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Abstract. This technical report presents quantization-aware distillation (QAD) and our best practices for recovering
accuracy of NVFP4-quantized large language models (LLMs) and vision-language models (VLMs). QAD distills a
full-precision teacher model into a quantized student model using a KL divergence loss. While applying distillation
to quantized models is not a new idea, we observe key advantages of QAD for today’s LLMs: 1. It shows remarkable
effectiveness and stability for models trained through multi-stage post-training pipelines, including supervised
fine-tuning (SFT), reinforcement learning (RL), and model merging, where traditional quantization-aware training
(QAT) suffers from engineering complexity and training instability; 2. It is robust to data quality and coverage,
enabling accuracy recovery without full training data. We evaluate QAD across multiple post-trained models
including AceReason Nemotron, Nemotron 3 Nano, Nemotron Nano V2, Nemotron Nano V2 VL (VLM), and Llama
Nemotron Super v1, showing consistent recovery to near-BF16 accuracy.
NVFP4 checkpoints Nemotron 3 Nano 30B-A3B , Nemotron Nano 9B V2 , Nemotron Nano 12B V2 VL ,
Llama 3.1 Nemotron Nano VL 8B
QAD codes: Megatron-LM version, NeMo version, HuggingFace Transformers version

1. Introduction

The rapid expansion of large language models (LLMs) has increased the demand for more efficient
numerical formats to lower computational cost, memory demand, and energy consumption during training
and inference. 8-bit floating point formats (FP8 and MXFP8) have emerged as popular data types
for accelerated training of LLMs (Micikevicius et al., 2022; DeepSeek-AI, 2024). Recent advances in
narrow-precision hardware (NVIDIA, 2024) have positioned 4-bit floating point (FP4) as the next logical
step (Chmiel et al., 2025; Chen et al., 2025b; Liu et al., 2023a; Rouhani et al., 2023), delivering a two- to
three-fold boost in arithmetic performance and reducing memory usage by half compared to FP8.

NVFP4, which features a smaller block size (16 vs. 32 for MXFP4), FP8 scale factors (E4M3) for
fine-grained scaling, and second-level FP32 scaling for a larger dynamic range, has demonstrated superior
accuracy to INT4 and MXFP4 on many models (Egiazarian et al., 2025). For very large LLMs, NVFP4
with post-training quantization (PTQ) shows decent accuracy on different benchmarks. However, for
small LLMs, the accuracy drop from PTQ is often non-negligible.

There are many efforts to incorporate quantization into the training process. NVFP4 quantized train-
ing (NVIDIA, 2025) has demonstrated promising convergence on pretraining tasks. With the primary
goal of training speedup, models trained with NVFP4 are still evaluated in BF16.

Quantization-aware training (QAT) (Jacob et al., 2018) is an effective training-based method for inference
accuracy recovery, which has shown great results since the CNN era. Many QAT methods reuse the
same pipelines and training objectives as the original high-precision models. However, this approach faces
significant challenges for modern LLMs in real practices, such as:

1. Complex training pipelines: Modern LLMs undergo multi-stage post-training (Bakouch et al.,
2025; Bercovich and Itay Levy, 2025), such as SFT, RL, model merging, making it difficult to
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replicate the original training procedure.
2. Data availability and quality: The original training data of open models may not be available,

and public datasets are often of worse quality.

This technical report evaluates quantization-aware distillation (QAD) for NVFP4 inference accuracy
recovery on post-trained LLMs. QAD uses the original full-precision model as a teacher and trains
the quantized model as a student using KL divergence loss rather than task-specific objectives. We
demonstrate the following key findings:

1. QAD aligns the quantized model to the high-precision model better than QAT.
2. QAD works effectively for models trained through multi-stage post-training pipelines including SFT

& RL, demonstrating remarkable stability.
3. QAD is robust to incomplete data coverage and can recover accuracy even with partial domain data,

enabling cross-domain knowledge transfer.

The report is organized as follows: Section 2 provides a background on NVFP4 and quantization methods;
Section 3 describes the QAD method and training setup and demonstrates key properties through
comprehensive results across LLMs and VLMs; Section 4 provides detailed analysis of design choices and
the impact of training data.

2. Background and Related Work

2.1. NVFP4 Format and Post-Training Quantization

NVFP4 Format. NVFP4 is a 4-bit floating-point format designed for efficient training and inference on
modern GPU architectures (NVIDIA, 2025; Alvarez et al., 2025). Compared to FP8, NVFP4 offers 2-3×
higher arithmetic throughput and approximately 1.8× memory reduction. NVFP4 extends the MXFP4
format (Rouhani et al., 2023) with a smaller block size (from 32 to 16) and two-level scaling (per-block
E4M3 scales plus per-tensor FP32 scale). The smaller block size enables more localized adaptation to
data distributions, while E4M3 scales provide non-power-of-two scaling factors for lower quantization
error, and the second-level FP32 scale extends the overall dynamic range (Alvarez et al., 2025).

