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Abstract—Modern Physical Design (PD) flows face a dual challenge:
proprietary, heterogeneous design data and the rapid evolution of process
nodes, both of which block models from transferring to new chips.
To overcome these hurdles, we demonstrate a unified, data-driven
framework that distills critical netlist optimization moves, including gate
sizing, buffer insertion, and cell relocation, into “optimization primitives”
learned by Large Language Models (LLMs). Particularly, we develop
a high-quality, synthetic optimization data generation pipeline with
commercial tools at scale, while using a GPU-accelerated differentiable
Static Timing Analysis (STA) engine to create fast feedback loop, enabling
end-to-end gradient propagation to guide model learning. By training on
both real and synthetic data across multiple technology generations, our
approach captures fundamental PD optimization patterns that transfer
seamlessly to unseen designs, overcoming the constraints of fragmented
design representations and proprietary data in industrial PD flows.

I. INTRODUCTION

Machine Learning- (ML-) powered Physical Design (PD) at ad-
vanced nodes is limited less by compute than by data and accurate
feedback. Models are often asked to act across heterogeneous flows
with evolving design rules, yet the key features that are essential
for the success of end-of-flow PPA optimization are sparse, long-
tailed, and expensive to obtain. To alleviate this issue, in this work,
we propose to reframe the black-boxed PD optimization process as
learning and composing a small set of optimization primitives, where
we demonstrate the applications of gate sizing, buffer insertion, cell
relocation procedures in a unified manner. Particularly, due to the
scarcity of high-quality optimization data, we develop targeted, PPA-
configurable synthetic optimization data generation flow to generate
a diverse set of data with industry-standard commercial tools for
effective model training, which leverages a GPU-accelerated, differ-
entiable, and signoff-accurate Static Timing Analysis (STA) engine,
INSTA [1], for instant and accurate feedback. The result of our effort
is a closed loop in which data generation and curation are as critical
as the model class, and gradients couple decisions to PPA.

Concurrently, the rise of Large Language Models (LLMs) intro-
duces a principled way to recast discrete PD moves into a token-native
action space, which is an abstraction that has proved highly effective
across real-world domains [2]. In PD, a wave of LLM-enhanced
PPA engines has emerged, focusing on the two most leveraged
optimization moves, gate sizing and buffering, which are invoked
repeatedly from synthesis to signoff. For gate sizing, LEGO-Size [3]
introduces a novel idea to encode each library cell as a set of learnable
“tokens” (function, drive strength, and V%), sequencing timing paths
with graph context, and finally casting the gate sizing prediction
task as a sequence-to-sequence modeling task. This approach has
proven to be highly effective for timing optimization, which enabling
policies that transfer across different designs. As for buffering, a
recent work BUFFALO [4] adopts a similar principle of netlist
tokenization. Particularly, it converts a net to a sequence via a custom
traversal algorithm to facilitate robust sequence-to-sequence learning.
However, despite this progress, a persistent challenge of applying

LLMs to PD still remains: high-quality, representative training data
is scarce, and LLMs demand both breadth and coverage to generalize
reliably to unseen designs.

To address this challenge, we design a realistic, high-fidelity
data generation pipeline leveraging an industry-leading commercial
PD tool to produce PPA-targeted datasets. The core idea is that
modern PD tools expose a rich set of optimization knobs that can
be configured for different PPA objectives, which has been studied
extensively by many works focusing on parameter tuning [5], [6], [7].
Therefore, by sweeping these configurations, we can generate diverse
netlist variants representing a wide range of realistic design scenarios,
allowing us to observe, for given features extracted from Static
Timing Analysis (STA), power analysis and other extraction, how
a black-box commercial optimizer would behave. This is especially
critical in the supervised learning setting, since it enables us to
directly train models to mimic the decision patterns of these mature
tools, which has proven to be highly effective to warm up models’
parameters for subsequent training such as Reinforcement Learning
(RL), which has been validated by [8] for Concurrent Clock and
Data (CCD) optimization. Notably, these selected tool configurations
themselves serve as an explicit representation of intent of PPA targets,
which are essential for models to take as “conditioning” input as even
with identical timing and power features, altering the PPA targets can
lead to markedly different optimization trajectories.

