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Abstract

Diffusion models (DMs) have revolutionized gen-
erative learning. They utilize a diffusion process
to encode data into a simple Gaussian distribu-
tion. However, encoding a complex, potentially
multimodal data distribution into a single contin-
uous Gaussian distribution arguably represents
an unnecessarily challenging learning problem.
We propose Discrete-Continuous Latent Variable
Diffusion Models (DisCo-Diff) to simplify this
task by introducing complementary discrete la-
tent variables. We augment DMs with learnable
discrete latents, inferred with an encoder, and
train DM and encoder end-to-end. DisCo-Diff
does not rely on pre-trained networks, making the
framework universally applicable. The discrete
latents significantly simplify learning the DM’s
complex noise-to-data mapping by reducing the
curvature of the DM’s generative ODE. An addi-
tional autoregressive transformer models the dis-
tribution of the discrete latents, a simple step be-
cause DisCo-Diff requires only few discrete vari-
ables with small codebooks. We validate DisCo-
Diff on toy data, several image synthesis tasks as
well as molecular docking, and find that introduc-
ing discrete latents consistently improves model
performance. For example, DisCo-Diff achieves
state-of-the-art FID scores on class-conditioned
ImageNet-64/128 datasets with ODE sampler.

1. Introduction
Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021) have recently led to break-
throughs for generative modeling in diverse domains. For
instance, they can synthesize expressive high-resolution im-
agery (Saharia et al., 2022; Ramesh et al., 2022; Rombach
et al., 2022; Balaji et al., 2022) or they can generate accurate
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molecular structures (Corso et al., 2023; Yim et al., 2023;
Ingraham et al., 2023; Watson et al., 2023). DMs leverage a
forward diffusion process that effectively encodes the train-
ing data in a simple, unimodal Gaussian prior distribution.
Generation can be formulated either as a stochastic or, more
conveniently, as a deterministic process that takes as input
random noise from the Gaussian prior and transforms it
into data through a generative ordinary differential equation
(ODE) (Song et al., 2021). The Gaussian prior corresponds
to the DM’s continuous latent variables, where the data is
uniquely encoded through the ODE-defined mapping.

However, realistic data distributions are typically high-
dimensional, complex and often multimodal. Directly en-
coding such data into a single unimodal Gaussian distri-
bution and learning a corresponding reverse noise-to-data
mapping is challenging. The mapping, or generative ODE,
necessarily needs to be highly complex, with strong curva-
ture, and one may consider it unnatural to map an entire
data distribution to a single Gaussian distribution. In prac-
tice, conditioning information, such as class labels or text
prompts, often helps to simplify the complex mapping by
offering the DM’s denoiser additional cues for more accu-
rate denoising. However, such conditioning information
is typically of a semantic nature and, even given a class
or text prompt, the mapping remains highly complex. For
instance, in the case of images, even within a class we find
images with vastly different styles and color patterns, which
corresponds to large distances in pixel space.

Here, we propose Discrete-Continuous Latent Variable
Diffusion Models (DisCo-Diff), DMs augmented with addi-
tional discrete latent variables that encode additional high-
level information about the data and can be used by the main
DM to simplify its denoising task (Fig. 1). These discrete
latents are inferred through an encoder network and learnt
end-to-end together with the DM. Thereby, the discrete la-
tents directly learn to encode information that is beneficial
for reducing the DM’s score matching objective and making
the DM’s hard task of mapping simple noise to complex data
easier. Indeed, in practice, we find that they significantly re-
duce the curvature of the DM’s generative ODE and reduce
the DM training loss in particular for large diffusion times,
where denoising is most ambiguous and challenging. In con-
trast to previous work (Bao et al., 2022; Hu et al., 2023; Har-
vey & Wood, 2023), we do not rely on domain-specific pre-
trained encoder networks, making our framework general
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Figure 1. Discrete-Continuous Latent Variable
Diffusion Models (DisCo-Diff) augment DMs
with additional discrete latent variables that cap-
ture global appearance patterns, here shown for
images of huskies. (a) During training, discrete la-
tents are inferred through an encoder, for images
a vision transformer (Dosovitskiy et al., 2021),
and fed to the DM via cross-attention. Back-
propagation is facilitated by continuous relaxation
with a Gumbel-Softmax distribution. To sample
novel images, an additional autoregressive model
is learnt over the distribution of discrete latents.
(b) Schematic visualization of generative denois-
ing diffusion trajectories. Different colors indicate
different discrete latent variables, pushing the tra-
jectories toward different modes.

and universally applicable. To facilitate sampling of discrete
latent variables during inference, we learn an autoregressive
model over the discrete latents in a second step. We only
use a small set of discrete latents with relatively small code-
books, which makes the additional training of the autore-
gressive model easy. We specifically advocate for the use of
auxiliary discrete instead of continuous latents; see Sec. 3.2.

While previous works (Esser et al., 2021; Ramesh et al.,
2021; Chang et al., 2022; Yu et al., 2022; Pernias et al.,
2023; Chang et al., 2023) use fully discrete latent variable-
based approaches to model images, this typically requires
large sets of spatially arranged latents with large codebooks,
which makes learning their distribution challenging. DisCo-
Diff, in contrast, carefully combines its discrete latents with
the continuous latents (Gaussian prior) of the DM and effec-
tively separates the modeling of discrete and continuous vari-
ations within the data. It requires only a few discrete latents.

To demonstrate its universality, we validate the DisCo-Diff
framework on several different tasks. As a motivating exam-
ple, we study 2D toy distributions, where the discrete latents
learn to capture different modes with smaller curvature dur-
ing sampling. We then tackle image synthesis, where the dis-
crete latents learn large-scale appearance, often associated
with global style and color patterns. Thereby, they offer com-
plementary benefits to semantic conditioning information.
Quantitatively, DisCo-Diff universally boosts output quality
and achieves state-of-the-art performance on several Ima-
geNet generation benchmarks. In addition, we experimen-
tally validate that auxiliary discrete latents are superior to
continuous latents in our setup, and study different network
architectures for injecting the discrete latents into the DM
network. A careful hierarchical design can encourage differ-
ent discrete latents to encode different image characteristics,
such as shape vs. color, reminiscent of observations from the
literature on generative adversarial networks (Karras et al.,
2019; 2020). We also apply DisCo-Diff to molecular dock-
ing, a critical task in drug discovery, where the discrete la-
tents again improve performance by learning to indicate crit-
ical atoms in the interaction and, in this way, deconvolving

the multimodal uncertainty given by different possible poses
from continuous variability of each pose. Moreover, we aug-
ment Poisson Flow Generative Models (Xu et al., 2022;
2023b) with discrete latent variables to showcase that the
framework can also be applied to other “iterative” generative
models, other than regular DMs, observing similar benefits.

Contributions. (i) We propose DisCo-Diff, a novel frame-
work for combining discrete and continuous latent variables
in DMs in a universal manner. (ii) We extensively validate
DisCo-Diff, significantly boosting model quality in all ex-
periments, and achieving state-of-the-art performance on
several image synthesis tasks. (iii) We present detailed anal-
yses as well as ablation and architecture design studies that
demonstrate the unique benefits of discrete latent variables
and how they can be fed to the main denoiser network. (iv)
Overall, we provide insights for designing performant gen-
erative models. We make the case for discrete latents by
showing that real-world data is best modeled with genera-
tive frameworks that leverage both discrete and continuous
latents. We intentionally developed a simple and universal
framework that does not rely on pre-trained encoders to offer
a broadly applicable modeling approach to the community.

2. Background
DisCo-Diff builds on (continuous-time) DMs (Song et al.,
2021), and we follow the EDM framework (Karras et al.,
2022). DMs perturb the clean data y ∼ pdata(x) in a fixed
forward process using σ2(t)-variance Gaussian noise, where
y ∈ Rd and t denotes the time along the diffusion process.
The resulting distribution is denoted as p(x;σ(t)) with x ∈
Rd. For sufficiently large σmax, this distribution is almost
identical to pure random Gaussian noise. DMs leverage
this observation to sample x0 ∼ N (x0;0, σ

2
maxI) and then

iteratively denoise the sample through a sequence of M + 1
gradually decreasing noise levels σi+1 < σi (σ0 = σmax),
where i ∈ [0, ...,M ] and xi ∼ p(x;σi). The σi correspond
to a discretization of a continuous σ(t) function. If σM = 0,
then the final xM follows the data distribution. Sampling
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corresponds to simulating a deterministic or stochastic dif-
ferential equation

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt︸ ︷︷ ︸
Probability Flow ODE

−β(t)σ2(t)∇x log p(x;σ(t))dt+
√
2β(t)σ(t)dωt︸ ︷︷ ︸

Langevin Diffusion SDE

,
(1)

where dωt is a standard Wiener process and
∇x log p(x;σ(t)) is the score function of the dif-
fused distribution p(x;σ(t)). The first term in Eq. (1) is the
Probability Flow ODE, which pushes samples from large to
small noise levels. The second term is a Langevin Diffusion
SDE, an equilibrium sampler for different noise levels σ(t),
which can help correct errors during synthesis (Karras et al.,
2022). This component can be scaled by the time-dependent
parameter β(t). Setting β(t) = 0 leads to pure ODE-based
synthesis. Generally, different sampling methods can be
used to solve the generative ODE/SDE.

