
Invited Paper: 2025 ICCAD CAD Contest Problem
C: Incremental Placement Optimization Beyond
Detailed Placement: Simultaneous Gate Sizing,

Buffering, and Cell Relocation
Yi-Chen Lu, Rongjian Liang, Wen-Hao Liu, and Haoxing Ren

NVIDIA Research
{yilu, haoxingr}@nvidia.com

Abstract—Late-stage placement optimization is where real
PPA trade-offs surface, and where conventional heuristic passes
tend to get trapped in small, local neighborhoods. We frame
an invited “Problem C” contest that treats this stage as a
global, multi-operator search over gate sizing, buffer/inverter-
pair insertion, and legal cell relocation, with strict reproducibility
and legality. Our core belief grounded in production experience
is that GPU batching and differentiable guidance expand the
tractable search space: you can score and steer thousands of
coordinated moves per iteration, not just a handful, and do
so under tight runtime budgets. Submissions must produce a
replayable ECO changelist and a final legal DEF; a standardized
evaluation flow computes timing, power, and wirelength and
combines them with displacement and runtime into the contest
score. The specification is designed to encourage pragmatic use
of gradient signals and tensorized batching without mandating
any single method, enabling participants to leverage novel GPU
tools to deliver industrially deployable PPA gains.

I. INTRODUCTION

Incremental optimization after global placement is where
hard Power, Performance, and Area (PPA) trade-offs become
realistic. At this stage, every transform including resizing
a gate, inserting an inverter pair, relocating cells through
timing, wirelength, congestion, and power optimization needs
to be performed in a coherent manner. Existing industrial
Electronic Design Automation (EDA) flows manage this com-
plexity with carefully engineered heuristics and repeated STA
loops. These flows are robust, but they are also inherently
myopic that they only explore a narrow neighborhood around
the current solution under the traditional detailed placement
scheme, because broad, global moves are computationally
expensive and risky late in the flow. The result is familiar to
practitioners—significant engineering effort spent negotiating
small, local improvements while leaving better global solutions
on the table.

Our thesis is simple that with modern GPU-acceleration
tools [1], [2] and differentiable techniques [3], [4], we can
search through a much larger portion of the feasible space
much faster, with clearer guidance about which directions
are promising. With modern million-gate industrial designs, a
single A100-class and above GPU can evaluate or approximate
tens of thousands of candidate moves in parallel, amortizing

the cost of model inference, sensitivity analysis, and legality
checks. Furthermore, when paired with Machine Learning
(ML) driven or differentiable surrogates (e.g., differentiable
timing estimators), this approach shifts the traditional explo-
ration regime from “try-and-hope” to “measure-and-steer”.
Note that we believe PPA gradients need not be perfect to
be useful, since coarse yet well-calibrated sensitivities already
prune vast swaths of unproductive actions and expose non-
obvious combined moves (size+buffer+relocate) that conven-
tional greedy passes rarely uncover.

From an industrial view, three realities motivate the problem
we pose. First, late-stage placement objectives are multi-
criteria and coupled: improving TNS/WNS must preserve
legality, respect Multi-Cornere-Multi-Mode (MCMM) con-
straints, and avoid power regressions, where the right solution
is almost always a set of coherent moves. Second, the move
space is discrete but structured where sizing options are
function-compatible, buffer insertion comes with topological
and considering physical constraints (e.g., density), and cell
displacements must interact with local routing resources and
timing corners. Third, runtime budgets are non-negotiable:
an approach that wins on quality but loses an engineer-day
in runtime will not ship. The contest we define encodes
these practicalities directly in the inputs/outputs, scoring, and
runtime rules.

Why GPUs and differentiability now? Recently, two key
enablers have matured in the ralm of Physical Design (PD). (i)
Batched evaluation on GPUs. With proper problem packaging
including vectorized feature extraction, candidate generation,
and batched legality/timing proxy evaluation, we can score
orders of magnitude more “what-if analysis” moves per unit
wall time than CPU-first scripts. This changes is not just about
the speed, but a fundamental paradigm shift in optimization
strategy: once we can examine thousands of joint actions per
iteration, global coordination beats local greed. (ii) Differen-
tiable analysis. Although exact signoff GPU-STA remains an
open-problem needs to be solved, but differentiable timing
proxies at early design flows (e.g., placeopt) and placement-
aware surrogates provide directional signals that are fast with
good correlation to end-of-flow PPA. These signals support



gradient-informed search (e.g., prioritize moves aligned with
negative timing gradients), warm-start discrete solvers, and
guide LLM priors that propose physically plausible edits rather
than free-form guesses.