Recently, GPU-accelerated PD tools have gained significant trac-
tion, exploiting the massive parallelism of modern GPUs to accelerate
core PD tasks such as placement [9], routing [10], [11], and STA [12],
[1]. These tools are pivotal for next-generation PD not only for
their dramatic runtime improvements, but also for their scalability
to the ever-growing design sizes driven by Moore’s Law with
custom differentiable CUDA kernels enabled by extending modern
ML infrastructure such as PyTorch[13]. Crucially, the gradient-based
optimization nature allows them to be integrated seamlessly with
ML models to perform better-than-tool optimization rather than
purely mimicking from a static dataset. In this paper, given the
fact that timing optimization sits at the heart of PD since every
optimization move such as gate sizing and buffering requires timing
validation, and every design implementation needs to reach timing
closure, we demonstrate how to leverage the industrial-grade, open-
sourced, GPU-accelerated STA engine, INSTA [1], to perform key PD
optimizations that extend beyond the reach of existing commercial
flows. In particular, we show that how INSTA can be coupled with
LLM-based decision models to achieve timing-driven optimization
with both high fidelity and unprecedented speed.

The rest of the paper is organized as follows.

II. BACKGROUND AND MOTIVATION

Two of the most critical primitives in PD for PPA optimization and
constraint fixing are gate sizing and buffer insertion. We identify these
as high-impact targets for LLM-Enhanced GPU-Optimized (LEGO)



methods because traditional algorithms, while engineered for pseudo-
linear complexity, rely heavily on heuristic rules that often fail to
scale with modern design complexity. Particularly, we realize that
with the relentless growth in design size and complexity driven by
Moore’s Law, commercial tools face increasing difficulty in executing
these primitives efficiently. Conventional heuristic-based approaches
frequently yield sub-optimal PPA outcomes, diminishing the benefits
of advanced process scaling. This scalability challenge is exacerbated
at leading-edge technology nodes (e.g., 3nm), where hundreds of
library cells may exist for a single logic function, creating a vast
combinatorial search space. The explosion in solution space makes
it increasingly difficult for rule-based optimizers to explore and
converge to globally effective solutions within practical runtime.

In this work, we propose leveraging the LEGO-based framework
to address these limitations. By combining LLM-driven decision-
making transforms with GPU-accelerated, differentiable, signoff-
accurate analysis, LEGO-based PD optimization can systematically
explore large design spaces, adapt to varying PPA objectives, and
deliver solutions that scale to the demands of advanced technology
nodes while maintaining high solution quality.

A. Prior ML-Enhanced Gate Sizing Work

A number of recent efforts have sought to enhance the efficiency
and quality of gate sizing within commercial PD flows using ma-
chine learning. Supervised prediction approaches, such as ECO-
GNN [14], DAGSizer [15], and TransSizer [16], aim to improve
design productivity by providing fast, learned sizing recommenda-
tions. While these methods can achieve high accuracy on training
designs, they are fundamentally constrained by their reliance on
static datasets, leading to significant generalization drops on unseen
designs (e.g., TransSizer drops from 89% to 61%). As a result, they
remain unable to consistently outperform the very tools they are
meant to augment. Reinforcement learning methods, exemplified by
RL-Sizer [17], reframe gate sizing as a Markov Decision Process
(MDP) and can surpass a leading PD tool in PPA metrics, but
their high runtime overhead renders them impractical for production-
scale designs. Beyond discrete learning approaches, differentiable
optimization frameworks such as AGD [18] integrate predictive
timing models (e.g., TimingGCN [19]) to approximate arrival times
and slack, enabling gradient computation of global timing objectives
like TNS with respect to gate sizes. While conceptually attractive,
these methods inherit the generalization limits of their learned timing
surrogates and suffer from prohibitive runtime costs. For instance,
AGD is reported to be 60x slower than a commercial tool even
on a legacy 130nm node with fewer than a hundred cells, making
them unsuitable for modern nodes where libraries can contain tens
of thousands of cells per function type. Collectively, these limitations
underscore the need for a new class of gate sizing frameworks that
(i) generalize across unseen designs, (ii) operate with signoff-level
timing fidelity, and (iii) scale efficiently to the vast solution spaces
of advanced technology nodes. This motivates our work, which com-
bines LLM-driven decision making, GPU-accelerated differentiable
STA, and targeted synthetic data to address these challenges in a
unified, production-ready framework.