Training a DM corresponds to learning a model to approxi-
mate the intractable score function ∇x log p(x;σ(t)).
Following the EDM framework, we parametrize
∇x log p(x;σ(t)) = (Dθ(x, σ(t)) − x)/σ2(t), where
Dθ(x, σ(t)) is a learnable denoiser neural network that
is trained to predict clean data from noisy inputs and is
conditioned on the noise level σ(t). It can be trained using
denoising score matching (Hyvärinen, 2005; Lyu, 2009;
Vincent, 2011; Song & Ermon, 2019), minimizing

Ey∼pdata(y)Et,n
[
λ(t)||Dθ(y + n, σ(t))− y||2

]
(2)

where t ∼ p(t) for a distribution p(t) over diffusion times
t, n ∼ N (n;0, σ2(t)I), and λ(t) is a function that gives
different weight to the objective for different noise levels.

In this work, we use σ(t) = t and follow the EDM
work’s configuration (Karras et al., 2022), unless otherwise
noted. Moreover, we also leverage classifier-free guidance
in DisCo-Diff when conditioning on the discrete latent vari-
ables. Classifier-free guidance combines the score functions
of an unconditional and a conditional diffusion model to
amplify the conditioning; see Ho & Salimans (2021).

3. DisCo-Diff
In Sec. 3.1, we first formally define DisCo-Diff’s genera-
tive model and training framework, before discussing and
carefully motivating our approach in detail in Sec. 3.2. In
Sec. 3.3, we highlight critical architecture considerations.

3.1. Generative Model and Training Objective

In our DisCo-Diff framework (Fig. 1), we augment a DM’s
learning process with an m-dimensional discrete latent
z ∈ Nm, where each dimension is a random variable from
a categorical distribution of codebook size k. There are
three learnable components: the denoiser neural network

(a) 128× 128 (b) Shared discrete latents
Figure 2. Samples generated from DisCo-Diff trained on the Ima-
geNet dataset: (a) randomly sampled discrete latents and class la-
bels; (b) samples in each grid sharing the same discrete latent. The
class label for the top/bottom row is fixed to coffeepot/malamute.

Dθ : Rd × R× Nm → Rd, corresponding to DisCo-Diff’s
DM, which predicts denoised images conditioned on diffu-
sion time t and discrete latent z; an encoder Eϕ : Rd → Nm,
used to infer discrete latents given clean images y. It
outputs a categorical distribution over the k categories for
each discrete latent; and a post-hoc auto-regressive model
Aψ, which approximates the distribution of the learned
discrete latents z by

∏m
i=1 pψ(zi|z<i). DisCo-Diff’s train-

ing process is divided into two stages. In the first stage, the
denoiser Dθ and the encoder Eϕ are co-optimized in an end-
to-end fashion. This is achieved by extending the denoising
score matching objective (as expressed in Eq. 2) to include
learnable discrete latents z associated with each data y:

EyEz∼Eϕ(y)Et,n
[
λ(t)||Dθ(y + n, σ(t), z)− y||2

]
, (3)

where y ∼ pdata(y). In contrast to the standard objective in
Eq. 2, which focuses on learning the reparameterization of
the score ∇x log p(x;σ(t)), the denoiser in our approach
is essentially learning the reparameterization of the condi-
tional score ∇x log p(x|z;σ(t)), with the convolution of
the probability density functions p(·|z;σ(t)) = p(·|z) ∗
N (0, σ2(t)I). This conditional score originates from con-
ditioning the DM on the discrete latents z, which are inferred
by the encoder Eϕ. The denoiser network Dθ can better cap-
ture the time-dependent score (i.e., achieving a reduced loss)
if the score for each sub-distribution p(x|z;σ(t)) is simpli-
fied. Therefore, the encoder Eϕ, which has access to clean
input data, is encouraged to encode useful information into
the discrete latents and help the denoiser to more accurately
reconstruct the data. Naively backpropagating gradients
into the encoder through the sampling of the discrete latent
variables z is not possible. Hence, during training we rely
on a continuous relaxation based on the Gumbel-Softmax
distribution (Jang et al., 2016) (see App. D for details).

When training the denoiser network, we randomly replace
the discrete latent variables with a non-informative null-
embedding with probability 0.1. Thereby, the DM learns
both a discrete latent variable-conditioned and a regular,
unconditional score. During sampling, we can combine
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Figure 3. Modeling 2D mixture of Gaussians. Left: Data distri-
bution. Middle: Generated data by regular DM. Right: Generated
data by DisCo-Diff. We use different colors to distinguish data
generated by different discrete latents. We further provide zoom-
ins and visualize some ODE trajectories by dotted lines.

these scores for classifier-free guidance (Ho & Salimans,
2021) with respect to the model’s own discrete latents, and
amplify their conditioning effect (details in App. B).

We can interpret DisCo-Diff as a variational autoencoder
(VAE) (Kingma & Welling, 2014; Rezende et al., 2014;
van den Oord et al., 2017; Rolfe, 2017) with discrete latents
and a DM as decoder. VAEs often employ regularization
on their latents. We did not find this to be necessary, as we
use only very low-dimensional latent variables, e.g., 10 in
our ImageNet experiments, with relatively small codebooks.
Moreover, we employ a strictly non-zero temperature in the
Gumbel-Softmax relaxation, encouraging stochasticity.

In the second stage, we train the autoregressive model Aψ

to capture the distribution of the discrete latent variables
pϕ(z) defined by pushing the clean data through the trained
encoder. We use a maximum likelihood objective as follows:

Ey∼pdata(y),z∼Eϕ(y)

[
m∑
i=1

log pψ(zi|z<i)

]
(4)

Since we set m to a relatively small number, it becomes
very easy for the model to handle such short discrete vec-
tors, which makes this second-stage training efficient. Also
the additional sampling overhead due to this autoregres-
sive component on top of the DM becomes negligible. At
inference time, when using DisCo-Diff to generate novel
samples, we first sample a discrete latent variable from the
autoregressive model, and then sample the DM with an ODE
or SDE solver. We provide the algorithm pseudocode for
training and sampling in Appendix C.

3.2. Motivation and Related Work
We will now critically discuss and motivate our design
choices and also discuss the most relevant related works.
For an extended discussion of related work see App. A.

The curvature of diffusion models. DMs, in their simpler
ODE-based formulation (β(t) = 0 in Eq. (1)), learn a com-
plex noise-to-data mapping. The noise is drawn from an
analytically tractable, unimodal Gaussian distribution. As
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Figure 4. Modeling 2D mixture of Gaussians: analysis. The
mean curvature (left) and norm of the neural networks’ Jacobians
(right) along the reverse-time ODE trajectories as function of t.

the data is encoded in this distribution, we can consider this
high-dimensional Gaussian distribution the DM’s contin-
uous latent variables (DMs can generally be seen as deep
latent variable models (Huang et al., 2021; Kingma et al.,
2021)). However, the mapping from unstructured noise to a
diverse, typically multimodal data distribution necessarily
needs to be highly complex. This corresponds to a highly
non-linear generative ODE with strong curvature, which is
challenging to learn and also makes synthesis slow by requir-
ing a fine discretization. To illustrate this point, we trained
a DM on a simple 2D mixture of Gaussians, where we ob-
serve bent ODE trajectories near the data (Fig. 3, middle).
This effect is significantly stronger in high dimensions.

A simpler mapping with discrete latent variables. The
role of the discrete latents in DisCo-Diff is to reduce this
complexity and make the DM’s learning task easier. The
single noise-to-data mapping is effectively partitioned into a
set of simpler mappings, each with less curvature in its gen-
erative ODE. We argue that it is unnatural to map an entire
multimodal complex data distribution to a single continu-
ous Gaussian distribution. Instead, we believe that an ideal
generative model should combine both discrete and contin-
uous latent variables, where discrete latents capture global
multimodal structure and the continuous latents model local
continuous variability. With this in mind, we suggest to
only use a moderate number of discrete latents with small
codebooks. On the one hand, a few latents can already sig-
nificantly simplify the DM’s learning task. On the other
hand, if we only have few latents with small codebooks,
training a generative model—an autoregressive one in our
case—over the discrete latent variable distribution itself,
will be simple (which we observe, see Sec. 4).

Validation in 2D. To validate our reasoning, let us revisit
the toy 2D mixture of Gaussians. In Fig. 3, right, we show
the DisCo-Diff model’s synthesized data. The discrete
latents learn to capture the different modes, and DisCo-
Diff’s DM component models the individual modes. The
DM’s ODE trajectories for different latents are now almost
perfectly straight, indicating a simple conditional score
function. In Fig. 4, left, we quantitatively show strongly
reduced curvature along the entire diffusion time t. In Fig. 4,
right, as a measure of network complexity we also show the
norms of the Jacobians of the employed denoiser networks.
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Figure 5. Group hierarchical DisCo-Diff. Different discrete la-
tents are fed to the denoiser U-Net at different feature resolutions.

