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EquiVDM: Equivariant Video Diffusion Models
with Temporally Consistent Noise
Chao Liu, Arash Vahdat

Temporally consistent video-to-video generation is essential for applications of video diffusion models in areas
such as sim-to-real, style-transfer, video upsampling, etc. In this paper, we propose a video diffusion framework
that leverages temporally consistent noise to generate coherent video frames without specialized modules or
additional constraints. We show that the standard training objective of diffusion models, when applied with
temporally consistent noise, encourages the model to be equivariant to spatial transformations in input video
and noise. This enables our model to better follow motion patterns from the input video, producing aligned
motion and high-fidelity frames. Furthermore, we extend our approach to 3D-consistent video generation by
attaching noise as textures on 3D meshes, ensuring 3D consistency in sim-to-real applications. Experimental
results demonstrate that our method surpasses state-of-the-art baselines in motion alignment, 3D consistency,
and video quality while requiring only a few sampling steps in practice.

1. Introduction

Video-to-video generative models have a wide range
of applications, including sim-to-real, style transfer,
and video upsampling. Video diffusion models trained
in conditional settings have become the de facto ap-
proach for addressing these tasks [1, 2, 3, 4, 5, 6, 7].
However, following the original formulation of diffu-
sion models for images and videos [7, 8, 9, 10], these
models use independent Gaussian noise in their nois-
ing process. To achieve temporal consistency, they
often incorporate 3D convolutions [5, 11] or attention
layers [7] into diffusion-based frameworks to better
capture and propagate spatiotemporal information.
While these designs can improve temporal consistency,
they typically rely on extensive training on large-scale,
high-quality video datasets [4, 12] to effectively learn
to generate realistic frames with natural, coherent
motion patterns from independent noise.

An alternative line of work aims to generate tem-
porally consistent frames by directly sampling from
temporally correlated noise. This is particularly ap-
pealing for video-to-video applications where an input
video can be used to drive the coherent noise. In par-
ticular, [13, 14, 15] propose methods to warp noise
across frames while preserving its spatial Gaussian-
ity, then use a pretrained image diffusion model to
denoise the warped noise, thereby inducing consis-
tent transformations in the generated frames. How-
ever, as discussed by [14], standard image diffusion
networks are not intrinsically equivariant to noise-
warping transformations, due to their highly non-
linear layers. Consequently, these approaches need
sampling-time guidance or regularization strategies
to achieve approximate equivariance, which can intro-
duce additional hyperparameters and complexity into
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Figure 1 | A video diffusion model that is equivariant
to input spatial transformations generates videos with
the same spatial transformation when provided with
temporally consistent noise.

the generation pipeline.

These recent trends raise two questions: 1) Do we
need warped noise in the era of big video diffusion
models such as Sora, Cosmos, Wan, and CogVideoX
trained on massive video datasets? 2) What is the
role of equivariance in generating consistent videos?
To answer these, we study the role of warped noise in
training video diffusion diffusion. We show that the
equivariance to the spatial warping transformation of
the input is learned without modifying the training ob-
jective of conventional video diffusion models (VDMs)
by simply switching the noising process from indepen-
dent noise to warped noise. Unlike prior methods that
require specialized modules [16, 17, 18, 19, 20, 21, 22],
our approach introduces equivariance as an inherent
property of the VDM itself during training. Thus, the
temporal coherence comes at no extra cost in terms of
model complexity or runtime overhead, thereby pro-
viding a straightforward yet effective solution for high-
fidelity video generation. We name our video diffusion
models trained with consistent noise as EquiVDM.
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For video-to-video applications, we generate tem-
porally consistent noise using motion vectors ex-
tracted from a reference video or input video re-
spectively [13, 14]. Additionally, we propose a novel
approach to construct 3D-consistent noise for 3D-
consistent video generation. Specifically, we attach
Gaussian noise as textures to 3D meshes and ren-
der the resulting noise images from various camera
viewpoints as input to the diffusion model. We train
EquiVDM on 2D videos without any 3D information
using motion-based warped noise and we switched to
the 3D consistent noise at the inference time. We
demonstrate that EquiVDM leverages its equivari-
ance properties to align the generated video frames
faithfully according to the underlying 3D geometry
and camera poses, in applications such as sim-to-real
where a 3D mesh of the input scene is available.

We empirically demonstrate that EquiVDM ex-
cels at producing videos with better motion following
and higher visual quality compared to state-of-the-art
methods, even without additional modules or auxil-
iary loss terms. Notably, our base EquiVDM without
any explicit input video conditioning outperforms
specialized video-to-video models trained with inde-
pendent noise. Moreover, when EquiVDM is adapted
for video-to-video tasks, its performance improves
even further. Finally, we showcase that EquiVDM
can generate coherent video sequences in very few
sampling steps—significantly reducing computation
time while maintaining high-quality outputs.