This Problem C consequently invites the community to treat
post-global-placement optimization as a global, multi-operator
search under strict legality, with two design choices that reflect
production constraints. First, we permit three families of trans-
forms—gate sizing, buffer/inverter-pair insertion, and legal cell
relocation—because, in practice, the best fixes are composites.
Second, we require both a replayable ECO changelist and
a final legal DEF, because reproducibility and auditability
matter as much as headline PPA numbers in industrial signoff.
Evaluation scripts verify functional consistency, replay ECOs
to confirm determinism, and compute timing/power/wirelength
using a standardized tool flow; runtime is explicitly scored to
reflect total cost-of-optimization.

We emphasize that “differentiable” here is pragmatic rather
than doctrinaire. Participants may use exact tools such as
OpenROAD [5], learned surrogates, or hybrids; gradients can
be analytic, automatic, or approximate. What matters is using
signal to steer exploration—for example, ranking candidate
buffer sites by estimated path-sensitivity, or jointly sizing a
fanout cone based on aggregated slack gradients. Likewise,
“GPU-accelerated” covers a spectrum: from fully learned mod-
els trained on synthetic/real ECO data, to classical heuristics
refactored to exploit tensorized batching. In all cases, the
payoff is the same: broader search, better coordination, tighter
runtime.

II. PROBLEM FORMULATION

Scope and goal. We study incremental physical optimiza-
tion after detailed placement using three operator families:
gate sizing, buffer or inverter pair insertion, and legal cell
relocation. The objective is to raise timing quality and reduce
power while keeping wirelength and displacement under con-
trol, with strict legality and full reproducibility.

Inputs. Each testcase provides a self contained package
with gate level Verilog, Liberty timing and power files, LEF
technology and cell abstracts, a legal seed DEF, and organizer
scripts and constraints for evaluation. All fixed objects such
as IOs, macros, keep outs, and blockages are immutable and
must be honored.

Allowed transformations. Gate sizing replaces an instance
with a function compatible library variant that is legal in
the technology. Buffer or inverter pair insertion augments a
net with new instances and nets while preserving functional
equivalence. Legal relocation moves standard cells on the
placement site grid with correct row orientation and without
overlap. Logic restructuring beyond buffering or inverter pairs,
use of cells that do not exist in the library, edits that change
combinational equivalence, or changes to clock tree topology
are not allowed unless explicitly enabled by the organizers.

ECO command set. Candidates must express edits with the
following commands.

• size_cell <cellName> <libCellName>

• insert_buffer {<load pins>} <buffer_lib_cell>
<new_buf_inst> <new_net>

• insert_buffer -inverter_pairs {<load pins>}
<inv_lib_cell> {<inv_instances>} {<new_nets>}

Names for new instances and nets must be unique and deter-
ministic and must appear in the submitted DEF. Commands
are applied in order from top to bottom. Invalid commands
may be skipped by the evaluator.

File and format clarifications. All placement edits must
snap to valid sites and respect row orientation and power
rail alignment as defined by LEF and DEF. Fixed IOs and
macros cannot move, and all keep outs and blockages must be
respected. If Bookshelf views are provided, they are for con-
venience only and must remain consistent with the DEF and
with the libraries. The ECO changelist defines the netlist that
results from the proposed edits and must preserve functional
equivalence except for allowed buffering and inverter pairs.
Replaying the ECO on the seed must reconstruct the submitted
DEF exactly or within the stated coordinate tolerance.

Outputs. Two artifacts are required for every testcase:
• Final legal DEF <design>.sol.def that reflects all

edits and remains legal and consistent.
• Replayable ECO changelist
<design>.sol.changelist that reproduces
the submitted DEF when applied to the seed with the
organizer tools.

Determinism and reproducibility. Submissions must be
deterministic in the reference environment given the organizer
seed. Any use of randomness must be controlled so that
repeated runs produce the same ECO and the same DEF. The
ECO to DEF replay is the canonical reproducibility check.

Evaluation metrics and scoring. The official flow com-
putes the following metrics in a consistent and reproducible
manner:

• Timing with multi path measures such as TNS and WNS
on organizer specified corners and constraints.

• Power from Liberty with organizer switching assump-
tions.

• Wirelength using a routed or estimator consistent measure
defined by the organizers.

• Displacement as average and selected percentile Manhat-
tan distance from the seed for moved instances.

• Runtime as the wall clock time of the timed solve phase
on the reference machine.

We compute a composite score S from PPA improvement P ,
displacement penalty D, and runtime efficiency R:

P = αTNSimp + β Powerred + γWLred,

S = 1000P − 50D − 300R.

Here TNSimp, Powerred, and WLred are normalized improve-
ments over the seed. D is the average Manhattan displacement
per cell in site units, normalized over the seed. R is runtime
normalized to a per testcase reference, with time limits applied.
Weights α, β, and γ are testcase dependent. If the ECO replay
does not match the submitted DEF the run is invalid and no
score is reported.