We see significantly reduced norms for DisCo-Diff for all
t, suggesting that the denoiser’s task is indeed strongly
simplified and less network capacity is required.

Using few, global latents with relatively small codebooks
is important. DisCo-Diff is fundamentally different from
most contemporary generative modeling frameworks using
discrete latent variables (van den Oord et al., 2017; Esser
et al., 2021; Ramesh et al., 2021; Chang et al., 2022; Yu
et al., 2022; Pernias et al., 2023; Chang et al., 2023). These
works use autoencoders to encode images in its entirety into
spatially-arranged, downsampled representations of the in-
puts, focusing more on preserving image fidelity than on cap-
turing diverse training data modes. However, this is also un-
natural: Encoding continuous variability, like smooth pose,
shape, or color variations in images, into discrete latents
requires the use of very large codebooks and, on top of that,
these models generally rely on very high-dimensional spa-
tial grids of discrete latents (e.g. 32x32=1024 latents with
codebooks>1, 000 (Esser et al., 2021), while we use just 10
latents with a codebook size of 100 in our main image mod-
els). This makes learning the distribution over the discrete
latents very challenging for these types of models, while
it is simple in DisCo-Diff, where they just supplement the
DM. In DisCo-Diff, we get the best from both continuous
and discrete latent variables, using only few global latents.

End-to-end training is essential. DisCo-Diff’s discrete
latents are in spirit similar to leveraging non-learnt condi-
tioning information. As pointed out by Bao et al. (2022),
this has been crucial to facilitate training high-performance
generative models like strong class-conditional (Dhariwal
& Nichol, 2021; Kingma & Gao, 2023) or text-to-image
DMs (Ramesh et al., 2022; Ho et al., 2022; Rombach et al.,
2022). However, DisCo-Diff aims to fundamentally address
the problem, rather than relying on given conditioning data.
Moreover, the data usually has significant variability even
given, for instance, a class label. Our discrete latents can
further reduce the complexity (as observed, see Sec. 4).

However, could we use pre-trained encoder networks, such
as CLIP (Radford et al., 2021) or others (He et al., 2020;

Caron et al., 2021), to produce encodings to condition on
and whose distribution could be modeled in a second stage?
This is explored by previous works (Harvey & Wood, 2023;
Bao et al., 2022; Hu et al., 2023; Li et al., 2023), but has
important disadvantages: (i) The most crucial downside is
that such encoders are not universally available, but typically
only for images. However, we seek to develop a universally
applicable framework. For instance, we also apply DisCo-
Diff to molecular docking (see Sec. 4.2), where no suitable
pre-trained networks are available. (ii) In DisCo-Diff, the
job of the discrete latents is to make the denoising task of
the DM easier, which is especially ambiguous at large noise
levels (in fact, we find that the latents help in particular to
reduce the loss at these high noise levels, see Fig. 7). It
is not obvious what information about the data the latents
should best encode for this. By learning them jointly with
the DM objective itself, they are directly trained to help the
DM learn better denoisers and lower curvature generative
ODEs. (iii) A generative model needs to be trained over the
encodings in the second stage. In DisCo-Diff, we can freely
choose an appropriate number of latents and codebook size
to simplify the DM’s denoising task, while also facilitating
easy learning of the autoregressive model in the second
stage. When using pre-trained encoders, one must work with
the encodings by these methods, which were not developed
for generative modeling. We attribute DisCo-Diff’s strong
generation performance to its end-to-end learning.

The latent variables must be discrete. Could we also use
auxiliary continuous latent variables? Generative models
on continuous latents are almost always based on mappings
from a uni-modal Gaussian distribution to the distribution
of latents. Hence, if such continuous latents learnt mul-
timodal structure in the data to simplify the main DM’s
denoising task, as DisCo-Diff’s discrete latents do, then
learning a distribution over them in the second stage would
again require a highly non-linear difficult-to-learn mapping
from Gaussian noise to the multimodal encodings. This
is the problem DisCo-Diff aims to solve in the first place.
Preechakul et al. (2022) augment DMs with non-spatial
continuous latent variables, but they only focus on seman-
tic face image manipulation. InfoDiffusion (Wang et al.,
2023) conditions DMs on discrete latent variables. How-
ever, it focuses on learning disentangled representations,
also primarily for low-resolution face synthesis, and uses
a mutual information-based objective. Contrary to DisCo-
Diff, neither of these works tackles high-quality synthesis
for challenging, diverse datasets.

In our ablation studies (Sec. 4.1), we further validate our
design choices and motivations that we presented here.

3.3. Architecture
As discussed, DisCo-Diff enhances the training of continu-
ous DMs by incorporating learnable discrete latent variables
that are meant to capture the global underlying discrete
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Table 1. FID score together with NFE on ImageNet-64.
FID NFE

without class-conditioning

IC-GAN (Casanova et al., 2021) 9.20 1
BigGAN (Brock et al., 2018) 16.90 1
iDDPM (Nichol & Dhariwal, 2021) 16.38 50
EDM (Karras et al., 2022) 6.20 50
SCDM (Bao et al., 2022) 3.94 50
DisCo-Diff (ours) 3.70 50

class-conditioned, ODE sampler

EDM (Karras et al., 2022) 2.36 79
PFGM++ (Xu et al., 2023b) 2.32 79
DisCo-PFGM++ (ours) 1.92 78
DisCo-Diff (ours) 1.65 78

class-conditioned, stochastic sampler

iDDPM (Nichol & Dhariwal, 2021) 2.92 250
ADM (Dhariwal & Nichol, 2021) 2.07 250
CDM (Ho et al., 2021) 1.48 8000
VDM++ (Kingma & Gao, 2023) 1.43 511
EDM (w/ Restart (Xu et al., 2023a)) 1.36 623
RIN (Jabri et al., 2022) 1.23 1000
DisCo-Diff (ours; w/ Restart (Xu et al., 2023a)) 1.22 623

class-conditioned, w/ adversarial objective

IC-GAN (Casanova et al., 2021) 6.70 1
BigGAN-deep (Brock et al., 2018) 4.06 1
CTM (Kim et al., 2023a) 1.92 1
StyleGAN-XL (Sauer et al., 2022) 1.51 1

structure of the data. To ensure that DisCo-Diff works as in-
tended, suitable network architectures are necessary. Below,
we summarize our design choices, focusing on DisCo-Diff
for image synthesis. However, the framework is general, re-
quiring only an encoder to infer discrete latents from clean
input data and a conditioning mechanism that integrates
these discrete latents into the denoiser network. In fact, we
also apply our model to 2D toy data and molecular docking.

Encoder. For image modeling, we utilize a ViT (Doso-
vitskiy et al., 2021) as the backbone for the encoder. We
extend the classification mechanism in ViTs, and treat each
discrete token as a different classification token. Concretely,
we add m extra classification tokens to the sequence of im-
age patches. This architectural design naturally allows each
discrete latent to effectively capture the global characteristic
of the images, akin to performing data classification.

Discrete latent variable conditioning. For image experi-
ments, DisCo-Diff’s denoisers are U-Nets as widely used
for DMs (Karras et al., 2022; Hoogeboom et al., 2023). For
the discrete latent variable conditioning, we utilize cross-
attention (Rombach et al., 2022). Drawing inspiration from
text-to-image generation, DisCo-Diff’s discrete latents func-
tion analogously to text, exerting a global influence on the
denoiser’s output. Specifically, image features act as queries
and discrete latents are keys and values in the cross-attention
layer, enabling discrete latents to globally shape the image
features. We add a cross-attention layer after each self-
attention layer within the U-Net. In our main models, all
discrete latents are given to all cross-attention layers.

Table 2. FID score and NFE on class-cond. ImageNet-128.
FID NFE

ADM (Dhariwal & Nichol, 2021) 5.91 250
ADM-G (Dhariwal & Nichol, 2021) 2.97 250
CDM (32, 64, 128) (Ho et al., 2021) 3.52 8100
RIN (Jabri et al., 2022) 2.75 1000

VDM++, w/ ODE sampler (Kingma & Gao, 2023) 2.29 115
DisCo-Diff, w/ ODE sampler (ours) 1.98 114
VDM++, w/ DDPM sampler (Kingma & Gao, 2023) 1.88 512
DisCo-Diff, w/ ODE sampler, VDM++ correction 1.73 414

Group hierarchical models. To enhance the interpretability
of discrete latents, we also explore the inductive bias inher-
ent in the U-Net architecture and feed distinct latent groups
into various resolution features in the up-sampling branch
of the U-Net, as shown in Fig. 5. This approach draws
inspiration from StyleGAN (Karras et al., 2019), where dis-
tinct latents are introduced at different resolutions, enabling
each to capture different image characteristics by the neural
network’s inductive bias. This design fosters a group hier-
archy, where the groups associated with higher-resolution
features offer supplementary information, conditioned upon
the groups related to lower-resolution features. We refer to
this refined model as the group hierarchical DisCo-Diff.