In summary, our contributions are: (i) We propose
EquiVDM, the video diffusion model equivariant to
the warping transformation of the input noise, and
show that it can be trained with warped noise using
the vanilla video denoising loss, without any addi-
tional regularization. (ii) We propose to render 3D-
consistent noise from meshes attached with Gaussian
noise on the surface and generate 3D consistent video
using EquiVDM trained with 2D videos only. (iii) We
demonstrate that EquiVDM can generate videos with
better motion following and higher quality compared
to state-of-the-art methods. In particular, the base
EquiVDM even outperforms existing models that re-
quire additional modules to encode per-frame dense
conditions. Additinonal control modules using dense
frame conditions such as soft-edge further improves
our model. (iv) We showcase that EquiVDM with
warped noise can generate videos within very few sam-
pling steps without compromising the quality, opening
up a new perspective into accelerated sampling with
non-conventional noise distribution.

2. Related works

Controllable video generation Controllable video
generation extends image-generation methods by
leveraging additional constraints to guide generation.
Prior works incorporate dense frame-wise signals such
as depth or edge maps by adding modules to text-to-
video backbones or by introducing temporal blocks
to capture motion [23, 16, 19, 20]. For user-defined
sparse trajectories (e.g., drag-and-drop), researchers
encode these trajectories through auxiliary modules
or flow-completion strategies, then fuse them into
the diffusion model’s latent features [24, 25, 17, 21].
Some approaches refine alignment with 2D Gaussian
or bounding-box constraints, bypassing the need for
an initial frame or applying sampling-time guidance
to precisely follow the specified motion [26, 27].

Taming noise for rendering and generation
Generating noise with specific properties such as inde-
pendence and temporal consistency is a crucial step
for diffusion model based video generation, as well as
rendering in graphics. For example, [28] improve the
rendering efficiency and stability by introducing a spa-
tiotemporal noise generation pipeline for stochastic
rendering. [29] propose a fast coherent noise genera-
tion method for non-photorealistic rendering. [30, 31]
focus on 2D blue noise generation for more efficient
ray-tracing based rendering pipeline. [32] extend the
blue noise generation to the diffusion model based
video generation given that the blue noise preserves
more high-frequency information than Gaussian noise.
[33] study the noise prior and introduce temporally
correlated noise in video diffusion without any spatial
transformation. [34, 35] explore the residual noise
between frames for video generation with more tem-
poral consistency. In [36] the temporal correlation of
the noise for video generation is modeled directly to
improve temporal consistency.

Getting consistent Gaussian noise for image se-
quence and video generation using diffusion models
has been getting more attention recently. [13] in-
troduce a warping-based Gaussian noise generation
method based on conditional upsampling for image
sequence generation. The warped noise theoretically
preserves Gaussianity for each frame while being tem-
porally consistent across frames. [15] improve the
efficiency of the warping-based method by operat-
ing directly in the continuous domain thus avoiding
the need for conditional upsampling. [14] proposes a
consistent Gaussian noise generation method alterna-
tively based on Gaussian process.

In concurrent works, [37] and [38] utilize the tem-
poral consistent noise for 3D asset and video gener-
ation. More specifically, [37] propose a method for
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text-to-3D generation by distilling from a pretrained
image diffusion model using multi-view consistent
noise. [38] finetune a pretrained video diffusion model
using warped noise for motion control. In this work,
we focus on the video diffusion models that are equiv-
ariant to the warping operation of the input noise
and show that the equivariance can be learned by
using the original loss without any modification or
new modules.

3. Preliminary

Video Diffusion Model Considering the task of
generating a video V = (𝑉 (0), 𝑉 (1), · · · , 𝑉 (𝐾)) where
𝑉 (𝑘) is the 𝑘-th frame of the video, given input condi-
tions c (text prompts, control frames, etc.), we train
a video diffusion model 𝐷𝜃(V𝑡; c, 𝑡) to predict the
clean video frames 𝑉 (𝑘) from the noisy video frames
𝑉

(𝑘)
𝑡 = 𝑉 (𝑘) + 𝜖(𝑘) where 𝜖(𝑘) is the Gaussian noise

added to the 𝑘-th frame (e.g., 𝜖(𝑘) ∼ 𝒩 (0, 𝑡I)). In
the following, we drop the input conditions c and
diffusion time 𝑡 for brevity. The VDM is trained by
minimizing the per-frame denoising loss:

ℒ = E𝑝(V,V𝑡)
∑︁

𝑘

⃦⃦⃦
𝐷

(𝑘)
𝜃 (V𝑡) − 𝑉 (𝑘)

⃦⃦⃦2

2
. (1)

which has the same minimizer as [39]:

ℒ = E𝑝(V𝑡)
∑︁

𝑘

⃦⃦⃦
𝐷

(𝑘)
𝜃 (V𝑡) − E𝑝(V|V𝑡)

[︁
𝑉 (𝑘)

]︁⃦⃦⃦2

2
. (2)

After training, a video can be generated by iteratively
denoising a randomly sampled Gaussian noise follow-
ing the sampling schedule. Please refer to [5, 4] for
more details.