III. EVALUATION ENVIRONMENT AND SUBMISSION

Reference environment. All runs execute inside a supplied
Docker image on Ubuntu 20.04 with eight virtual CPUs,
thirty two gigabytes of memory, one NVIDIA A100 with
forty gigabytes of memory, CUDA 11.8 runtime, driver series
525, and a Mambaforge Python 3.9 environment as defined
by lagrange_env.yaml. Use of GPU based batching
and differentiable guidance is encouraged and not required;
measured runtime contributes to the score.

Submission package. Submit a single archive
solution.tar.gz that unpacks into a top level directory
named solution. At minimum it must include:

• setup_environment.sh which installs any depen-
dencies.

• run.sh which performs the solve phase when invoked
as ./run.sh <design> <WL_w α> <power_w
β> <timing_w γ>.

• Your code and any binaries or models needed to run.
• The organizer provided directory
testcases/<design_name>/.

Required outputs. When run.sh completes on a testcase
it must emit

• <design_name>.sol.def
• <design_name>.sol.changelist

The evaluation flow first replays the ECO and verifies equality
from ECO to DEF, then computes metrics and the contest
score. If replay does not reconstruct the submitted DEF the
run is invalid.

IV. BENCHMARK SUITE

We adopt the ASAP7 [6] library with multiple threshold
voltage (V T ) flavors as the technology base, where each
standard cell is available in four threshold flavors with rep-
resentative drive strength ladders. Liberty and LEF define
timing, power, and geometry, and each testcase ships with a
legal seed DEF that is consistent with the libraries and ready
for incremental optimization under our rules.

Design sources and construction. Designs are derived from
IWLS [7] and TILOS [8] suites. We synthesize the RTL under
varied constraint sets that exercise different PPA configurations
and a range of target frequencies and cell densities. For each
netlist we generate multiple placed instances by sweeping
place and route configurations such as target density, clock
constraints, congestion effort, legalization settings, and routing
effort. The result is a controlled set of testcases that vary in
path depth, fanout profile, and congestion character. The four
V T choices introduce realistic timing and leakage trade offs so
that methods must coordinate sizing, buffering, and relocation
rather than rely on a single class of edits.

Scale, splits, and reproducibility. Instance counts span
from small control style blocks to larger data path oriented
designs. The suite provides a public split for development and
ablation and a hidden split for final scoring. Normalization
for scoring is per design relative to its seed to keep results
comparable across the diversity of circuits. Every testcase

TABLE I: The open benchmarks and their attributes in ASAP 7nm.

Name # Nets # FFs # Cells # arcs
ac97 top 7,836 2,191 7,750 62,807

aes 4,660 670 4,393 53,653
aes cicpher top 11,891 530 56,194 331,320

ariane 10,883 19,894 105,730 1,328,984
des 2,450 190 2,317 15,015

pci bridge 12,264 3,313 12,091 111,424

runs inside the reference container with deterministic seeds
and organizer scripts, which ensures that experiments are
repeatable and that scores reflect method quality rather than
environment variance.

Finally, Table I shows the characteristics of the designs we
used for open evaluation. More designs will be leveraged for
hidden evaluation which will be announced after the contest.

REFERENCES

[1] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “Dreamplace:
Deep learning toolkit-enabled gpu acceleration for modern vlsi place-
ment,” in Proceedings of the 56th Annual Design Automation Conference
2019, pp. 1–6, 2019.

[2] Y.-C. Lu, Z. Guo, K. Kunal, R. Liang, and H. Ren, “Insta: An ultra-fast,
differentiable, statistical static timing analysis engine for industrial phys-
ical design applications,” in 2025 62th ACM/IEEE Design Automation
Conference (DAC), 2025.

[3] Z. Guo and Y. Lin, “Differentiable-timing-driven global placement,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
pp. 1315–1320, 2022.

[4] Y.-C. Lu, K. Kunal, G. Pradipta, R. Liang, R. Gandikota, and H. Ren,
“Lego-size: Llm-enhanced gpu-optimized signoff-accurate differentiable
vlsi gate sizing in advanced nodes,” in Proceedings of the 2025 Interna-
tional Symposium on Physical Design, pp. 152–162, 2025.

[5] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng,
M. Kim, J. Lee, U. Mallappa, M. Neseem, et al., “Toward an open-source
digital flow: First learnings from the openroad project,” in Proceedings
of the 56th Annual Design Automation Conference 2019, pp. 1–4, 2019.

[6] V. Vashishtha, M. Vangala, and L. T. Clark, “Asap7 predictive design
kit development and cell design technology co-optimization,” in 2017
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pp. 992–998, IEEE, 2017.

[7] C. Albrecht, “Iwls 2005 benchmarks,” in International Workshop for
Logic Synthesis (IWLS), vol. 9, 2005.

[8] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang, and Z. Wang, “Assess-
ment of reinforcement learning for macro placement,” in Proceedings of
the 2023 International Symposium on Physical Design.