In the molecular docking task, existing denoisers oper-
ate through message passing in a permutation equivariant
way over 3D point clouds representing molecular struc-
tures (Corso et al., 2023). We build this property and archi-
tectural bias directly into the latent variables, allowing them
to take values indicating one node in the point cloud (there-
fore, for every point cloud, the codebook size equals the
number of nodes). This latent design choice aligns with the
intuition of the encoder determining the atoms playing key
roles in the structure and allows for minimal modification
of the score model where the latents simply represent addi-
tional features for every node. The encoder is also composed
of a similar equivariant message passing, e3nn (Geiger &
Smidt, 2022), network where for each node one logit per
latent will be predicted. More details on the architecture for
the molecular docking task can be found in App. E.4.

The auto-regressive model over the distribution of the dis-
crete latents is implemented in image experiments using a
standard Transformer decoder (Vaswani et al., 2017). For
molecular docking, it again uses an e3nn network that is
fed the conditioning information of the protein structure
and molecular graph. Generally, DisCo-Diff is compatible
with other conditional inputs, e.g. class labels, which can
be added as inputs to denoiser and auto-regressive model.
We use an auto-regressive model for simplicity and expect
DisCo-Diff’s second stage to work equally well with other
discrete data generative models, e.g. discrete state diffusion
models (Austin et al., 2021; Campbell et al., 2022). Archi-
tecture details, also for 2D toy data experiments, in App. F.

An important question surrounding the architecture design
is how to choose an appropriate number of latents and
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Table 3. Ablations on class-cond. ImageNet-64.
FID

EDM (Karras et al., 2022) 2.36

Oracle setting

Continuous latent (KLD weight=0.1) 1.67
Continuous latent (KLD weight=1) 2.36
DisCo-Diff (cfg=0) 1.65

Generative prior on latent

Continuous latent (KLD weight=0.1) 11.12
Continuous latent (KLD weight=1, cfg=0) 2.36
Continuous latent (KLD weight=1, cfg=1) 2.36
DisCo-Diff (cfg=0) 1.81
DisCo-Diff (cfg=1) 1.65
DisCo-Diff (cfg=2) 2.33

codebook size. While intuitively, increasing the number of
latents and the codebook size might seem like a straight-
forward method to reduce the reconstruction error further
by capturing more intricate data structures, this approach
also introduces additional complexity. Specifically, a larger
set of latents or an expanded codebook size complicates
the auto-regressive model’s task, potentially leading to in-
creased errors. Thus, finding a balance between enhancing
model performance through more detailed discrete struc-
tures and maintaining manageable modeling complexity for
the auto-regressive model is crucial. We recommend using
a modest number of latent (e.g. 10 30) and codebook size
(e.g. 50 100) for current diffusion models and leaving the ex-
ploration of optimal hyper-parameters to future works. For
example, in our image generation experiments, we found
that a configuration of 10 latents with a codebook size of
100 significantly enhances performance on the complex Im-
ageNet dataset. We did not tune this hyper-parameter due
to computational constraints. We believe that more care-
ful hyper-parameter optimization over the exact number
of latents and the codebook size would further boost the
performance of DisCo-Diff.

4. Experiments
4.1. Image Synthesis

We use the ImageNet (Deng et al., 2009) dataset and tackle
both class-conditional (at varying resolutions 64×64 and
128×128) and unconditional synthesis. To measure sample
quality, we follow the literature and use Fréchet Inception
Distance (FID) (Heusel et al., 2017) (lower is better). We
also report the number of neural function evaluations (NFE).

In the class-conditional setting, the DisCo-Diff’s denoiser
is initialized using pre-trained ImageNet models, except for
the new components: the cross-attention layers between
discrete latents and images, and the encoder. We fine-tune
the pre-trained U-Net in EDM (Karras et al., 2022) with
discrete latents for ImageNet-64. For ImageNet-128, we
implement the U-ViT in VDM++ (Kingma & Gao, 2023),

and fine-tune our trained VDM++ model using discrete
latents. We also adhere to their respective noise schedules
and loss weightings during the training process. We use
Heun’s second-order method as ODE sampler, and a 12-
layer Transformer as the auto-regressive model. We set
the latent dimension to m = 10 and the codebook size to
k = 100 in DisCo-Diff.

Results. See Tables 1 and 2. (1) DisCo-Diff achieves
the new state-of-the-art on class-conditioned ImageNet-
64/ImageNet-128 when using ODE sampler. Specifically,
DisCo-Diff reduces the previous state-of-the-art FID score
from 2.36 to 1.65 on ImageNet-64, and from 2.29 to 1.98
on ImageNet-128. This aligns with our analysis (Sec. 3.2)
that DisCo-Diff yields straighter ODE trajectories.

(2) DisCo-Diff outperforms all baselines in the uncondi-
tional setting, or when using stochastic sampler. DisCo-
Diff also surpasses the previous best method (SCDM (Bao
et al., 2022)) in the unconditional setting, even though their
method relies on pre-trained MoCo features. In addition,
DisCo-Diff sets the new record ImageNet-64 FID of 1.22
when using Restart sampler (Xu et al., 2023a). Note that the
competitive method RIN (Jabri et al., 2022) employs a novel
architecture distinct from conventional U-Nets/U-ViTs.

On ImageNet-128, we observe that DisCo-Diff does not per-
form well with stochastic samplers. When using the DDPM
sampler as in VDM++ (Kingma & Gao, 2023), DisCo-
Diff achieves an FID score of 2.80, which is worse than
VDM++’s FID score of 1.88. As the discrete latents reduce
the loss at larger times (c.f. Figure 7) and the training targets
at these times typically correspond to low-frequency com-
ponents of images, we hypothesize that in this model the
discrete latents learnt to overly emphasize global informa-
tion, diverting the model to overlook some high-frequency
details necessary at smaller times. We provide empirical
evidence in Appendix G.3 to show that VDM++ w/ DDPM
better captures details at smaller times, which supports this
hypothesis. Note that, in theory, VDM++ and DisCo-Diff
should perform similarly at smaller times. A potential so-
lution could concatenate the discrete latents with a null
token, similar to text-to-image models (Balaji et al., 2022),
allowing the model to learn more easily to exclude the in-
fluence of discrete latents at smaller times. We leave it for
future exploration. We would like to emphasize that we only
observed this behavior for this one model and dataset. In
all other experiments, discrete latents universally improved
performance for all stochastic and non-stochastic samplers,
and when used for all times t. To better utilize the DDPM
sampler for the current model, we substituted the DisCo-
Diff ODE with the VDM++ DDPM trajectories at smaller
times (t < 10), (DisCo-Diff, w/ ODE sampler, VDM++
correction in Table 2), which improves the FID to 1.73. In
conclusion, while the discrete latents did not help at small
times here, they still boosted performance at larger times
and allowed us to outperform the pure VDM++ model and,
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Figure 6. Top: Images created from two 30-dim discrete latents z
and ẑ, with the far-right column combining their sub-coordinates.
Bottom: Variations in images by fixing portions of z (originating
from the red-boxed image). We see that lower-resolution latents
affect layout / shape; high-resolution latents alter color / texture.

once again, achieve state-of-the-art performance.

(3) Discrete latents capture variability complementary
to class semantics. Fig. 2 (b) illustrates that samples shar-
ing the same discrete latent exhibit similar characteristics,
and there are noticeable distinctions for different discrete
latents under the same class. It suggests that the discrete
latents capture variations that are useful in simplifying the
diffusion process defined in Euclidean space beyond class
labels, underpinning the improvements of DisCo-Diff over
the pre-trained class-conditioned DMs. (4) Discrete latents
boost the performance on PFGM++. When applied to
another ODE-based generative model PFGM++ (Xu et al.,
2023b), DisCo-PFGM++ also improves over the baseline
version (see Table 1). More samples in App. G.

Ablations and Analyses. Table 3 shows that employing
moderate classifier-free guidance with respect to the dis-
crete latents (scale cfg=1) enhances the FID score (studied
using ODE sampler), implying that the discrete latents ef-
fectively learn modes similar to the role of class labels and
text. We further substituted the discrete latents with 1000-
dim. continuous latents (1000 to offer capacity at least as
high as with the m=10 and k=100 discrete latents), using
Kullback-Leibler divergence-based (KLD) regularization
as in VAEs to control the information retained. For fair
comparison, we trained a DiT-based DM (Peebles & Xie,
2023) on the continuous latents using the same Transformer
architecture as in DisCo-Diff’s auto-regressive model. Ta-
ble 3 shows that with a low KLD weight (0.1), the contin-
uous latents are under-regularized, challenging the DiT in
modeling the complex encoding distribution and leading
to a significant gap between oracle FID (latents predicted
from training images) and generative FID (latents sampled
from second-stage latent generative models). Conversely,
a higher KLD weight (1) causes encoder collapse, and the
continuous latents are not used (no latent (EDM), oracle

latents and generative latents all produce same FIDs). In
contrast, DisCo-Diff’s generative FID shows only a minor
degradation compared to the oracle FID, indicating the ease
of modeling the discrete prior with a simple Transformer.

The DM training objective (Eq. (2)) has most variability
at large diffusion times due to the multimodal posterior of
clean data given noisy inputs (Xu et al., 2023c). Condition-
ing information can reduce this ambiguity. For instance,
Balaji et al. (2022) show that text conditioning primarily in-
fluences the denoiser at larger times. Fig. 7 (a) shows that the
learned discrete latents behave similarly to text condition-
ing, significantly lowering the training loss at higher time
steps. Complementarily, Fig. 7 (b) indicates that switching
discrete latents towards the end of sampling barely affects
the samples, implying they are not used at smaller times t.