Integral Noise Due to the temporal consistency of
video frames, the transformation of the image regions
visible to pairs of two frames in the video can be
modeled by a warping operation:

𝒯 ∘ 𝐼(p) = 𝐼
(︀
𝒯 −1(p)

)︀
where 𝐼(p) is the source image, 𝒯 is the warping
operation extracted from a driving video or derived
from given 3D mesh and camera trajectory, and 𝒯 ∘
𝐼(p) is the warped image, usually computed through
interpolation for natural images. [13] show that the
interpolation-based warping operation breaks down
the Gaussianity of the noise and makes the input
noise spatially correlated. To tackle this issue, the
authors proposed the noise transport equation (NTE)
for warping the noise while keeping its Gaussianity
within each frame. In NTE, the warped noise value
𝒯 ∘ 𝜖(p) is

𝒯 ∘ 𝜖(p) = 1√︀
|Ωp|

∑︁
𝐴𝑖∈Ωp

𝜖up(𝐴𝑖)

where Ωp is the set of pixels in the source noise cov-
ered by the deformed pixel after warping; |Ωp| is the
number of pixels in the covered area; 𝜖up(𝐴𝑖) is the
stochastically upsampled noise value of the the de-
formed 𝑖-th pixel. Please check [13] for additional
detail.

4. Method

In this section, we first introduce EquiVDM, a video
diffusion model equivariant to the warping transfor-
mations of the input noise. Then we describe how
EquiVDM can be used for 3D consistent video gen-
eration by attaching the Gaussian Noise to the 3D
mesh surface. Last, we will show how to better train
EquiVDM to account for the inconsistency in the
latent frames obtained from video encoders.

4.1. Video generation with temporally consis-
tency noise

Prior works [13, 14] have previously introduced meth-
ods for getting temporally consistent noise while pre-
serving its Gaussianity within each frame, making
it possible to generate images following the motion
patterns of the input warped noise. However, image
diffusion models (IDMs) are not generally equivariant
to input noise warping due to the generic layers in
the network. This leads to inconsistency and even
abrupt changes like flickering in the generated images.
To tackle this issue, [14] introduce a sampling-time
guidance to regularize generated pixel values using
the optical flow.

To avoid additional regularization or post-training
guidance during sampling, two approaches can be
applied: (1) modify the network architecture to make
it equivariant to input transformations; (2) learn the
equivariance from training data through specific loss
or training schemes. For the first approach, switching
to equivariant layers needs heavy retraining. More-
over, building an equivariant diffusion architecture
for even the simplest transformations (e.g. spatial
shift) is generally a challenging open problem. Thus,
we focus on the second approach since it does not
require any architecture changes, making it possible
to finetune directly from a pretrained model.

Our key result, summarized in the following theo-
rem, is that the conventional denoising loss function
in Equation 1 is in fact training the VDM to be equiv-
ariant, as long as the input noise is also consistent.
This implies that we do not need to introduce any
special loss, hyperparameters, or regularization. We
can train VDMs simply with consistent noise to learn
equivariance from data.
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Theorem 4.1. Given the temporally consistent video
with 𝐾 frames V = (𝑉 (0), 𝑉 (1), · · · , 𝑉 (𝐾)) with cross-
frame warping transformation 𝑉 (𝑘) = 𝒯𝑘 ∘ 𝑉 (0),
and the noisy video V𝑡 with consistent added noise
N = (𝜖(0), 𝜖(1), · · · , 𝜖(𝐾)) related with the same warp-
ing transformation 𝜖(𝑘) = 𝒯𝑘 ∘ 𝜖(0), the minimizer of
the denoising loss in Equation 1, is a video diffusion
model 𝐷𝜃 that is equivariant to the transformation 𝒯𝑘,
such that 𝐷

(𝑘)
𝜃 (V𝑡) = 𝒯𝑘 ∘ 𝐷

(0)
𝜃 (V𝑡), with 𝐷

(𝑘)
𝜃 (V𝑡)

being the k-th frame of the denoised video.

Proof. Recall, that minimizing Equation 1 with re-
spect to 𝜃 is equivalent to minimizing Equation 2.
Given the warping transformation 𝒯𝑘 from frame 𝑉 (0)

to 𝑉 (𝑘), the expected value of the k-th frame of the
video can be written as:

E𝑝(V|V𝑡)[𝑉 (𝑘)] = E𝑝(V|V𝑡)[𝒯𝑘∘𝑉 (0)] = 𝒯𝑘∘E𝑝(V|V𝑡)[𝑉 (0)],

obtained from the linearity of the expectation and
warping operation respectively. Thus, we can rewrite
Equation 2 as:

E𝑝(V𝑡)
∑︁

𝑘

⃦⃦⃦
𝐷

(𝑘)
𝜃 (V𝑡) − 𝒯𝑘 ∘ E𝑝(V|V𝑡)

[︁
𝑉 (0)

]︁⃦⃦⃦2

2
(3)

which is minimized when 𝐷
(0)
𝜃 (V𝑡) = E𝑝(V|V𝑡)

[︀
𝑉 (0)]︀

for the first frame and 𝐷
(𝑘)
𝜃 (V𝑡) = 𝒯𝑘 ∘ 𝐷

(0)
𝜃 (V𝑡) for

all subsequent frames.