B. Prior ML-Enhanced Buffering Methods

Traditional buffering techniques can be broadly categorized into
conventional heuristic-driven approaches and more recent ML-based
methods. Traditional algorithms, such as the van Ginneken style [20],
[21], typically follow a multi-stage pipeline: constructing a Steiner
tree for the net, partitioning the interconnect into segments, and then
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Fig. 1: Overview of INSTA which begins with a one-time initialization
from a reference timing engine and performs fast, differentiable, and tool-
accurate STA propagation. Notably, INSTA enables gradient computation
of global timing metrics (e.g., TNS) with respect to leaf variables (e.g.,
gate sizes and cell locations) to drive critical PD optimization from [1].

performing buffer sizing and placement through dynamic program-
ming. While effective in certain regimes, this staged decomposition
accumulates errors between steps and limits achievable PPA quality,
particularly in advanced nodes with complex parasitics. Recent ML-
based methods, exemplified by BufFormer [22], attempt to overcome
these shortcomings by leveraging transformer architectures to directly
learn buffering strategies from data. However, these approaches still
rely on fragmented net representations, often focus on imitation learn-
ing rather than direct PPA optimization, and are typically validated
only on isolated nets without full-chip integration.

III. INSTA: FUELING PD OPTIMIZATION WITH
DIFFERENTIABLE, TOOL-ACCURATE, STATISTICAL STA

An efficient STA engine is fundamental to guiding effective PPA
optimization and is a prerequisite for deploying ML-powered PD
applications in production. With the widespread availability of GPU
computing resources and mature CUDA development frameworks,
GPU-acceleration has emerged as a promising path to scalable
PD optimization. However, prior GPU-accelerated STA (GPU-STA)
approaches have struggled to gain industrial adoption, largely because
they attempt to replace commercial signoff tools with standalone
timing engines—an approach that cannot faithfully replicate the
proprietary delay models and intricate signoff rules used in industry.

In this work, we demonstrate a fundamentally different approach
with INSTA [1], the first differentiable, statistical GPU-STA engine
that achieves both unprecedented accuracy and scalability by per-
forming a one-time initialization from any reference signoff tool.
This design philosophy unlocks two transformative capabilities for
PD: (1) rapid, high-fidelity timing analysis for incremental netlist
updates, and (2) Gradient-based, truly global timing optimization at
scale.

As illustrated in Fig. 2, INSTA begins with a one-time synchroniza-
tion to a reference STA engine, after which it performs OCV-aware
timing propagation via a custom forward CUDA kernel and gradient
backpropagation via a custom backward kernel. Experimental results
show that INSTA achieves near-perfect correlation (0.9999) with an
industry-leading signoff tool in endpoint slack values across multiple
real-world high-performance designs in signoff mode. Achieving this
correlation is far from trivial: INSTA implements precise handling
of distribution-based timing propagation, timing exceptions, and



libCell tokenization: <type><driveStrength><vt> (3 tokens per libCell)

TABLE I: Key differences: TransSizer [16] vs. LEGO-Size from [3].
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model architecture encoder-decoder encoder-only
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Fig. 2: High-level overview of LEGO-Size. Timing paths are considered
as sequences of tokenized library cells, and the gate sizing prediction
task is solved through a language modeling approach. To achieve better

PPA beyond the commercial signoff tool, a differentiable STA engine is
developed to refine LLM-predicted probabilities from [3].
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common-path pessimism removal (CPPR), while correctly managing
rise/fall conditions and unateness constraints.

Beyond replicating signoff accuracy, INSTA exposes gradients of
global timing metrics—including worst negative slack (WNS) and
total negative slack (TNS)—with respect to a wide range of leaf
optimization variables. This enables fast, precise identification of
timing bottlenecks at the level of cells, nets, or individual stages,
making it possible to target optimization where it matters most. In this
work, we demonstrate INSTA’s capabilities in key PD optimization
domains of gate sizing and buffering.