In DisCo-Diff, the sampling time of the auto-regressive
model is negligible compared to the DM’s. For instance, for
generating 32 images on ImageNet-128, the auto-regressive
models requires only 0.44 seconds, while DisCo-Diff’s DM
component takes 78 seconds for 114 NFE, with an average
of 0.68 second/NFE, all on a single NVIDIA A100 GPU.

Group Hierarchical DisCo-Diff. We evaluate the group
hierarchical DisCo-Diff (Sec. 3.3), feeding three separate
10-dim. discrete latents into the U-Net at each level of reso-
lution. Fig. 6 shows that latents for lower-resolution features
mainly govern overall shape and layout, while latents for
higher-resolution control color and texture. For example,
in the bottom figure, when gradually fixing groups in order,
the images first converge in shape and then in color.

4.2. Molecular Docking
We test DisCo-Diff also on molecular docking, a fundamen-
tal task in drug discovery that consists of generating the
3D structure with which a small molecule will bind to a
protein. We build on top of DiffDock (Corso et al., 2023),
a DM that recently achieved state-of-the-art performance,
integrating discrete latent variables (see Sec. 3 and App. E.4
for details). For computational reasons, we use the reduced
DiffDock’s architecture (referred to as DiffDock-S) from
Corso et al. (2024), which, although less accurate, is much
faster for training and inference. For training and evaluation,
we follow the standard from Stärk et al. (2022) using the
PDBBind dataset (Liu et al., 2017) (see App. E.5).

Results. Table 4 reports performance of our (DisCo-
DiffDock-S) and relevant baseline methods. We see that also
in this domain discrete latents provide improvements, with
the success rate on the full dataset increasing from 32.9%
to 35.4% and from 13.9% to 18.5% when considering only
test complexes with unseen proteins. This improvement is
particularly strong on the harder component of the test set,
where the baseline model is, likely, highly uncertain. This
supports the intuition that DisCo-Diff boosts performance
by more appropriately modeling discrete and continuous
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Figure 7. Left: Loss versus time. Right: Impact of discrete latent switching during the iterative sampling process of DisCo-Diff’s diffusion
model component. The numbers represent the percentage of the total sampling steps. The blue/green arrows mean the sampling steps that
utilize the discrete latent associated with the leftmost/rightmost grid in the figure. For the middle two images, the process involves initially
employing the discrete latent from the leftmost grid for a certain proportion of the total sampling steps (e.g., 75%), before transitioning to
the discrete latent from the rightmost grid to complete the remaining steps (e.g., the last 25% of the total sampling steps).

variations in the data. In Fig. 8, we visualize two examples
from the test set which highlight how the model learns to
associate distinct sets of poses with different latents, decom-
posing the multimodal components of the pose distribution
from the continuous variations that each pose can have.

Table 4. Molecular docking performance on PDBBind. For each
method, we report the percentage of top-1 predictions within 2Å
of the ground truth for the full test set and the subset restricted to
unseen proteins. Runtime in seconds (* refers to run on CPU).

Full Unseen Runtime

GNINA (McNutt et al., 2021) 22.9 14.0 127
SMINA (Koes et al., 2013) 18.7 14.0 126*
GLIDE (Halgren et al., 2004) 21.8 19.6 1405*
EquiBind (Stärk et al., 2022) 5.5 0.7 0.04
TankBind (Lu et al., 2022) 20.4 6.3 0.7

DiffDock-S (Corso et al., 2024) 32.9 13.9 8.1
DisCo-DiffDock-S (ours) 35.4 18.5 9.1

DiffDock (Corso et al., 2023) 38.2 20.8 40

5. Conclusions
We have proposed Discrete-Continuous Latent Variable
Diffusion Models (DisCo-Diff), a novel and universal frame-

True	pose

𝑧 �̂�

~	0.9	Å	RMSD ~	6.9	Å	RMSD

True	pose ~	1.2	Å	RMSD ~	6.0	Å	RMSD

𝑧 �̂�

Figure 8. Examples of alternative docking poses modeled when
conditioning on different discrete latents, the “correct” z (i.e. same
as the encoder) and an incorrect ẑ. The DM maps them to two
distinct sets of plausible orientations with which the ligand could
fit in the pocket. Notably, the correct latent corresponds to poses
within 2Å of the ground truth. The colored beads are set on the
atoms corresponding to the first latent variable.

work for combining discrete latent variables with continuous
DMs. The approach significantly boosts performance by
simplifying the DM’s denoising task through the help of aux-
iliary discrete latent variables, while introducing negligible
overhead. Extensive experiments and analyses demonstrate
the unique benefits of global discrete latent variables that
are learnt end-to-end with the denoiser. DisCo-Diff does
not rely on any pre-trained encoder networks. As such, we
validated our method not only on image synthesis, but also
for molecular docking, demonstrating its universality.

Limitations and Future Work. There are several potential
future directions and limitations in both the experiments and
design of DisCo-Diff. First, our experiments have been pri-
marily focused on standard benchmarks such as ImageNet.
With more compute resources, DisCo-Diff could be further
validated on tasks such as text-to-image generation, where
we would expect discrete latent variables to offer comple-
mentary benefits to the text conditioning, similar to how
discrete latents boost performance in our class-conditional
experiments. Moreover, DisCo-Diff could be applied to
modalities like speech or 3D data. Secondly, the Group
Hierarchical model relies on inductive biases in its architec-
ture, such as the different image characteristics captured at
different resolutions in the U-Net. It would be interesting
to explore how such architectures could be constructed and
similar hierarchical effects could be achieved when working
with different data modalities (molecules, etc.). Thirdly,
one could apply the idea of DisCo-Diff to other continuous
flow models, such as flow-matching (Lipman et al., 2022)
or rectified flow (Liu et al., 2022), to further boost their per-
formance. Conceptually, due to the close relation between
diffusion models and flow matching, we expect discrete
latents to behave similarly there and improve performance.
Finally, the current DisCo-Diff framework leverages a two-
stage training process. Initially, we jointly train the denoiser
and the encoder, followed by the post-hoc auto-regressive
model in the second stage. Future work could investigate
combining the two-stage training into a seamless end-to-end
fashion.
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Impact Statement
Deep generative modeling is a burgeoning research field
with widespread implications for science and society.
Our model DisCo-Diff advances the modeling power of
diffusion models for data generation. While enhancing
data generation capabilities, notably in high-quality image
and video creation, these models also present challenges,
such as the potential misuse in deepfake technology
leading to social engineering concerns. Addressing
these issues necessitates further research into watermark
algorithms for diffusion models and collaboration with
socio-technical disciplines to balance innovation with
ethical considerations. We would also like to highlight the
promise of deep generative models like DisCo-Diff in the
natural sciences, as exemplified by our molecular docking
experiments. Such models have the potential to provide
novel insights into, for instance, the interactions between
proteins and ligands and advance drug discovery.
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A. Related Work
Our work builds on DMs (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Karras et al., 2022), which have
been widely used not only for image generation (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Rombach et al., 2022;
Dockhorn et al., 2022b;a; Saharia et al., 2022; Ramesh et al., 2022; Podell et al., 2023), but also for video (Blattmann et al.,
2023; Singer et al., 2023a; Ho et al., 2022; Ge et al., 2023), 3D (Nichol et al., 2022; Zeng et al., 2022; Kim et al., 2023b;
Poole et al., 2023; Schwarz et al., 2023; Liu et al., 2023) and 4D (Singer et al., 2023b; Ling et al., 2023; Bahmani et al.,
2023; Zheng et al., 2023) synthesis, as well as in various other domains, including, for instance, molecular docking and
protein design (Corso et al., 2023; Yim et al., 2023; Ingraham et al., 2023; Watson et al., 2023).

In the DM literature, latent variables have been most popular as part of latent diffusion models, where a DM is trained
in a compressed, usually continuous, latent space (Rombach et al., 2022; Vahdat et al., 2021). In contrast, DisCo-Diff
leverages discrete latent variables and uses them to augment a DM. The first models using discrete latent variables for
high-dimensional generative modeling tasks include Boltzmann machines (Salakhutdinov & Hinton, 2009; Hinton, 2012)
and early discrete variational autoencoders (Rolfe, 2017; Vahdat et al., 2018a;b). More recently, a variety of works encode
images into large 2D spatial grids of discrete tokens with vector quantization or similar techniques (van den Oord et al.,
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2017; Esser et al., 2021; Ramesh et al., 2021; Chang et al., 2022; Yu et al., 2022; Pernias et al., 2023; Chang et al., 2023). As
discussed, these models typically require a very large number of tokens and rely on large codebooks, which makes modeling
their distribution challenging. DisCo-Diff, in contrast, leverages only few discrete latents with small codebooks that act in
harmony with the additional continuous DM.