The theorem formally shows that the common de-
noising loss with warped noise trains VDMs to gen-
erate temporally consistent video frames that follow
the motion patterns of the input noise. This suggests
a simple recipe for training EquiVDM. We use the
standard denoising loss in Equation 1 where noise is
constructed by warping the noise from the first frame
using motion vectors obtained from a driving video.

4.2. Video generation with 3D consistent noise

Theorem 4.1 can be used for 3D consistent video gen-
eration from 3D consistent noise. To this end, we
attach a Gaussian noise texture to the 3D mesh sur-
face. We first render the Gaussian noise image given
the 3D mesh, camera pose and intrinsics. The warp-
ing transformation from the UV texture map to the
image planes can be determined by the rasterization
process. Then we use the Noise Transport Equation
to warp the Gaussian noise from the texture map
to the image planes to get 3D consistent noise maps
N = (𝒯0,𝑢𝑣 ∘ 𝜖𝑢𝑣, 𝒯1,𝑢𝑣 ∘ 𝜖𝑢𝑣, · · · , 𝒯𝐾,𝑢𝑣 ∘ 𝜖𝑢𝑣), where
𝜖𝑢𝑣 is the Gaussian noise texture map, and 𝒯𝑘,𝑢𝑣 is
the warping transformation from the UV texture map
to the image plane for the 𝑘-th camera view, as shown
in Figure 2.

view k view j noise texture uv-map

Figure 2 | Render 3D consistent noise from meshes
attached with noise texture map. A Gaussian noise
texture is attached to the 3D mesh surface. 3D con-
sistent noise map for different camera views can be
computed by warping the uv texture map to the im-
age plane. The warping operation is defined by the
3D mesh, camera pose and intrinsics.

With VDMs trained with temporally consistent
noise, we can generate 3D consistent video frames
from the 3D consistent noise maps. Given that the
uv-to-image warping transformation is bijective and
intertible, we define the corresponding image-to-uv
warping as 𝒯 −1

𝑘,𝑢𝑣. For a pair of close-by camera views,
their 3D consistent noise maps can be related by:

𝜖(𝑘) = 𝒯𝑘,𝑢𝑣 ∘ 𝜖𝑢𝑣 = 𝒯𝑘,𝑢𝑣 ∘ 𝒯 −1
𝑗,𝑢𝑣 ∘ 𝜖(𝑗) = 𝒯𝑘,𝑗 ∘ 𝜖(𝑗)

where 𝒯𝑘,𝑗 = 𝒯𝑘,𝑢𝑣 ∘ 𝒯 −1
𝑗,𝑢𝑣 is the effective warping

operation from the 𝑗-th image to the 𝑘-th image.
Here we assume that for close-by camera views, most
regions in one view are visible in the other. This as-
sumption is reasonable for video sequences with FPS
that is high enough compared to the camera motion.
Then based on Theorem 4.1, we can generate the
corresponding video frames related by 𝐹𝑘 = 𝒯𝑘,𝑗 ∘ 𝐹𝑗 ,
which demonstrates the same 3D consistency as the
input noise maps. Note that although the pattern of
the uv-to-image warping 𝒯𝑘,𝑢𝑣 is quite different from
the frame-to-frame warping patterns in the training
video, the 3D consistency of the generated video can
still be preserved without fine-tuning, since the effec-
tive image-to-image warping operation 𝒯𝑘,𝑗 is similar
to the ones in the training videos.

4.3. Independent noise addition

Although the theory suggests that training VDMs
with temporally consistent noise encourages them to
be equivariant to the spatial warping in the input, our
experiments show that they can struggle with gener-
ating high-quality videos in practice. We hypothesize
that several factors break the assumptions in warped
noise: (1) The errors in optical flow can result in
errors in warping transformation estimation. (2) Suc-
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Figure 3 | The values of three tracked points in the
video frames in the pixel, latent and noise videos.
The variantion in the latent video is much larger
than the one in the pixel and noise videos due to the
compression in the latent space.

cessive frames in natural videos do not have perfect
1-to-1 mappings as the camera movement can make
some pixels visible and some hidden. (3) The optical
flow is estimated in the pixel space while virtually all
VDMs are defined in a latent space.

In Figure 3, we study the effect of applying warp
noise to a latent encoding of a video. Here we show
the values of three tracked pixels in the video frames
in the RGB, latent, and corresponding noise spaces.
Although the values of the tracked pixels in the RGB
and noise space are by construction consistent across
frames, we observe a large variation in the latent space
(middle figure). This indicates that latent embeddings
of the tracked pixels have additional high-frequency
variations in the temporal direction that are not ac-
counted for when adding the constant warped noise.
However, diffusion models require a forward process
that destroys all information in all frequencies such
that the generative model can learn to generate them
in the reverse process [40, 41].

