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1. Epipolar Geometry
Figure 1 shows how epipolar geometry plays out for dif-
ferent GCCs. In particular, there is an epipolar plane that
contains the camera centers and the query ray. The intersec-
tion of this plane with the source sphere makes an epipolar
great circle on the source sphere corresponding to the pos-
sible matches of the query ray. The path projects, via ϕ−1 to
different epipolar curves depending on the camera model.

Note that there are two epipoles corresponding to the two
intersections of the line passing through the camera centers
with the reference camera. In the pinhole case, due to the
FoV being strictly less than 180◦, at most one epipole is
observed. In the rectified case neither epipole is observed,
but in some sense one epipole is infinitely to the left and the
other is infinitely to the right.

2. Interpolation
In this section, we elaborate on the necessity of property
3 and explain why general samplings of the sphere can be
problematic. When we create the cost-volume, we have
to warp the source images to the reference images. This
process requires interpolating the source images. To per-
form interpolation, we need to conduct a k-nearest-neighbor
search in the canonical representation. For example, for
a planar image like the Equirectangular Projection (ERP),
finding the nearest neighbor is essentially free. We just need
to take the floor and ceiling of each pixel coordinate to ob-
tain the four nearest neighbors for interpolation. The pro-
cess for a cube is slightly more complex, since we first have
to determine which face of the cube the point is on, i.e., find
the coordinate with a value equal to ±1. Then, it reduces to
the flat plane case.

If we have more exotic samples of the sphere, we must
perform a full nearest neighbor search of the points, which
is prohibitively expensive for network training (at least with
existing implementations). Komatsu et al. actually conduct
this nearest-neighbors search. They can do so because they
use a fixed camera rig, meaning the relative pose between
the source and reference image is fixed. This allows them
to perform the nearest-neighbors search once for the entire
training period [2].

3. Reciprocal Tanget Sampling
In this section we motive our reciprocal tangent sampling
strategy for generating hypotheses. First, consider the rec-
tified stereo case. The disparity is related to depth by

disparity ∼ 1/depth. This implies uniformly sampling in-
verse depth hypotheses corresponds to sampling equidistant
points in the source image. We would like to do something
similar for spherical images i.e. sample distance hypotheses
that correspond to equidistant samples on the sphere. To ac-
complish this, we need to establish the relation between the
distance and the sampling locations on the source sphere i.e.
the angular disparity.

Consider the schematic drawing of an epipolar plane for
two spherical cameras shown in Figure 2. Call the vector
going from the source to the reference camera the baseline
vector, with length b. Consider a query ray extending from
the reference camera center that hits a 3D point P a distance
d away. This ray makes an angle θ with the baseline vector.
Define the angle ϕ as the angle between the baseline vector
and the ray from the source camera center to P . Given θ, d
and ϕ are related, though conventionally, rather than writing
this relation explicitly, we write the relation between d and
the angular disparity, α, defined as α = θ−ϕ. This relation
is given by:

d(α, θ) = b

(
sin θ

tanα
− cos θ

)
(1)

Where θ ∈ [0, 180] and α ∈ [0, θ) [6]. Note that un-
like the rectified pinhole stereo case, the relation between
distance and disparity depends on the reference pixel that
determines θ. For two cameras one can choose different
hypotheses per pixel, but for more than two, this is a prob-
lem because there are different θs and αs associated with
each source camera. However, from Equation 1 we observe
the rough relation between disparity and distance follows
a shifted and scaled inverse tangent function. This is the
motivation for reciprocal tangent sampling.

Qualitatively, reciprocal tangent sampling samples
points less densely near to the camera than inverse distance
sampling. This fit our intuition that inverse distance sam-
pling was wasting samples very close to the camera. An
additional benefit of reciprocal tangent sampling is that it
can handle arbitrarily large depths with finite samples, sim-
ilarly to inverse distance and as opposed to linear sampling.
This enables us to handle both indoor and outdoor scenes
without any changes to the sampling strategy.

We do not claim this sampling is optimal in all cases, just
that it worked well for both indoor and outdoor scenes we
studied.
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Figure 1. Epipolar Geometry for GCCs. The epipolar plane, in gray, contains the spherical camera centers and the query ray. We call
the great circle where this plane intersects the source sphere the epipolar great circle. On the right, we show how the epipolar great circle
manifests as different types of epipolar curves in image space.

Figure 2. Schematic drawing of the epipolar plane, gray plane in
Figure 1, and the angles that relate distance, d, to angular disparity
α = θ − ϕ. Given baseline b.