IV. LEGO-SIZE: GATE SIZING AT ADVANCED NODES

Unlike prior ML-enhanced gate sizing methods (Section II-A) that
rely purely on supervised learning to imitate a target engine—an
approach that inherently limits generalization and cannot surpass
the tool being mimicked—LEGO-Size is designed as a scalable,
generalizable framework capable of delivering instant, better-than-
tool signoff timing optimization results on unseen designs at advanced
nodes.

LEGO-Size combines a token-based LLM-driven prediction frame-
work with a GPU-accelerated, differentiable STA engine, enabling
both accurate gate sizing predictions and gradient-based refinement.
We validate LEGO-Size [3] against an industry-leading signoff tool
at a commercial 3nm node containing over 10,000 library cells,
demonstrating robust transferability to previously unseen designs. At
a high level, LEGO-Size comprises two main components:

« A language-model-driven gate sizing prediction framework

based on path tokenization and global graph context.

o INSTA [1] guided differentiable STA engine that refines LLM-

predicted sizing probabilities to directly optimize PPA metrics.

A. Optimized Gate Size Prediction

At the signoff ECO stage, path-based timing analysis (PBA) is
essential for overcoming GBA pessimism, making path-by-path gate
sizing a natural optimization target. As shown in Fig.2, LEGO-Size
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Fig. 3: Illustration of the expected delta delay computation for timing
arcs in our differentiable STA process. Assume gate G has N libCells,
each associated with a probability predicted by the LLM model. For
each option, we use the PrimeTime estimate_eco command to estimate
the delay change d for each affected arcs (dashed arcs), categorized
by rise/fall and unateness. A dot product is then applied between these
estimated delay changes and the probabilities of each gate size to compute
the total expected delta delay from [3].

performs path-based gate sizing predictions to align with signoff-
level workflows, similar in scope to TransSizer[16], but with critical
differences that improve scalability and generalization.

To incorporate global context into path-based predictions, we
employ a Graph Transformer (GT)[23] with a linear-complexity
attention mechanism, capturing full-netlist features beyond the local
path scope. The key innovation lies in casting gate sizing as a
language modeling problem: each library cell is tokenized into exactly
three tokens—cell function, drive strength, and threshold voltage type
(Vin)—and entire timing paths are represented as graph-contextual
sequences. This tokenization unlocks the transferability benefits of
LLMs, in contrast to TransSizer and other prior works[14], [15] that
rely on fixed handcrafted features and do not operate in a language-
native representation space.

Furthermore, while TransSizer uses an encoder—decoder trans-
former for iterative gate-by-gate predictions, LEGO-Size employs a
PD-customized encoder-only transformer that predicts sizes for all
cells on a path simultaneously, improving efficiency and capturing
inter-cell dependencies. To address data scarcity and improve gener-
alization, we introduce self-supervised pre-training tasks—including
masked token prediction and arrival-time increment (stage-delay)
prediction—that require no optimization labels. These tasks initialize
model parameters before supervised fine-tuning (SFT) on PBA-
based signoff sizing labels, accelerating convergence and improving
performance. Notably, pre-training data can be generated from pre-
optimization design states, which are abundant in any industrial PD
flow, thus removing a major bottleneck in model training. The key
differences between TransSizer [16] and LEGO-Size is summarized
in Table I.



TABLE II: Parameter sampling ranges used in data generation from [4].

Parameter \ Sampling Range \
Driver/Sink Type ASAP7 standard cell library
Driver/Sink Size ASAP7 standard cell library

Fanout Count [1, 100]
Delay Target [100 ps, 1 ns]
Input Transition [0, 0.2XTeix]
Input Delay [0, 0.2XTe1x]
Driver/Sink Placement [0, Width] x [0, Height]
Leakage/Dynamic Ratio (%) [0, 100%]

B. From Prediction to Optimization: INSTA-Guided Probability Re-
finement

Now we discuss the second component of LEGO-Size. We reckon
that accurate prediction alone is insufficient as our objective is to
surpass commercial tool quality. To achieve this, we integrate a
GPU-accelerated differentiable STA engine capable of refining LLM-
predicted sizing probabilities by directly optimizing total negative
slack (TNS) through gradient descent.