In order to tackle this issue, we propose to add inde-
pendent noise to each frame along with the temporal
consistent ones during training. More specifically, the
added noise becomes

𝜖 = 𝛽𝜖warp +
√︀

1 − 𝛽2 𝜖ind, (4)

where 𝛽 ∈ [0, 1] is a hyperparameter controlling the
strength of the temporal consistent noise, 𝜖ind is the
independent noise. Another perspective on the added
independent noise is that it expands the manifold of
the noise, such that the expanded manifold can better
cover and destroy the latent encoding compared to the
one in the warped noise, which spans a much smaller
manifold space due to the temporal correlation. We
set 𝛽 to 0.9 in all the experiments unless specified
otherwise. This corresponds to a small amount of
added independent noise.

5. Experiments

We evaluate our method on video generation task
with static scenes with only camera motion, as well
as more general in-the-wild scenes with both camera
motion and dynamic scenes. Then we validate the
performance of our method with 3D meshes attached
with Gaussian noise as textures. Finally, we provide
ablation studies to show the effectiveness of each
component in our method.

5.1. Experiment Setup

Datasets and Metrics We curate our dataset for
training from the training set of RealEstate-10k [42],
OpenVideo-1M [43] and VidGen-1M [44] datasets.
The RealEstate10K dataset contains about 80k videos
of static real estate scenes, while OpenVideo-1M and
VidGen-1M each contains around 1M in-the-wild
videos including both static and dynamic scenes. For
evaluation, we use the test set of RealEstate10K for
egomotion-only video generation, and Youtube-VIS
2021 [45] for in-the-wild video generation. We use
LLaVA-NeXT [46] for video captioning for datasets
without captions. For efficiency, we extract the video
captions for every 10 frames assuming that the videos
are temporally consistent and the contents do not
change too much.We train and evaluate two models
separately for static and in-the-wild scenes in order to
test if the VDM can learn the equivariance to warping
transformations of different types and complexities.

In order to validate the performance of our method
on 3D consistent video generation given meshes with
Gaussian noise texture, we render the noise inputs for
the evaluation set of ScanNet++ [47] dataset using
the dense 3D mesh and the camera trajectory for
the IPhone modality for which both the dense cam-
era trajectory and the corresponding RGB images are
available, such that we can directly compare the gener-
ated videos with the ground truth. We perform mesh
pre-processing such that the texture mapping and the
noise rendering are more well-conditioned and robust
to the holes and sharp edges in the given meshes. We
use the model trained with in-the-wild videos for this
task and the following ablation experiments.

We use FID [48], FVD [49] to measure the quality
of the generated videos, and CLIP [50] score to mea-
sure the similarity between the generated videos and
the ground truth videos. To measure the temporal
consistency and the alignment of the motions between
the generate and ground truth videos, we first extract
the dense optical flow from the frames in the ground
truth video, then use it to warp the generated videos
accordingly, and compute the PSNR and SSIM scores
between the warped and the target frames in the gen-
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erated video. After applying the warping operation
using the optical flow from the ground truth video,
if the generated video follows the motion pattern in
the ground truth video and the video is temporally
consistent, the corresponding pixels in the source and
target frames would be close hence we have higher
PSNR and SSIM scores. Please refer to the Appendix
for a illustration of the temporal consistency metrics.

Training Details We train the EquiVDM by fine-
tuning from the pre-trained VideoCrafter2 [51] model
with the temporal consistent noise as the input as
describe in Section 4. For the controlled video gen-
eration where the a seperate control signnal such as
dense depth or edge map is available, we add and fine-
tune the additional modules from CtrlAdapter [19]
while keeping the rest of the model frozen. We use the
AdamW optimizer [52] with a learning rate of 10−4

for the finetuning the base model, and 2 × 10−5 for
the finetuning the added control modules. The model
is finetuned on 64 Nvidia A100 GPUs for around 200k
iterations.

5.2. Video Generation

We first evaluate whether EquiVDM with warped
noise input can improve the video generation per-
formance compared to methods using independent
noise. In particular, we focus on whether it can
learn to generate better videos in terms of seman-
tic and motion alignment from the consistent noise
input with motion information. To this end, we com-
pare the performance of our method with state-of-
the-art VDMs with both UNet and DiT backbones
[53, 54, 55, 11, 51]. The quantitative results are listed
in Table 1. The CLIP score improvements show that
the noise-equivariant model can learn to infer the
semantic information from the consistent noise input;
while the PSNR and SSIM improvements show the
noise-equivariance properties emerges with training
the VDMs with the consistent noise input, thus the
motions in the input noise and the generated videos
are aligned. The improvement over both video qual-
ity and temporal alignment is also observed in the
concurrent work [38].

