrix
is calculated as follows:

O = ReLU(E(D) — C) = max(0, E(D) — C) 8)

Finally, the total expected congestion overflow cost is obtained by
summing over all entries in the overflow matrix:

OverflowCost = » ~ O(a, y, 1) ©)

z,y,t

This differentiable formulation enables global coordination of
routing decisions across all nets, while jointly considering topology,
path, and tier constraints specific to 3D ICs.

IV. DIFFERENTIABLE OPTIMIZATION

A. Differentiable Loss Function
In the previous section, we formulated the expected congestion
overflow cost by computing a probability-weighted sum over all
routing candidates. Using the same probabilistic framework, we
compute the expected values for other routing-related objectives,
enabling a unified differentiable loss formulation.

Together with the total expected congestion overflow cost
OverflowCost previously defined, we construct our differentiable loss
function as a weighted sum of the four objectives:

Liotat = Ao - OverflowCost + A ¢ - F2FViaCountCost
+ Aw - WireLengthCost + A, - ViaCountCost (10)

= )Xo - OverflowCost + Z P (A\sFi + 2 Wi + A V5)

In this formulation, P; denotes the soft selection probability as-
signed to routing candidate ¢, as defined in the previous sections. Each
candidate is associated with three cost metrics: wirelength W;, via
count V;, and F2F via count F;. The total loss L is expressed as a
weighted sum of four objectives: expected overflow cost, wirelength,
via count, and F2F via count. The weights A,, Af, Ay, and A,
represent the relative importance of each objective. In our setting,
overflow minimization is prioritized as the dominant goal (A, = 500),
followed by F2F via count due to its high manufacturing cost in 3D
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integration (A = 50). Wirelength and via count are weighted equally
(Aw = Ay = 1) to promote routing efficiency without overwhelming
the optimization. This differentiable formulation enables end-to-end
gradient-based optimization over the 3D routing space and design
objectives.

V. ROUTING TIER ASSIGNMENT GUIDANCE
A. Candidate Selection and Discretization
After the optimization converges, we extract a discrete routing
solution from the final soft probability distributions (Figure 2(g)).
For each multi-pin net, we select the topology candidate with the
highest softmax probability g; as the final topology choice. Then, for
each two-pin sub-net belonging to that topology, we select the path
candidate with the maximum p; and its corresponding tier assignment
candidate with the maximum 7, as shown in Figure 5 purple boxes.
By performing this selection for every net in the design, we obtain a
complete 3D global routing solution consisting of one deterministic
topology, path, and tier assignment per sub-net. This final decision
reflects the outcome of the differentiable optimization process and
can be used to guide subsequent physical design stages.
B. Routing Tier Assigner
Following the candidate selection and discretization stage, we obtain
a complete 3D global routing solution in which each multi-pin net
has a concrete topology, path, and tier assignment for all its two-
pin sub-nets. This rich solution space contains embedded tier-wise
information that can be further leveraged to enhance commercial
router routing result. To extract tier assignment information at the
net level, we begin by aggregating the tier assignments originally
assigned to each two-pin sub-net. Specifically, for each net, we collect
the tier information associated with its routed trunks from all sub-
nets and combine them into a net-wise routing tier set. Our proposed
Routing Tier Assigner module analyzes the net-wise set of routing
trunks to determine whether a net exhibits tier locality (Figure 2(h)).
If all routing trunks of a net are assigned to the same tier—i.e., routed
entirely within a single die—the net is said to exhibit tier exclusivity
and is directly assigned to that tier. For instance, Figure 7(a) shows
a case where the net is fully routed in the top tier, leading to an
assignment to the top die. Similarly, Figure 7(b) depicts a net routed
exclusively in the bottom tier.

However, if the routing trunks of a net span multiple
tiers—indicating that its paths traverse more than one die—the net
is considered non-exclusive in tier assignment. In this case, it is
not assigned to any specific tier, as illustrated in Figure 7(c). Note
that the Routing Tier Assigner considers only the routing trunk tier
assignments, and does not account for the tiers where pins or Steiner

points are located.