Unlike previous GPU-accelerated [12], [?], [?], [?] or differentiable
STA works [18], [?] that mainly focus on full graph STA update,
our differentiable STA propagation is based on an incremental (or
delta-based) philosophy. Specifically, given the initial state of a
netlist before signoff optimization, and the LLM-predicted gate size
probabilities for refinement, we first sync the arc delays from the
initial states, and then re-annotate them by multiplying the expected
delay changes (incurred by new gate sizes), calculated via what-if
analysis, by the corresponding predicted probabilities. For instance,
given a cell arc ¢ with an original delay D?,.,, and the LLM-predicted
probability distribution P = [p1,p2,ps3] across three potential li-
brary cell candidates, we first compute the expected delay changes
D = [d1, d2, ds] for each candidate with what-if analysis. Then, the
total expected delay change for arc ¢ is calculated as P - D, leading
to a new annotated delay of D, = D, + P - D. Note the this
what-if analysis to compute the expected delay changes D is common
in commercial signoff tools and can be performed efficiently using
CPU multi-threading as it does not introduce any real update (i.e.,
commit) to the underlying netlist. In PrimeTime, the command for
such analysis is called estimate_eco, which computes delay change
estimates for millions of timing arcs in mere seconds [?].

Figure 3 illustrates the expected delta delay computation process
in LEGO-Size. When sizing a cell GG, we consider the impacted arcs
as the dashed cell (red) and net (green) arcs in the figure, which
approximately span a 3-hop neighborhood around G. Note that while
the theoretical timing impact of sizing a cell can propagate throughout
the netlist, this ripple effect is pointed out to diminish quickly in RL-
Sizer [17], where a 3-hop neighborhood is shown to be sufficient for
capturing the relevant timing impact.

Finally, after estimating the new delays for all arcs in the netlist
impacted by the LLM-predicted gate size probabilities P, we leverage
our STA kernels to perform instantaneous timing propagation with
the newly annotated delays in an end-to-end differentiable manner.
Particularly, our STA engine considers the gate size probabilities P as
leaf differentiable variables, and calculates the gradient of TNS with
respect to each gate size choice (i.e., agﬁi 2y directly. These gradients
are used to refine the LLM-predicted probabilities, optimizing TNS
in a truly global, full-graph optimization approach.
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Fig. 4: Overview of our dataset generation with our RTL generator and
commercial buffer engine from [4].

TABLE III: Cell and Pin Features for Model Input from [4].

[ Category [ Features ]

arrival (max/min rise/fall)
pin (max/min rise/fall)
slew (max/min rise/fall)
slack (max/min rise/fall)
driver pin/ rail voltage (max/min)
Fan-in; fan-out count; fan-out load
cell area; bbox; pin count
Pin cap (max rise/fall); drive resistance
(rise/fall); fan-out load

timing arrival
capacitance
slew rate
slack metrics
voltage levels
fan Metrics
physical Dim.
Library Pin
Attributes

V. BUFFALO: GENERALIZABLE, ONE-SHOT VLSI BUFFERING
WITH HIGH-QUALITY, SYNTHETIC DATASET

In contrast to gate sizing which is often performed with global
context, traditional buffering is typically executed incrementally,
relying on local features and point-by-point decisions. This local-
ized approach frequently leads to suboptimal PPA outcomes, as it
overlooks broader netlist context and inter-dependencies. One of
the most challenging buffering problems in PD is high-fanout net
(HFN) buffering, which is inherently complex due to the need to
balance electrical, physical, and timing constraints across a large
set of sinks. Conventional solutions, such as Van-Ginneken—style
algorithms, operate sequentially and heuristically, often ignoring
valuable context such as local placement density, routing congestion,
and path-specific timing sensitivities.

An additional challenge lies in obtaining clean, representative
optimization data for model training. In production flows, buffers are
typically inserted in multiple passes, each potentially separated by
timing re-analysis, making it difficult to attribute a particular buffer
insertion to a specific objective (e.g., long-path timing improvement
versus local transition fixing). As a result, reconstructing a consistent,
high-quality training corpus from organic tool logs is nontrivial.