There are previous related works that also condition DMs on auxiliary encodings. Preechakul et al. (2022) augment DMs
with non-spatial latent variables, but their latents are continuous and high-dimensional, which makes training their latent
DM more challenging. This is precisely what we avoid by instead using low-dimensional and discrete latents. Moreover,
they focus on semantic face image manipulation, not high-quality synthesis for challenging, diverse datasets.

Harvey & Wood (2023) use the representations of a pre-trained CLIP image encoder (Radford et al., 2021) for conditioning
a DM and learn another DM over the CLIP embeddings for sampling. Similarly, Bao et al. (2022) and Hu et al. (2023)
use clustered MoCo-based (He et al., 2020) and clustered DINO-based (Caron et al., 2021) features, respectively, for
conditioning. Hence, these three approaches are strictly limited to image synthesis, where such encoders, pre-trained on
large-scale datasets, are available. In contrast, we purposefully avoid the use of pre-trained networks and learn the discrete
latents jointly with the DM, making our framework universally applicable. Another related work is InfoDiffusion (Wang
et al., 2023), which also conditions DMs on discrete latent variables. However, contrary to DisCo-Diff, this work focuses on
learning disentangled representations, similar to β-VAEs (Higgins et al., 2017), primarily for low-resolution face synthesis.
It uses a mutual information-based objective and does not focus on diverse and high-quality synthesis of complex data such
as ImageNet.

In contrast to the above works, we show how discrete latent variables boost generative performance itself and we
significantly outperform these works in complex and diverse high-quality synthesis. Furthermore, we motivate DisCo-Diff
fundamentally, with reduced ODE curvature and model complexity, providing a new and complementary perspective.

In the molecular docking literature, since DiffDock (Corso et al., 2023) introduced the use of diffusion models in the task, a
number of works have proposed different modifications to its framework. In particular, some (Masters et al., 2023; Plainer
et al., 2023; Guo et al., 2023) have proposed to separate the blind docking task between pocket identification (i.e. identifying
the region of the protein where the small molecule would bind) and pose prediction (i.e. predicting the specific pose with
which the ligand would bind to the protein), as previously done in many traditional approaches (Krivák & Hoksza, 2018).
One could see this as hand-crafting a (roughly discrete) latent variable in the pocket and using it to decompose the task. By
allowing the encoder to learn arbitrary discrete latents through its interaction with the denoiser, DisCo-Diff largely includes
the above-mentioned strategy as a particular case.

B. Discrete Latent Variable Classifier-Free Guidance
Classifier-free guidance (Ho & Salimans, 2021) (cfg) is a mode-seeking technique commonly used in diffusion literature,
such as class-conditioned genreation (Peebles & Xie, 2023) or text-to-image generation (Rombach et al., 2022). It generally
guides the sampling trajectories toward higher-density regions. We can similarly apply classifier-free guidance in the
DisCo-Diff, where we treat the discrete latent as conditional inputs. We follow the convention in (Saharia et al., 2022),
and the classifier-free guidance at time step t is as follows: D̃θ(x, σ(t), z) = wDθ(x, σ(t), z) + (1− w)Dθ(x, σ(t), ∅),
where Dθ(x, σ(t), z)/Dθ(x, σ(t), ∅) is the conditional/unconditional models, sharing parameters. We drop the discrete
latent with probability 0.1 during training, to train the unconditional model Dθ(x, σ(t), ∅). A mild w would usually lead to
improvement in sample diversity (Peebles & Xie, 2023). Table 3 demonstrates that using a moderate guidance scale w=1
(we use w = 1 and cfg=1 interchangeably in the paper) improves the FID score, suggesting that the learned discrete latent in
the DisCo-Diff framework has strong indications of mode of data distribution. We further explore varying the guidance
scale on ImageNet-128. As shown in Fig 9, increasing the classifier-free guidance scale w would strengthen the effect of
guidance.
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(a) cfg=0 (b) cfg=1 (c) cfg=4 (d) cfg=8

Figure 9. Generated samples in DisCo-Diff with a cfg scale ranging from 0 to 8, under the class label “malamute” on ImageNet-128.

C. Algorithm Pseudocode
We provide algorithm pseudocode for the training in the first stage for denoiser and encoder (Alg 1) and the second stage for
auto-regressive model (Alg 2) for clarity. We also include the pseudocode for sampling in Alg 3. Note that we generalize the
equations in the main text by considering the conditional generation with condition c.

Algorithm 1 Mini-batch training of denoiser and encoder in DisCo-Diff
1: Input: Denoiser Dθ, encoder Eϕ, training dataset D, batch size B, Gumbel-Softmax temperature τ , training iteration T
2: for i = 0, . . . , T − 1 do
3: Sample mini-batch data {(yi, ci)}Bi=1 from D
4: Sample time variables {ti}Bi=1 from p(t) and noise vectors {ni ∼ N (0, σ2

i I)}Bi=1

5: Get perturbed data {ŷi = yi + ni}Bi=1

6: Sample the discrete latent from the encoder {zi ∼ Eϕ(yi)}Bi=1 using Gumbel-Softmax relaxation with temperature τ
7: Calculate loss ℓ(θ, ϕ) =

∑B
i=1 λ(t)∥Dθ(ŷi, ti, zi, ci)− yi∥22

8: Update the network parameter θ and ϕ via Adam optimizer
9: end for

Algorithm 2 Mini-batch training of auto-regressive model in DisCo-Diff
1: Input: Auto-regressive model Aψ, encoder Eϕ, training dataset D, batch size B, Gumbel-Softmax temperature τ ,

training iteration T
2: for i = 0, . . . , T − 1 do
3: Sample mini-batch data {(yi, ci)}Bi=1 from D
4: Sample the discrete latent from the encoder {zi ∼ Eϕ(yi)}Bi=1 using Gumbel-Softmax relaxation with temperature τ
5: Calculate loss ℓ(ψ) =

∑B
i=1

∑m
j log pψ((zi)j |(zi)<j , ci)

6: Update the network parameter ψ via Adam optimizer
7: end for

D. ImageNet Experiments
D.1. Architecture

Feature maps Attention resolution Encoder patch size

ImageNet-64 1-2-3-4 (×192) (8,16,32) 8× 8

ImageNet-128 1-2-4-16 (×128) (16,32,64) 16× 16

Table 5. Specific network configurations on ImageNet

For all the ImageNet experiments, we fix the latent dimension m = 10 in DisCo-Diff, and the codebook size for each
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Algorithm 3 Sampling procedure of DisCo-Diff
1: Input: Auto-regressive model Aψ , denoiser Dϕ, time discretization {ti}ni=0, condition c
2: /* Sample discrete latent from auto-regressive model */
3: for i = 1, . . . ,m do
4: Sample zi ∼ pψ(zi|z<i, c)
5: end for
6: /* Diffusion ODE (Heun’s 2nd order method) */
7: Sample x0 ∼ N (0, t20I)
8: for i = 0, . . . , n− 1 do
9: di = (xi −Dθ(xi, ti, z, c))/ti

10: xi+1 = xi + (ti+1 − ti)di
11: if ti+1 ̸= 0 then
12: d′

i = (xi+1 −Dθ(xi+1, ti+1, z, c))/ti+1

13: xi+1 = xi + (ti+1 − ti)(
1
2di +

1
2d

′
i)

14: end if
15: end for

discrete latent to 1000. Below we provide architecture details for the denoiser network, encoder, and auto-regressive model.
Table 5 also lists some key network configurations. Please see the source code in the Supplementary Material for all
low-level details.

Denoiser Neural Network. (1) ImageNet-64: We use the same UNet architecture in EDM (Karras et al., 2022) for
ImageNet-64, with newly injected cross-attention layers after each self-attention layers in each residual block. We feed the
discrete vector into a six-layer Transformer encoder (with latent dimension 192) to obtain the corresponding embeddings for
discrete variables. These embeddings are then input into the cross-attention layers. (2) ImageNet-128: We employ the UViT
design in simple diffusion (Hoogeboom et al., 2023) and VDM++ (Kingma & Gao, 2023). UViT uses convolutional layers
for down-/up-sampling, and a 36-layer ViT to process the lowest-resolution feature maps in the bottleneck, to strike a better
balance between expressiveness and computation. Since the authors didn’t release the code and model, we reimplemented
the architecture by ourselves. We empirically observe that the convolutional blocks in EDM work better than the ones
described in the simple diffusion paper, so we combine the up-/down-sampling blocks in EDM with the 36-layer ViT at the
bottleneck layer. We further introduce a cross-attention layer for discrete latent in each up-/down-sampling block, and every
three Transformer blocks in the ViT (e.g., 12 new cross-attention layers in the ViT) to save computation.

Encoder. We utilize a 12-layer standard ViT (Dosovitskiy et al., 2021) as the backbone for encoder. Its latent dimension is
768 and the number of attention heads is 12. The patch size for ImageNet-64 is 8× 8 and for ImageNet-128 is 16× 16. We
treat each of the m discrete latents as a classification token, and concatenate their embeddings with the path embeddings.

Auto-regressive model. We use a standard Transformer decoder (Vaswani et al., 2017), with a depth of 12, a number
of heads of 8, and a latent dimension of 512. The inference time of the auto-regressive model is much smaller than the
iterative denoising process, given that the discrete latent only has 10 dimensions. To generate 32 images on ImageNet-128,
the auto-regressive model takes 0.44 seconds, while the diffusion model takes 78 seconds for 114 NFE, with an average of
0.68 s/NFE on a single NVIDIA A100 GPU.