We then evaluate our method on the controlled
video generation task, where dense conditioning
frames such as soft-edge maps are available. In
particular, we use canny edge and soft-edge maps
from [56] as the control frames. We compare our
method with models with additional control modules
[23, 16, 19]. The qualitative results are shown in
Figure 4. For our method, EquiVDM-base generates
videos from warped noise using text-only prompts,
while EquiVDM-full has the additional input condi-

tioning, finetuned from CtrlAdapter [19]. EquiVDM-
full achieves the best temporal consistency for textures
(e.g. the the patterns of the cows, the grass texture),
as well as the motion alignment (e.g. the motion
of legs of the cows, the orientation of rabbit’s head)
with the ground truth video where the warping optical
flow is extracted from. In addition, EquiVDM-base
without additional modules achieves on-par or better
performance compared to the models with dedicated
control modules.

The quantitative results are listed in Table 2. As
shown, our method achieves the best performance on
both semantic and motion metrics on both static and
in-the-wild scenes. A key observation is that even
without the additional control modules, our method
(EquiVDM-base in Table 1) can already perform on-
par or better than the compared methods with ded-
icated control modules in Table 2. This manifests
that EquiVDM can learn to generate better videos
by taking advantage of the temporal correlation from
the warped noise input. It also indicates that the
temporal correlation in the warped noise can serve
as a strong prior for both the motion pattern and
semantic information in addition to motions.

Another observation is that for our method, the
performance of the controlled model is generally bet-
ter than the base model, indicating that the benefit
of equivariance is complementary to the additional
conditioning modules. As a result, for video-to-video
generation tasks, we can improve the performance by
making the full model noise-equivariant without any
architecture modification to it.

5.3. 3D Consistent Video Generation

An important application of the noise-equivariant
model is to generate 3D-consistent videos by attach-
ing noise to 3D meshes and rendering 2D noise im-
ages given the camera trajectory and 3D scene layout.
The 3D consistent videos then can be generated by
EquiVDM. Compared to video-to-video generation
approaches using synthetic videos for the sim-to-real
task, our method eliminates the need for synthetic
video rendering during training and sampling, which
often require detailed texture maps, lighting informa-
tion in addition to 3D meshes, and more importantly
paired simulation and real data. In our case EquiVDM
can be trained with in-the-wild 2D videos, and used
for 3D consistent video generation, without any ad-
ditional finetuning on 3D data, which is challenging
and expensive to obtain at scale. The quantitative
results are listed in Table 3. Our method (EquiVDM-
mesh) outperforms the other methods with the same
dense frame control signals. Additionally, we pro-
vide results for the flow-based variant of our method

6
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Figure 4 | Frames from the generated videos with different methods. CtrlVid [23], T2V-Zero [16], Ctr-
lAdapter [19] and EquiVDM-full used soft-edge map as control signal for each frame along with the text
prompt. EquiVDM-base only used text prompt. EquiVDM-full achieves the best consistency over the frames
(e.g. textures of the cows), and alignment with the motion patterns in the ground truth videos. In addition,
while EquiVDM-base only uses the text prompt, it achieves on-par or better performance compared to previous
methods using control frames.

Table 1 | Video generation performance for models with text prompt only.

Static Scenes In-the-wild Scenes
Method FID FVD CLIP PSNR FID FVD CLIP PSNR
VC2 [51] 23.36 1882 0.8053 25.02 41.23 4565 0.6500 19.33
Show-1 [53] 64.06 2740 0.7925 25.40 34.83 5422 0.6908 20.59
Pyramid-flow [54] 66.14 3078 0.7301 25.39 46.88 5726 0.6377 21.86
OpenSora-1.2 [55] 48.59 3032 0.7726 23.54 39.14 5733 0.6898 20.35
CogVideoX-2B [11] 42.01 3088 0.7796 22.20 36.76 5369 0.6540 18.05
EquiVDM-base 25.19 1440 0.8424 32.69 26.59 3193 0.6925 25.65

Table 2 | Video generation performance for models with both text prompt and control frames.

Static Scenes In-the-wild Scenes
Method FID FVD CLIP PSNR FID FVD CLIP PSNR
CtrlVid canny [23] 44.00 1489 0.800 26.42 38.45 2724 0.7154 22.68
CtrlVid softedge [23] 61.90 1481 0.764 27.33 59.80 2694 0.7129 23.16
T2V-Zero canny [16] 40.10 2194 0.805 23.98 29.98 3350 0.7146 21.57
CtrlAdapter softedge [19] 47.29 1396 0.816 30.98 39.62 2789 0.7167 21.52
CtrlAdapter canny [19] 75.11 2698 0.768 25.33 36.24 2496 0.7214 23.09
EquiVDM-full softedge 31.65 1242 0.851 31.44 24.40 2122 0.7293 26.86
EquiVDM-full canny 33.46 1142 0.853 34.52 22.24 1922 0.7551 26.58

(EquiVDM-flow), where the input noise tensor is de-
rived by warping the noise map of the initial frame
using optical flow. The attached noise based variant
of our method achieves similar performance to the
flow-based version, although it is trained only with
2D videos without any 3D meshes.