To address these challenges, we present BUFFALO [4], a unified,
one-shot buffering framework that integrates LLM-based decision
modeling with the INSTA differentiable timing engine. BUFFALO
treats HFN buffering as a high-dimensional, global action space
problem and performs direct, one-pass optimization of the entire
buffer tree. This is made feasible through Group Relative Policy
Optimization (GRPO) [24], a reinforcement learning method whose
effectiveness in PD is unlocked by INSTA’s ability to provide fast,
signoff-accurate gradients and high-fidelity PPA evaluation.

A. Large Buffering Dataset Generation

Robust LLM-style training demands large, diverse datasets that
capture realistic buffering scenarios. To this end, we develop an
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from [4].

automated, end-to-end data generation pipeline (Fig. 4) capable of
producing over 20 million paired examples of unbuffered and buffered
nets.

We begin by generating diverse high-fanout netlists using an
RTL net generator, synthesizing under realistic constraints (Table II)
that vary driver/sink placements, fanout counts, delay targets, input
transitions, and input delays. This ensures that the resulting dataset
spans a comprehensive range of electrical and physical configurations.

Next, we employ a custom bufferOpt.tcl script integrated into a
commercial PD tool to insert buffers under realistic timing and design
constraints. The output is a matched pair: the original unbuffered net
and the fully buffered version optimized by the tool. Each pair is
then serialized into a structured depth-first search (DFS) bracketed
sequence—for example: ¢ Unbuffered: D(L'1 L'2 L'3 L4 L'5) »
Buffered: D(B'1(L"1 L'2); B'2(L'3 B'3(L'4 L'5)))

This serialization captures the complete topology, buffer types, and
hierarchical structure of the net, enabling direct supervised learning
and evaluation. The resulting dataset provides the diversity, realism,
and consistency necessary for training high-capacity models that
generalize to unseen HENs in full-chip contexts.

B. BUFFALO Architecture

BUFFALO adopts a tokenization strategy similar to LEGO-Size,
encoding each library cell into a finite set of tokens. These tokens are
processed by a TS encoder—decoder backbone (Fig. 5) customized for
buffering tasks. Unlike gate sizing, buffering prediction must jointly
determine the topology of the buffered net, the types of inserted
library cells, and the physical coordinates of newly placed buffers.
To handle this multi-output setting, we extend the TS decoder to emit
both structured tokens and associated spatial coordinates.

The architecture retains the standard TS building blocks—stacked
multi-head self-attention, cross-attention, and position-wise feed-
forward layers—augmented by residual connections and layer nor-
malization for stable optimization. The attention mechanisms are
particularly well-suited to capturing the long-range dependencies that
arise in complex net topologies.

Using the 20M high-quality synthetic net pairs generated from
commercial tools, we fine-tune the model to convergence within
one week on 8xA100 GPUs via data and model parallelism. We
formulate buffer-tree synthesis as a sequence-to-sequence task, trans-
lating depth-first search (DFS)-linearized unbuffered net sequences
into fully buffered nets in a single shot. Specifically, given an input
net g, we perform the following in order:

o Tokenize each library cell into paired tokens (type and size) and
extract associated cell-level features.

« Embed the token and feature streams separately, add positional
encodings, and feed them jointly into the T5 encoder to produce
context-rich embeddings.

o Decode the output sequence, which includes both structural
tokens defining the buffer tree and spatial coordinates for buffer
placements.

We train with a composite loss function that combines structural
token classification and masked coordinate regression:

L= Z [— log p(token;) + Am; ||1; — 11“%]7 (1)

where the mask m; activates coordinate loss only at buffer size
token positions, ensuring precise learning of meaningful buffer lo-
cations. Here 1; and 1; denote predicted and ground-truth buffer
coordinates, respectively, and the hyperparamete lambda balances
structural and spatial loss. The training dynamics are shown in Fig. 7,
with rapid convergence achieved due to the combination of high-
quality synthetic data and scalable parallel training.