Post-Training Quantization (PTQ). PTQ is a simple and cost-effective method that requires no
training (Nagel et al., 2021; Wu et al., 2020; Vanhoucke et al., 2011). It involves a process called calibration
that determines quantization parameters (e.g., scale factors and zero points) using a small representative
dataset (calibration set). With PTQ, training and inference are completely decoupled, making it attractive
for practitioners without access to original training pipelines or computational resources for fine-tuning.

The simplest PTQ method is max calibration, which sets the scale factor such that the maximum absolute
value in the calibration data maps to the maximum representable value in the quantized format. Despite
its simplicity, max calibration works surprisingly well in many cases. More sophisticated calibration
methods have been proposed, including MSE-based calibration (Jacob et al., 2018), KL divergence
minimization (Migacz, 2017), and learnable clipping thresholds (Choi et al., 2018). More sophisticated
PTQ methods have been proposed to minimize quantization error through advanced techniques. For
example, AdaRound (Nagel et al., 2020) and BRECQ (Li et al., 2021) optimize weight rounding and block-
wise reconstruction, respectively. For LLMs specifically, ZeroQuant (Yao et al., 2022) and GPTQ (Frantar
et al., 2023) apply layer-wise calibration with efficient approximations. Other approaches focus on
preserving sensitive information (AWQ (Lin et al., 2023)) or optimizing quantization parameters via
gradient descent (OmniQuant (Shao et al., 2024a)). A prominent direction is transformation-based PTQ,
which applies reversible transformations (e.g., rotations, affine transformations) to suppress outliers and
flatten distributions; examples include SmoothQuant (Xiao et al., 2023), QuaRot (Ashkboos et al., 2024),
QuIP# (Tseng et al., 2024), SpinQuant (Liu et al., 2024b), and FlatQuant (Sun et al., 2024). Additionally,
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low-rank approximation methods like SVDQuant (Sui et al., 2024) and EoRA (Liu et al., 2025b) have
been proposed to mitigate quantization error by absorbing outliers or compensating for information loss.
These advanced methods typically achieve better accuracy than simple max calibration, especially for
lower bit-widths.

PTQ works quite well for FP8 on most LLMs. For NVFP4, PTQ also works well for very large models
(See Appendix C). However, PTQ often struggles with small models and sensitive tasks. Recent work
has highlighted that common PTQ algorithms often fail to improve over baseline NVFP4 performance
because the small block size neutralizes traditional outlier mitigation techniques (Egiazarian et al., 2025).

2.2. Quantization-aware training

Quantization-aware training (QAT) (Jacob et al., 2018) is used to recover inference accuracy after a model
has been trained in full precision. Unlike native quantized training (DeepSeek-AI, 2024; NVIDIA, 2025),
which quantizes weights, activations and gradients to speedup both forward and backward passes, QAT
only quantizes the weights and activations, thus only helping forward pass. Gradients remain in high
precision to ensure stable convergence.

QAT fine-tunes the quantized model using the same loss function (e.g., cross-entropy for language modeling)
and ideally the same training data as the original full-precision model. Modern LLMs typically undergo
multi-stage post-training pipelines that include supervised fine-tuning (SFT) and reinforcement learning
(RL) stages. For supervised training stages, QAT is straightforward to apply. For RL stages, the equivalent
approach would be quantization-aware RL (QARL), which quantizes both the actor’s forward pass and
rollout generation. However, QARL remains less explored—existing work on quantized RL has focused on
accelerating training throughput (Huang et al., 2025; Liu et al., 2025a) rather than post-hoc inference
accuracy recovery. This motivates our investigation of QAD as an alternative for RL-trained models.

2.3. Knowledge Distillation for Quantization

Knowledge distillation (KD) (Hinton et al., 2015) transfers knowledge from a teacher model to a student
model by learning soft labels (e.g. probability distributions) from the teacher, typically using KL divergence
loss for classification tasks. Theoretical work shows that soft labels provide a better estimate of true class
probabilities with lower variance (Menon et al., 2020), and that matching teacher distributions provides
implicit regularization that accelerates convergence (Phuong and Lampert, 2021).

The combination of knowledge distillation and quantization has been studied extensively for CNNs.
Mishra and Marr (2017) demonstrated that low-precision networks can be significantly improved through
distillation from full-precision teachers. Polino et al. (2018) proposed quantized distillation, incorporating
the distillation loss directly into the training of weight-quantized networks. Kim et al. (2019) introduced
a three-phase training procedure to mitigate the strong regularization effect of KD on quantized models.

For large language models, Liu et al. (2023b) demonstrated that data-free distillation using model-
generated data is highly effective, enabling quantization-aware training without access to the original
training data. Kim et al. (2023) proposed token-scaled logit distillation, which reweights the per-token KL
divergence based on teacher confidence to prevent overfitting. Du et al. (2024) introduced BitDistiller for
sub-4-bit LLMs, combining asymmetric quantization with a self-distillation objective that blends forward
and reverse KL divergence.