5.4. Ablation Studies

Added noise amount We first evaluate our method
with different amounts of added independent noise by
adjusting the 𝛽 value in Equation 4. A smaller 𝛽 value
indicates more noise added to the video hence less
temporally consistent noise, and vice versa. In partic-
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Table 3 | Sim2Real performance on ScanNet++
dataset.

Method FID FVD CLIP PSNR SSIM

CtrlVid 82.63 1843 0.7384 27.08 0.8089
T2V-Zero 39.28 2078 0.7884 22.35 0.7110
CtrlAdapter 57.10 2098 0.7298 24.74 0.6881
EquiVDM-mesh 31.56 1266 0.7917 29.75 0.9027
EquiVDM-flow 30.96 1244 0.7915 29.92 0.8980

Table 4 | Ablations on 𝛽 values controlling added
noise.

FID FVD CLIP PSNR SSIM

𝛽 = 0.0 39.92 2292 0.8126 20.81 0.6057
𝛽 = 0.5 26.66 1765 0.8509 30.77 0.9258
𝛽 = 0.9 25.12 1585 0.8575 31.91 0.9343
𝛽 = 1.0 50.03 1910 0.9224 28.67 0.9224

ular, for 𝛽 = 0.0 the input noise is independent for
each frame without any temporal consistency; while
𝛽 = 1.0 indicates the input noise is fully determined
by the first frame and the warping operation with-
out any variations. We evaluate the performance on
the test set of RealEstate10K dataset. As shown in
Table 4, using temporally consistent noise helps in
generating better videos in terms of quality, semantic
alignment, and temporal consistency. On the other
hand, without any added independent noise, the per-
formance degrades since the model fails to model
the high-frequency temporal variations of the corre-
sponding pixels in the latent space; while the added
independent noise expands the manifold of the input
noise such that it covers the latent space better, as dis-
cussed in Section 4.3. We found that adding a small
amount of independent noise with 𝛽 = 0.9 achieves
the best balance between quality and consistency.

Sampling steps Since the motion information
about the video is already included in the warped
noise, one natural question is whether the sampling
steps can be reduced compared to the one using in-
dependent noise where both the motion and appear-
ance have to be generated from scratch. To answer
this question, we evaluate our method on ScanNet++
dataset with different numbers of sampling steps with-
out changing the sampling schedule or performing the
model distillation. As shown in Figure 5, using tempo-
rally consistent noise input, our method can generate
videos with similar or better quality compared to
the one using independent noise in much fewer sam-
pling steps. In addition, the metrics saturate quickly,
indicating that the appearance of the video can be
generated from scratch with few sampling steps given
the temporally consistent noise input. As shown in

Figure 5 | Ablation on the number of sampling steps.

5 steps 20 steps 50 steps
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Ours
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Figure 6 | Our method with temporally consistent
warped noise generates videos with similar quality
compared to the one using independent noise, but
with much fewer sampling steps.

Figure 6, the detailed appearance-like reflection on
the table surface can be generated in as few as 5
sampling steps. We believe these results open up new
venues for video diffusion acceleration using warped
noise.

6. Conclusion

In this work, we propose using temporally consistent
noise input for video generation with diffusion models.
We show that video diffusion models can be trained
to be equivariant to temporal transformations of the
input by training with warped noise, without requir-
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ing additional regularization or modifications to the
model architecture. We extend this approach to 3D by
attaching noise to 3D mesh surfaces, enabling the gen-
eration of 3D-consistent frames from rendered noise
maps. Through extensive experiments, we demon-
strate that video diffusion models with consistent
noise input generate more temporally consistent and
higher-quality videos in significantly fewer sampling
steps compared to those using independent noise in-
put. One limitation of our method is that for long
video generation, drifting is not fully alleviated by us-
ing consistent noise input. Possible solutions include
utilizing auto-regressive video diffusion models along
with warped noise. For 3D-grounded video generation,
we can further enhance long-term cross-view consis-
tency by attaching intermediate denoised features or
images onto the 3D mesh in addition to the noise.

7. Impact Statement

This paper presents a generative model for video syn-
thesis, contributing to advancements in generative
learning. Our approach enhances the ability to gener-
ate high-quality, realistic videos, which has potential
applications in content creation, simulation, and data
augmentation. While this technology offers significant
benefits, it also raises ethical considerations, particu-
larly regarding the potential misuse of synthetic video
generation for misinformation. We encourage respon-
sible deployment with appropriate safeguards. Future
work may explore bias mitigation and methods to
ensure transparent and trustworthy generative video
models.
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Appendix

Appendix A: PSNR and SSIM used for evaluating temporal consistency

The PSNR and SSIM metrics in our paper are used for evaluting the temporal consistency of the generated
frames, as well as how the motion pattern of the generated frames follows the optical flow of the input noise.
As shown in Figure 7, to compute the PSNR and SSIM metrics, we first extract the 2D optical flow of the
input driving video. Then given the correpsponding generated video, we warp the the source frame (the
frame t in the case shown in the illustration) towards the target frame (the frame t+1) using the optical flow.
Then we compute the PSNR and SSIM metrics between the warped source frame and the target frame. As a
result, if the generated video follows the same motion pattern as the ground truth and maintains temporal
consistency, it will yield a higher PSNR and SSIM scores—and vice versa.