C. Preferred Routing Tier Guide

All nets that are assigned to a specific tier by the Routing Tier
Assigner are compiled into a structured list that we refer to as the Pre-
ferred Routing Tier Guide (Figure 2(i)). This guide can be fed back
into commercial tools to influence subsequent routing decisions. For
each net in the guide, we specity the bottom_preferred_routing_layer
and top_preferred_routing_layer to align with the metal layer range
associated with its assigned tier. This encourages the router to route
the majority of that net’s wire segments within the designated tier.
Although many 3D nets naturally span multiple tiers due to their pin
locations, which are distributed across dies, it is not possible for the
entire net to be confined to a single tier. However, by guiding the
router to prefer the routing layers associated with the assigned tier,
our Preferred Routing Tier Guide effectively ensures that most of the
net’s wirelength remains within the intended tier.

VI. EXPERIMENTAL RESULTS
A. Experimental Setting
We evaluated our framework on three industrial F2F 3D IC de-
signs—LDPC, DMA, and AES—using TSMC’s 28 nm Process
Design Kit (PDK). Each design comprises a two-tier stack, with six
metal layers per tier forming a 3D back-end-of-line (BEOL) structure,
interconnected via F2F hybrid bonding at a 1 pm pitch [46]. To
reflect realistic congestion conditions and stress the global router, we
introduced controlled routing blockages across selected layers. These
emulate practical constraints such as macro placement, IP hardening,
and reserved routing regions, which enables a more meaningful
evaluation of our framework’s ability to manage congestion and
improve timing closure. Blockages were set to 75% on M5-M6 for
LDPC, 12% on M3-M6 for DMA, and 12% on M1-M6 for AES.
B. Naive 2D Tier Assignment is Insufficient
To assess the effectiveness of simple tier confinement, we conduct
a baseline experiment (w/ naive 2D PRTG) by applying tier-specific
Routing Guides (PRTGs) to all 2D nets without any optimization.
In this setup, each 2D net is restricted to route only within the
tier containing all its pins, effectively disabling metal layer shar-
ing. As shown in Table I, this naive PRTG strategy significantly
degrades routing quality, increasing early global routing overflow
by 48.37% and slightly worsening total negative slack (TNS). Ad-
ditionally, directly applying all extracted PRTG information leads
to suboptimal outcomes. This is likely because many low fan-
out 2D nets—which do not benefit from tier-level guidance—are
unnecessarily constrained, thereby reducing routing flexibility and
increasing congestion. These results clearly demonstrate that effective
tier assignment in 3D ICs cannot be achieved through simple rules
or static confinement. The complex interactions between nets and the
spatially localized nature of congestion require more adaptive, net-
specific strategies that consider both topology and routing context.
C. Targeting High-Impact Nets for Routing Guidance
Rather than applying routing guidance (PRTG) indiscriminately to all
nets, we adopt a selective strategy that targets high fan-out nets, which
are more likely to contribute to congestion and timing violations.
In contrast, low fan-out nets-particularly those with fan-out of 2 or
3—tend to have simpler routing requirements and limited impact
on timing and global congestion. Over-constraining these nets may
reduce routing flexibility and inadvertently worsen overall routing
quality. Table I summarizes the impact of different fan-out thresholds
on design outcomes. Experimental results show that applying PRTG
to only the top 3% of high fan-out nets provides an effective trade-
off between targeted guidance and overall routing flexibility. This
selective strategy focuses on the nets most likely to affect congestion



TABLE I: Comparison of routing and timing metrics for LDPC under various Routing Guide (PRTG) strategies. Selectively applying PRTG to the
top 3% high fan-out nets provides the best overall improvements in congestion and timing without increasing wirelength and F2F-via count.

# overflow TNS (ps) # timing violation | Wire length (m) | # F2F-via
LDPC (2.5GHz) (# nets: 56527)
Pin-3D [41] 920 -7.683 1003 1.145 14594
w/ naive 2D PRTG 1365 (+48.37%) | -7.738 (+0.72%) 999 (-0.40%) 1.149 14661
w/ PRTG entire 1626(+76.74%) | -9.395(+22.28%) 1131(+12.76%) 1.148 14801
w/ PRTG fan-out > 3 (Top 7.6%) 895 (-2.72%) -7.629 (-0.70%) 1038 (+3.49%) 1.145 14697
w/ PRTG Top 5% high fan-out net 852 (-7.39%) -7.624 (-0.77%) 1014 (+1.10%) 1.145 14735
w/ PRTG Top 3% high fan-out net -5.84 (-23.99%) 822 (-18.05%) 1.144 14708
w/ PRTG Top 1% high fan-out net 906 (-1.52%) -5.877 (-23.51%) 830 (-17.25%) 1.144 14718
w/ PRTG fan-out > 10 (Top 0.18%) | 914 (-0.65%) -7.361 (-4.19%) 955 (-4.79%) 1.145 14731

il

With PRTG: top tier

With PRTG: bot tier

Fig. 8: Post-route layouts of LDPC with our Routing Guide (PRTG) vs.
original Pin-3D [41] flow. Our method achieves up to 8.37% reduction in
early global routing overflow, 23.99% reduction in post-route TNS, and
18.05% reduction in post-route number of timing violations.