4. ERP Rectification for MODE

The input to MODE [3] must be two ERP images rectified
such that the cameras are directly “on top of each other” that
is the camera coordinate up axis (y-axis) is parallel to the
cameras’ translation, and both cameras have the same ex-
trinsic rotation. The idea is to apply Equation 1 to simulate
this configuration. Concretely, our inputs are two images
with GCCs (U i, ϕi) and extrinsics (Ri, ti) with i ∈ 0, 1.
We write Ri as the concatenation of three column vectors
Ri =

[
ri0, r

i
1, r

i
2

]
. Then mathematically to be “on top of

each other” means r01 = r11 = t1−t0

||t1−t0|| and R0 = R1.

To rectify the images define r̂1 = t1−t0

||t1−t0|| . Now we can
choose arbitrarily r̂2 any vector orthogonal to r̂1. Define
r̂0 = r̂1 × r̂2, where × is the cross product of vectors. Let
R̂ = [r̂0, r̂1, r̂2]. Now we warp each image using Equation
2 with R′ = R̂, (U ′, ϕ′) the ERP GCC, (U, ϕ) = (U i, ϕi)
and R = Ri:

I ′(u) = I(ϕ−1(R−1R′ϕ′(u)). (2)

These warped images are now rectified. An example of two
ERP images before and after rectification are shown in Fig-
ure 3.

Figure 3. Original ERP images (left) and rectified images for
MODE (right)

5. Fisheye ϕ

There are many models of fisheye cameras. Usu-
ally these models model the projection function i.e.
ϕ−1. The model used for KITTI360 has 7 parameters.
f1, f2, u0, v0, xi, k1, k2 and is given by ϕ−1(x, y, z) =
(u′′, v′′)

(u, v) =

(
x

z + xi
,

y

z + xi

)
r2 = u2 + v2

(u′, v′) = (1 + k1r
2 + k2r

4)(u, v)

(u′′, v′′) = (f1u
′ + u0, f2v

′ + v0)

where (x, y, z) ∈ S2. To compute ϕ we use iterative undis-
tortion from ϕ−1 [4, 5]. Other models of fisheye cameras
can be found in [4, 5].

6. CubePadding Seams
Figure 4 shows our cube model with and without cube
padding. In particular, we observe strong seams on the
edges of the cube faces of the model without padding. In
the first row we see a large error on the textureless ceil-
ing. This is because context from surrounding cube faces
is needed to deduce the depth of the top face, but without
cube padding the network has no context from surrounding
faces.



Figure 4. Qualitative comparison of our cubemap model with and without cube padding.

from torchvision.models.feature_extraction import create_feature_extractor
from torchvision.models import resnet34

m = torchvision.models.resnet34()
return_nodes = {

’layer1’: ’layer1’,
’layer2’: ’layer2’,
’layer3’: ’layer3’

}
net = create_feature_extractor(m, return_nodes=return_nodes)
features = net(image)
f1, f2, f3 = features[’layer1’], features[’layer2’], features[’layer3’]

Figure 5. Definition of “first three layers” of ResNet34

7. Implementation Details
7.1. Our Models

Feature Extractor For the architecture of the feature ex-
tractor, we use the first three layers of Torchvision’s imple-
mentation of ResNet34 to extract three feature maps f1, f2,
and f3 at resolutions 1/4, 1/8, and 1/16 of the input resolu-
tion with 64, 128, and 256 channels, respectively. See Fig-
ure 5 for more details. We pass f1 though a transposed conv
layer with stride 1 and 32 features, f2 though a transposed
conv layer with stride 2 and 32 features, and f3 through a
transposed conv layer with stride 4 and 64 features. We
then concatenate the outputs to form a single feature map at
1/4 input resolution with 128 channels.

All convolutions are replaced with either CubeConv or
CircConv depending on the respective model.

Cost Regularization The cost regularization network is
based on the network from MVSNet [7]. Besides replac-
ing all convs with CubeConv3d or CircConv3d we replace
all transposed convs with nearest-neighbor upsampling fol-
lowed by a conv with the same number of features as the
original transposed conv. We do this to avoid the need for
output padding in transposed convs in order to upsample by
an exact multiple of 2.

7.2. 360MVSNet

For a fair comparison, we used the same reciprocal tan-
gent sampling to select initial distance hypotheses as we
used for our method when training 360MVSNet. For sub-
sequent stages we used the uncertainty aware sampling pro-
posed by the authors. We considered two feature extrac-
tors: The FCN-model, which comes from casMVSNet [1]
that 360MVSNet is based on and an upgraded one based on
ResNet34. The multiscale features are f1, f2, f3 as in Figure
5. Each is passed though a stride 1 conv layer to reduce it
to 8, 16, and 32 channels respectively.
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