Compared with the metrics in Video Benchmark [57], our metric is similar to the “Warping Error” for
temporal consistency in the Sec.4.4 of that paper. The only difference is that the optical flow used for warping
is estimated from the ground truth video rather than generated video.

Figure 7 | Illustration of the PSNR and SSIM metrics used for evaluating temporal consistency.

Appendix B: EquiVDM for Diffusion Models with Transformers

For video diffusion models with transformer backbone [7, 11, 4], the latent space of the video where the
diffusion and sampling process are performed is a set of video tokens from a video tokenizer. Unlike the VAEs
in the UNet-based video diffusion models, the video tokenizer not only compress the spatial dimension of
the video, but also the temporal dimension. For example, in CogVideoX [11] and CosMos [4], the tokenizer
processes a video with 𝑁 frames by first encoding the initial frame independently. It then encodes the
subsequent 𝑁 − 1 frames into a sequence of ⌈(𝑁 − 1)/𝑘⌉ temporal tokens, where 𝑘 represents the temporal
compression factor.

We build the warped noise frames accordingly to account for the temporal compression in the video tokenizer.
For example, for the video tokenizer temporal compression scheme in CogVideoX [11] and CosMos [4], we first
get the subsampled video by taking the first frame and every 𝑘-th frame from the following frames. Then we
build the warped noise frames from the subsampled video. Another option is to build the warped noise frames
directly from the original video, then subsample the warped noise frames accordingly. The first apporach
is more efficient since it reduces the numbers of optical flow estimations. On the other hand, the second
approach is more robust to videos with large motions. In our experiment, we use the second apprach for more
robustness.

To add the control signal such as soft-edge maps, we use the same method as in the UNet-based video
diffusion models: we add the adapter layers [19] between the frame encoder for the controlling frames and the
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transformer blocks in the video diffusion model. We interlace the adapter layers every 4 transformer blocks
in the transformer backbone to avoid memory overflow. The qualitative results of the EquiVDM with the
CogVideoX [11] model are shown in Figure 8–11.

G
en

er
at

ed
G

ro
un

d 
Tr

ut
h

G
en

er
at

ed
G

ro
un

d 
Tr

ut
h

G
en

er
at

ed
G

ro
un

d 
Tr

ut
h

G
en

er
at

ed
G

ro
un

d 
Tr

ut
h

G
en

er
at

ed
G

ro
un

d 
Tr

ut
h

Figure 8 | The generated and driving videos of DiT-based video diffusion models.
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Figure 9 | The generated and driving videos of DiT-based video diffusion models.
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Figure 10 | The generated and driving videos of DiT-based video diffusion models.
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Figure 11 | The generated and driving videos of DiT-based video diffusion models.
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Appendix C: Additional Results for Comparsions with other Methods

In Figure 12-17, we provide additional qualitative results for the comparison in Table 2 in Section 5.2.
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Figure 12 | Comparison of EquiVDM with other methods. CtrlVid [23], T2V-Zero [16], CtrlAdapter [19] and
EquiVDM-full used soft-edge map as control signal for each frame along with the text prompt. EquiVDM-base
only used text prompt.

18



EquiVDM: Equivariant Video Diffusion Models with Temporally Consistent Noise
C
tr
lV
id

T
2V
-Z
er
o

C
tr
lD
ap
te
r

E
qu
iV
D
M
-b
as
e

E
qu
iV
D
M
-fu
ll

G
T

Figure 13 | Comparison of EquiVDM with other methods. CtrlVid [23], T2V-Zero [16], CtrlAdapter [19] and
EquiVDM-full used soft-edge map as control signal for each frame along with the text prompt. EquiVDM-base
only used text prompt.
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Figure 14 | Comparison of EquiVDM with other methods. CtrlVid [23], T2V-Zero [16], CtrlAdapter [19] and
EquiVDM-full used soft-edge map as control signal for each frame along with the text prompt. EquiVDM-base
only used text prompt.
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Figure 15 | Comparison of EquiVDM with other methods. CtrlVid [23], T2V-Zero [16], CtrlAdapter [19] and
EquiVDM-full used soft-edge map as control signal for each frame along with the text prompt. EquiVDM-base
only used text prompt.
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Figure 16 | Comparison of EquiVDM with other methods. CtrlVid [23], T2V-Zero [16], CtrlAdapter [19] and
EquiVDM-full used soft-edge map as control signal for each frame along with the text prompt. EquiVDM-base
only used text prompt.
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Figure 17 | Comparison of EquiVDM with other methods. CtrlVid [23], T2V-Zero [16], CtrlAdapter [19] and
EquiVDM-full used soft-edge map as control signal for each frame along with the text prompt. EquiVDM-base
only used text prompt.
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