D.2. Training and Sampling

We borrow the preconditioning techniques, training noisy schedule, optimizers, exponential moving average (EMA) schedule,
and hyper-parameters from previous state-of-the-art diffusion model EDM (Karras et al., 2022) on ImageNet-64. We employ
the shifted EDM-monotonic noisy schedule proposed in VDM++ (Kingma & Gao, 2023) on ImageNet-128, and keep other
training details the same in ImageNet-64. We use the Gumbel-Softmax (Jang et al., 2016) as the continuous relaxation for
the discrete latents. The temperature τ in Gumbel-Softmax controls the smoothness of the categorical distribution. When
τ → 0, the expected value of the Gumbel-Softmax is the same as the one of the underlying predicted distribution. As we
increase t, the Gumbel-Softmax would gradually converge to a uniform distribution. Hence, a relatively large τ effectively
provides regualization effects. During training, we set the τ to a constant 1. However, for the extraction of latents from
training images, which aids in constructing the dataset for the second stage of the auto-regressive model, we adjust τ to a
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lower value of 0.01.

We use Heun’s second-order ODE solver as the default ODE sampler, which is proven effective in previous works (Karras
et al., 2022; Xu et al., 2023b). We directly use the hyper-parameters for the 623 NFE setting in Restart sampler (Xu et al.,
2023a) on ImageNet-64, for DisCo-Diff.

D.3. Evaluation

For the evaluation, we follow the standard protocol and compute the Fréchet distance between 50000 generated samples and
the training images.

E. Molecular Docking
In this appendix, we will introduce the task of molecular docking and some of the existing approaches to tackle it for readers
who are not familiar with this field. Experienced readers may skip to Section E.3 where we start describing the details of our
docking approach.

E.1. Task Overview

Molecular docking consists of finding the 3D structure that a protein (also referred to as receptor) and a small molecule (or
ligand) take when binding. This is an important task in drug design because most drugs are small molecules that operate
by binding to a specific protein of interest in our body and inhibiting or enhancing its function. The common particular
instantiation of the docking problem that we consider is also referred to as rigid blind docking i.e. where we are given
as input the correct protein structure (rigid) but are not provided any information about where the ligand will bind on the
protein nor the conformations it will take (blind).

Ground truth data for training and testing is obtained through experimental methods, like X-ray crystallography, that, for
each protein-ligand complex, allow to observe a particular pose that protein and ligand took when binding together inside of
the crystal. Although there may be other poses that this particular protein and ligand may take when binding in a natural
environment, methods are evaluated based on their capacity to retrieve the crystal pose. This accuracy is typically computed
as the percentage of test complexes where the predicted structure of the ligand (also referred to as ligand pose) is within a
root mean square distance (RMSD) of 2Å from the ground truth when aligning the protein structures.

E.2. Related Work

Traditional approaches tackled the task via a search-based paradigm where, given a scoring function, they would search over
possible ligand poses with an optimization algorithm to find a global minimum (Halgren et al., 2004; Trott & Olson, 2010).
Recently, deep learning methods have been trying to speed up this search process by generating poses directly through a
neural network. Initial approaches (Stärk et al., 2022; Lu et al., 2022) used regression-based frameworks to predict the pose,
but, although significantly faster, they did not outperform traditional methods.

Corso et al. (2023) argued that the issue with these regression-based approaches is their treatment of the uncertainty in the
multimodal model posterior pose distribution. They also proposed DiffDock, a diffusion-based generative model to generate
docked poses that was able to outperform previous methods, which we use as a starting point for the integration of our
DisCo-Diff approach to diffusion.

Most deep learning approaches to docking model the data as a geometric graph or point cloud in 3D. The nodes of this graph
are the (heavy) atoms of the ligand and, typically, the C-alpha carbon atoms of the protein backbone (sometimes full-atom
representations are also used for the protein but these are less common for computational complexity reasons). These nodes
are connected by edges in case of chemical bonds or pairwise distances below a certain cutoff. Neural architectures learn
features over the nodes of this graph through a number of message passing layers, the geometric structure is encoded via
invariant (e.g. relying only on distance embeddings, see Schütt et al. (2017)) or equivariant operations (Geiger & Smidt,
2022).

E.3. Latent Variables

We design each latent variable to take values indicating one of the nodes in the protein-ligand joint graph. Therefore the
codebook size for the latent variable of any given protein-ligand complex is equal to the total number of nodes in the graph
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i.e. the sum of the number of atoms in the ligand and the number of residues in the protein. With this choice, intuitively
each latent variable will indicate one particular atom or residue involved in some key component of the protein-ligand
interaction. For example, using two latents the model can learn to indicate a geometric contact between a pair of nodes in
the final representation. Further note, each ”codebook”, when considered as a set of one-hot vectors indicating notes, has a
permutation equivariance property with the nodes of the graph (because they are associated with node properties): if the
nodes of the input graph are permuted each latent variable coming out of the encoder or autoregressive model will also have
its codebook representation permuted.

E.4. Architecture Details

Denoiser. This design choice for the discrete latents codebooks fits very well with the preexisting DiffDock’s denoiser
architecture composed of equivariant message passing layers (Geiger & Smidt, 2022). Each latent variable is encoded in
a binary label for each node which is set to zero for all nodes except the one indicated by the latent. These binary labels
are concatenated to the initial node features while the rest of the denoiser is kept unchanged. With probability 0.1 during
training we drop the latents, in this case, the binary labels are set to zero for all latents, and a learnable null-embedding is
fed to all initial node features.

Encoder. The encoder and autoregressive models adopt very similar architectures to the denoiser with a few key distinctions.
The encoder takes as input the ground truth pose of the ligand, learns features for each node through message passing, and
finally m separate feedforward MLPs (where m is the number of latents) with a one-dimensional output are applied to each
node representation. The concatenated outputs of each of these MLPs form the logit vectors for each of the latent variables
which are passed through the Gumbel-Softmax discretization step.

Autoregressive model. Unlike the image synthesis experiments setting where the images are often generated with relatively
vague conditioning information, for docking, we are interested in generating ligand poses conditioned on a particular protein
(structure) and ligand. This conditioning information significantly influences the posterior pose distribution and consequently
the learned latent variables. Therefore, we need to condition the autoregressive model on the protein structure and the
ligand. We achieve this, once again, through an equivariant message passing network, operating on an input composed of the
protein structure and the ligand. The latter is centered at the protein’s center, given an arbitrary conformer (i.e. molecular
conformation) from RDKit (Landrum, 2013) and a uniformly random orientation. Like the denoiser, the autoregressive
model takes as input the additional binary node labels for the existing latents (masked out appropriately during training),
and, like the encoder, it uses its final node embeddings to predict the logits for the next latent variable.

E.5. Experimental Details

For the docking experiments, we follow the datasets and procedures established by Stärk et al. (2022) and Corso et al. (2023).
Data for training and evaluation comes from the PDBBind dataset (Liu et al., 2017) with time-based splits (complexes
before 2019 for training and validation, selected complexes from 2019 for testing).

Denoiser. We use a denoiser architecture analogous to the one proposed by Corso et al. (2024), which is a smaller version of
DiffDock’s original architecture where the main changes are: (1) 5 convolutional layers (vs 6 of the original DiffDock’s
architecture) (2) node representations with 24 scalars and pseudoscalars and 6 vectors and pseudovectors (vs respectively 48
and 10) (3) spherical harmonics order limited to 1 (vs 2). These changes, although somewhat affecting the inference quality,
make training and testing of the models significantly more affordable (from 18 days on 4 GPUs to 9 days on 2 GPUs for
training).

We keep the same denoiser architecture for both the baseline without discrete latents (DiffDock-S) and our model and apply
similar hyperparameter searches when applicable to both models. At inference time, similarly to Corso et al. (2023), we
take 40 independent samples and use the original DiffDock’s confidence model1 to select the top one. For DisCo-DiffDock
each of the samples is taken by independently sampling from the autoregressive model and then the (conditioned) denoiser.

Encoder. For the encoder, we use a similar but slightly smaller architecture with 3 convolutional layers, 24 scalars, and 4
vectors. We set the number of discrete latent variables (each taking values over the whole set of possible nodes in the joint
graph) to two, as we found this to equilibrate the complexity of the generative task between the score and autoregressive
models.

1The confidence model is an additional model, Corso et al. (2023) trained to select the most likely correct poses out of the diffusion
models samples. The reader can think of this as trying to select the maximum likelihood pose.
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Autoregressive model. One challenge with the autoregressive model in this domain is its tendency to overfit the latent
variables in the training set given the limited training data, the complexity of the conditioning information, and the low
training signal that discrete labels provide. Therefore we found it beneficial to design the autoregressive model to use the
pretrained layers of the denoiser itself. In particular, we simply add independent MLPs for each latent variable that are
applied to the final scalar representations of the nodes. During the autoregressive training, for the first five epochs, the
weights of the convolutional layers are frozen.