C. Group Relative Policy Optimization (GRPO)

While supervised fine-tuning (SFT) teaches the policy mg to
mimic commercial tool outputs, it assumes all reference solutions
are equally optimal, neglecting the nuanced trade-offs between power,
performance, and area (PPA). To explicitly model these trade-offs, we
introduce Group Relative Policy Optimization (GRPO), a lightweight
reinforcement learning refinement method that directly aligns model
predictions with PPA objectives.
GRPO improves upon traditional preference-tuning
techniques—such as RLHF [25], [26] and DPO [27]—by evaluating
multiple candidate solutions per net in parallel and leveraging multi-
candidate group feedback instead of single or pairwise preferences.
For each net, GRPO, we do the following in order:
o Generates multiple candidate buffer trees.
« Evaluates each candidate’s relative PPA quality using Group
Relative Advantage Estimation (GRAE).

« Computes the mean advantage across the group as a baseline,
avoiding the need for an explicit value-function critic or ranking
model, thus reducing computational cost.

Particularly, the GRAE definition is as follow:
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Fig. 7: Training and validation loss curves for coordinate regression (left)
and label classification (right) during supervised fine-tuning, demonstrat-
ing smooth convergence for both tasks from [4].
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where ATNS measures timing improvement and AArea measures
area overhead. Each objective is standardized to maintain scale
invariance, then combined via convex weights w; and ws. Finally,
GRPO relies on INSTA [1] for rapid, signoff-accurate evaluation of
each candidate, making it feasible to run RL-based refinement in
minutes. Fig.8 shows the improvement trajectory, with each epoch
representing a complete GRPO update cycle.

VI. DISCUSSION

In this work, we have revisited recent advances in LLMS and
shown how, when coupled with differentiable optimization and GPU
acceleration, they can open a new design space for PD optimization.
LLMs, with their ability to operate in token-native action spaces,
provide a powerful way to represent and predict optimization prim-

itives in critical PD tasks such as gate sizing and buffering. By
moving beyond imitation of commercial tool outputs, these models
can generalize to unseen designs and adapt to different PPA objectives
with distinct conditioning inputs.

Further more, we showcase that differentiable techniques enabled
by modern ML infrastructure as PyTorch is extremely powerful to
guide effective PD optimization, which is exemplified by, INSTA,
a GPU-accelerated, differentiable STA engine. We show that the
timing gradients computed by INSTA provides key to refining model
predictions into truly better-than-tool solutions. Furthermore, with
custom CUDA operations defining forward and backward propagation
of local operation, we argue that the differentiability allows gradient
signals flow from global timing metrics such as WNS and TNS that
have been focused in this paper to propagate directly to decision
variables which will enable targeted, global optimization at scale,
where traditional non-linear solvers cannot handle. In addition, with
GPU-acceleration, we not only makes these gradients available at
scale but also supports efficient search and exploration, making
RL-based refinement methods such as GRPO, a key technique in
modern LLM fine-tuning, being practical for PD optimization.

Another highlight of our study is the identification that high-
quality, diverse training data is critical to the success of LLM-
powered PD optimization. In certain optimization domain like buffer-
ing, such data is often scarce and labels are often unknown (e.g.,
given a buffer tree, it is hard to discern the reason why each
buffer is inserted at a certain location with a particular library cell
choice), particularly for rare but high-impact cases like high-fanout
net buffering. BUFFALO [4] demonstrates how targeted synthetic
dataset generation which is built directly from commercial tools,
parameterized scenario sampling, and structured serialization can
produce millions of realistic training examples for LLMs to learn
from. This synthetic but high-fidelity approach not only fills coverage
gaps but also ensures consistent, clean supervision signals for high-
capacity models.

VII. CONCLUSION

In conclusion, in this work, we present a unified methodology that
integrates LLM-driven prediction, differentiable refinement, GPU-
enabled scalability, and synthetic data generation. This framework en-
ables us to revisit long-standing and extremely critical PD primitives
such as buffering and gate sizing with new capabilities, moving be-
yond the limitations of traditional heuristic, dataset-bound, imitation-
based learning. Going forward, we believe that the synergy of LLMs,
differentiable modeling, and targeted synthetic datasets will be central
to redefining how classical PD algorithms are designed, trained, and
deployed, ultimately paving the way for a new generation of globally
optimal, PPA-driven optimization flows.
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