Original Pin-3D: bot tier

and timing, while avoiding unnecessary constraints on lower-impact
nets. Compared to the Pin-3D baseline, this configuration achieves
a reduction of 8.37% in global routing overflow, 23.99% in post-
route total negative slack (TNS), and 18.05% in post-route timing
violations, without increasing wirelength or F2F-via count. These
results demonstrate the effectiveness of our high-impact targeted
strategy for routing guidance in improving overall design quality.
D. Generalization Across Multiple Designs

To assess the generality of our PRTG strategy, we evaluate it on two
additional designs, AES and DMA. As shown in Table II, PRTG
consistently improves routing and timing quality across benchmarks.
For instance, in the DMA design, PRTG reduces post-route total neg-
ative slack (TNS) by 14.37% and timing violations by 17.05%, with
minimal impact on wirelength and F2F-via count, which demonstrate
the effectiveness of net-wise tier assignment across diverse designs.
E. PRTG Compliance and Routing Behavior Analysis

We further analyze whether our PRTG constraints are respected
by the commercial router. For this, we compute the percentage of
each constrained net’s post-route wirelength that resides within the
specified preferred tier. Among constrained 3D nets, we observe a
substantial increase in compliance rate: For 3D net assign to bottom
tier, the percentage of routing within the assigned tier increased from
76.45% (baseline) to 98.43% with our PRTG; For 3D net assign to
top tier, the same metric improved from 83.19% to 99.04%, as shown

TABLE II: Comparison of routing and timing metrics before and after
applying PRTG across designs. Results show that PRTG improves con-
gestion and timing while maintaining wirelength and via usage.
Metrics Pin-3D [41] | w/ PRTG improv

LDPC (2.5GHz) (# nets: 56527) Top 3% high fan-out nets

# overflow -8.37%

TNS (ps) -7.683 -23.99%
# timing violation 1003 -18.05%
Wire length (m) 1.145

# F2F-via
DMA (2.5GHz) (# nets: 11082) Top 3% high fan-out nets
# overflow
TNS (ps)
# timing violation
Wire length (m)
# F2F-via
AES (4.5GHz) (# nets: 129454) Top 1% high fan-out nets
# overflow 309068 309115

-24.177
1056

TNS (ps) -36.551
# timing violation 2050
Wire length (m) 1.260
# F2F-via 43580

TABLE III: Post-route wirelength compliance with assigned tiers under
Pin-3D baseline and after applying Preferred Routing Tier Guide (PRTG).
Significant improvements are observed for 3D nets.

Wire length distribution | Pin-3D [41] | w/ PRTG

2D net in top tier 99.07% 99.53% +0.46%
2D net in bottom tier 99.76% 99.90% +0.14%
3D net assign to top 83.19% 99.04% | +15.85%
3D net assign to bottom 76.45% 98.43% | +21.98%

in Table III. These results confirm that our PRTG strategy is highly
effective in steering net routing into desired tiers, validating its utility
as a practical guidance mechanism for tier-aware metal layer sharing.
VII. CONCLUSION

In this work, we proposed a differentiable routing guidance frame-
work for 3D ICs that generates tier-specific guidance compatible
with commercial design flows. By constructing a candidate-rich 3D
routing DAG forest and formulating a differentiable loss over multiple
objectives: congestion overflow, wirelength, via count, and face-to-
face (F2F) via usage, our method enables concurrent optimization
across the full 3D routing space. Experiments on multiple F2F 3D
IC benchmarks demonstrate improvements in both congestion and
timing. DRG-3D reduces overflow by up to 8.37%, improves total
negative slack (TNS) by 23.99%, and reduces timing violations by
18.05%, with minimal wirelength and via overhead. In future work,
we plan to extend DRG-3D to larger industrial scale 3D designs
and explore its integration with parameter optimization, graph neural
network or reinforcement Learning framework [47], [48], [49], [50],
[511, [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63]
to further improve design quality.
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