Inference hyperparameters. For inference, we maintain the number of inference steps from DiffDock (20) and, for both
DisCo-DiffDock and the baseline, we tune on the validation set the sampling temperature for the different components of
the diffusion similarly to how it was done by Ketata et al. (2023). For DisCo-DiffDock we also tune the temperature used to
sample the autoregressive model. We find, with 40 samples, to be beneficial to set this temperature > 1 while the diffusion
sampling temperature < 1, this corresponds to encouraging exploration of different binding modes while trying to obtain the
maximum likelihood pose for each mode. This further highlights the advantage provided by enabling the decomposition
of different degrees of uncertainty. Please see the source code in the Supplementary Material for all low level details and
hyperparameters used.

F. Gaussian Mixture Experiments
F.1. Data Generation

For the toy example in section 3, we set the true data distribution to a mixture of eight Gaussian components:
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1
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To construct the toy dataset, we randomly sampled 1000 data points from each component, totaling 8000 data points. We
visualize the KDE plot of the generated data in Fig. 3(a).

F.2. Training and Sampling

We employ a four-layer MLP as the diffusion decoder (Denoiser Neural Network) G, for both Disco-Diff and diffusion
models. We use a three-layer MLP as the encoder E in Disco-Diff. We set the latent dimension of discrete latent to 1 and
the vocabulary size to 8. Ideally, each discrete latent should correspond to a Gaussian component, and the time-dependent
scores for a single Gaussian component have a simple analytical expression. We leverage this simplicity and reparameterize
the output of diffusion decoder as G(x, t, z) = F(z)−x

t2+σ2
1

+H(x, t), where F is the embedding for each discrete latent z and
H is a four-layer MLP. The model optimization uses the Adam optimizer with a learning rate of 1e-3.

For sampling, we use the Heun’s second-order sampler. We followed the time discretization scheme in EDM (Karras et al.,
2022) with 50 sampling steps.

F.3. Metric

We detail the metrics used in Fig. 4. The curvature for points x(t) on ODE trajectory dx/dt = G(x, t, z) (z is null in
diffusion models) is defined as κ(x(t)) = ||∂tT (x(t),t)||

||x′(t)|| where T (x, t) = G(x(t),t,z)
||G(x(t),t,z)|| is the unit tangent vector. We can

approximate the curvature by finite difference: κ(x(t)) = ||∂tT (t)||
||x′(t)|| ≈ ||T (t)−T (t−∆t)||

||x(t)−x(t−∆t)|| . We approximate x(t−∆t) by a
single Euler step, i.e., x(t−∆t) = x(t)− G(x, t, z)∆t. In Fig. 4(a), we report the expected curvature given the backward
time when simulating the ODE, i.e., Ex(t)

[
||T (t)−T (t−∆t)||
||x(t)−x(t−∆t)||

]
. We set the time elapsed to ∆t = 0.001.
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Figure 10. Averaged training loss versus noise level t.

In Fig. 4(b), we measure the complexity of the trained neural networks using the expected squared Frobenius norm of the
network’s Jacobians, i.e., Ex(t)

[
||∇xG(x, t, z)||2F

]
.

Additionally, to quantitatively evaluate the generation quality, we report the Wasserstein-2 (W-2) distance between the
generated distribution and the ground truth distribution. In the DisCo-Diff model, the W-2 distance is at 0.118, compared to
0.27 in the standard diffusion model. It suggests that DisCo-Diff better captures the multimodal distribution, even in 2-dim
space.

G. Additional Samples and Experiments
G.1. Loss Analysis

In Fig. 10, we provide the loss versus time curve on both ImageNet-64 and ImageNet-128 datasets. We have also included a
log-scale version of the x-axis in the inset plot.

G.2. Class-conditoned ImageNet-64

We provide extended samples generated by DisCo-Diff in Fig. 11.

G.3. Class-conditoned ImageNet-128

We provide extended samples generated by DisCo-Diff in Fig. 12. We also visualize samples with shared discrete latents in
Fig. 14. We further provide samples using different samplers in Fig. 13, to highlight the over-smoothing issue of DisCo-Diff
at smaller times we observed for this model when using the DDPM sampler. Although, in theory, the VDM++ model and
DisCo-Diff should learn the same field at small times, in practice, we observe that VDM++ DDPM provides samplers with
richer details compared to DisCo-Diff DDPM at smaller times. It supports our hypothesis that the discrete latents tend
to divert the model to overlook the high-level details on ImageNet-128, when using the DDPM sampler and the network
architecture in (Kingma & Gao, 2023). We would like to emphasize that we only observed this behavior for this one model
and dataset. In all other experiments, discrete latents universally improved performance for all stochastic and non-stochastic
samplers, even when used for all times t.

G.4. Group Hierarchical DisCo-Diff

We further provide extended samples from the Group hierarchical DisCo-Diff. Fig. 15 showcases the generated images
when composing two discrete latents together, i.e., (z0:20, ẑ20:30). We can see that the generated images from composed
latent generally inherit the shape from images generated by z, and the color from images generated by ẑ.

Fig. 16 further shows the effect when progressively fixing more coordinates of the discrete latent, and sampling the
remaining coordinates by the auto-regressive model. The images first converge in shape/layout, and subsequently converge
in color/texture.
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Figure 11. Generated samples by DisCo-Diff on class-conditioned ImageNet-64, with ODE sampler (FID=1.65, NFE=78).
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Figure 12. Generated samples by DisCo-Diff on class-conditioned ImageNet-128, with ODE sampler (FID=2.08, NFE=114).
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(a) DisCo-Diff ODE, FID=1.98 (b) DisCo-Diff ODE (t ≥ 10) and DisCo-
Diff DDPM (t < 10), , FID=2.78

(c) DisCo-Diff ODE (t ≥ 10) and VDM
DDPM (t < 10), FID=1.73

Figure 13. Images generated by different samplers. When using the DDPM sampler at smaller times (b), the generated images exhibit a
slight over-smoothing issue, losing some high-frequency details in comparison to those produced with the VDM++ DDPM sampler at
smaller times. Note that FID score typically penalizes over-smooth samples. This observation supports our hypothesis that the use of the
DDPM sampler in DisCo-Diff at smaller times can in certain situations overlook high-frequency details.

G.5. Overfitting and Encoder Collapse in Continuous Latent

In this section, we show that it is difficult to control the amount of information stored in the continuous latents, which would
lead to either overfitting or encoder collapse. To illustrate the issue, we derived the continuous / discrete latents from a
specific real image, and fed the corresponding latents into the denoisers. As shown in Figure 17, when KLD weight=0.1, the
continuous latent model exhibits the overfitting issue, as all the generated images are very similar to the training image. It
also indicates that the encoder squeezes excessive information in the continuous latent when using a smaller KLD weight,
which complicates generative training in the second stage. When KLD weight=1, the model exhibits encoder collapse –
the denoiser would ignore the continuous latent. We observe that even using a different continuous latent, the model will
still generate an identical batch of samples. In contrast, DisCo-Diff generated a batch of diverse samples, sharing a similar
high-level layout and color with the training image. This indicates that the discrete latents in DisCo-Diff encode global
layout and color attributes — key statistical elements crucial for the diffusion process in Euclidean space. This aligns with
more direct and straighter ODE trajectories.
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Figure 14. Generated samples by DisCo-Diff on class-conditioned ImageNet-128, with ODE sampler. Samples in each grid share the same
latent, and grids in each row share the same class labels. We can see that generally, images sharing the same discrete latents demonstrate
similar global characteristics, such as shape, layout, and color, despite being under the same class. It suggests that discrete latents provide
complementary information to the class labels.
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Figure 15. Generated images with a shared latent, using group hierarchical DisCo-Diff trained on ImageNet-64. Left: Shared latent z.
Middle: Shared latent ẑ. Right: Shared latent (z0:20, ẑ20:30), where the first 20 coordinates are from z and the last 10 coordinates are
from ẑ. We can see that the generated images from composed latents generally inherit the shape from images generated by z, and the
color from images generated by ẑ.
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Figure 16. Progressively fixing more subcoordinates of the discrete latents, using our group hierarchical DisCo-Diff on ImageNet-64. Left:
Randomly sampled z. Middle: Fixing the first 20 coordinates z:20 as the one derived from the red-boxed image, sampling the rest. Right:
Fixing the whole 30-dim. z as the one derived from the red-boxed image. The figure shows the effect when progressively fixing more
coordinates of the discrete latent, and sampling the remaining coordinates by the auto-regressive model. The images first converge in
shape/layout, and subsequently converge in color/texture.
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(a) Real image (b) KLD weight=0.1 (c) KLD weight=1 (d) DisCo-Diff

Figure 17. We derived the continuous / discrete latents from the real image in (a) and fed the latents into the denoisers. (b): The continuous
latent model exhibits the overfitting issue when KLD weight equals to 0.1, as all the generated images are very similar to the real image.
(c): When applying a stronger KL regulation (KLD weight=1) on the continuous latent, the model exhibits encoder collapse – the denoiser
would ignore the continuous latent. (d): DisCo-Diff generated a batch of diverse samples, sharing a similar high-level layout and color
with the real image.
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