Prior QAD work has primarily targeted integer quantization. This report demonstrates that simple KL
divergence-based distillation is highly effective for NVFP4 inference accuracy recovery, particularly for
LLMs trained through complex multi-stage post-training pipelines where replicating the original training
is impractical and standard QAT risks degrading model capabilities.
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3. Quantization-Aware Distillation

3.1. Method Overview

Quantization-aware distillation (QAD) uses the original high-precision model as a teacher to train the
quantized model as a student using distillation loss. It differs from standard quantization-aware training
(QAT), which trains the quantized model using the same task loss as the original model, as illustrated in
Figure 1.

The key difference between QAD and QAT lies in the loss function:

• QAT: Uses the same task-specific loss, e.g., next-token cross entropy for language modeling, as the
original model training pipeline.

• QAD: Uses KL divergence between the high-precision teacher and the quantized student.

Formally, for a given input 𝑥 and vocabulary 𝑉 , let 𝑝teacher(𝑦|𝑥) denote the output distribution from the
full-precision teacher model and 𝑝student(𝑦|𝑥) denote the output distribution from the quantized student
model. The QAD loss is the KL divergence between the teacher and student distributions:

ℒQAD = 𝐷KL(𝑝teacher‖𝑝student) =
∑︁
𝑦∈𝑉

𝑝teacher(𝑦|𝑥) log 𝑝teacher(𝑦|𝑥)
𝑝student(𝑦|𝑥) (1)

Table 1 | QAD better aligns the model with BF16
baseline. Llama Nemotron Super V1 trained with
∼0.3B tokens sampled from its SFT dataset and
evaluated on 5,000 held-out samples (∼8M tokens).

Methods KL Divergence Cross Entropy
(vs BF16) (vs labels)

BF16 0 0.408
QAT 0.311 0.408
QAD 0.004 0.416

Table 1 implies the key difference between QAD
and QAT. Remarkably, QAT achieves nearly the
same cross-entropy loss as the BF16 baseline,
which might suggest successful capability recovery.
However, the KL divergence reveals a different
story: QAD achieves nearly zero KL divergence,
while QAT exhibits significant divergence from the
teacher. This demonstrates that although QAT
can match validation loss, it significantly changes
the model’s output distribution, effectively act-
ing as an additional post-training stage. In con-
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(Teacher)
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Figure 1 | Comparison of quantization-aware training (QAT) and quantization-aware distillation (QAD).
QAT trains with next-token prediction (cross-entropy) on target datasets, while QAD uses distillation
loss (KL divergence) with the full-precision teacher model providing soft targets.
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trast, QAD faithfully preserves the original BF16
model’s output distribution.

3.2. QAD for Post-Trained Models

For single-stage post-training, we tested on Nemotron Nano 12B v2 VL (NVIDIA, 2025b) and found
that QAT can match QAD performance (see Appendix A). However, modern state-of-the-art LLMs
typically undergo complex multi-stage pipelines involving SFT, RL, and model merging (Bercovich and
Itay Levy, 2025; NVIDIA, 2025a). Applying QAT to such pipelines is challenging: it requires replicating
each stage with quantized forward passes and reproducing model merging procedures between stages.
A more practical approach is to run QAD or QAT as a single stage using a mixture of SFT data or
model-generated data from RL prompts. In this simplified setting, we demonstrate that QAD consistently
outperforms QAT, achieving near-BF16 accuracy regardless of the complexity of the original pipeline.

Table 2 | Results on SFT-heavy models. Both QAD and QAT are trained with a mixture of the model’s
SFT data (math, coding, science, etc). QAD achieves near-BF16 accuracy and significantly outperforms
QAT on reasoning tasks, especially on AIME25 and GPQA-D.

Model Method MATH500 AIME25 GPQA-D IFEval-Instruction

Llama Nemotron
Super V1

BF16 95.8 46.0 66.5 87.5
NVFP4 PTQ 91.4 32.3 62.1 86.9
NVFP4 QAT 94.3 41.5 63.3 87.2
NVFP4 QAD 94.6 45.6 64.5 87.8

Nemotron
Nano V2

BF16 97.8 71.1 64.0 90.3
NVFP4 PTQ 97.2 69.8 59.0 89.8
NVFP4 QAT 97.2 67.1 56.9 86.2
NVFP4 QAD 97.2 71.5 62.7 89.3

Table 3 | QAD results on RL-heavy models. For both models, NVFP4 QAT breaks the RL model’s
capabilities, while QAD successfully recovers near-BF16 performance, demonstrating the necessity of
distillation for RL models.

(a) Nemotron 3 Nano2

Method AA-LCR AIME25 GPQA-D LiveCodeBench-v5 SciCode

BF16 35.9 89.1 73.0 72.1 33.0
NVFP4 PTQ 31.3 85.0 71.6 68.9 30.5

NVFP4 QAT 24.8 83.3 66.0 62.0 25.8
NVFP4 QAD 34.3 87.9 72.7 68.9 32.3

(b) AceReason Nemotron 1.1 7B
Method AIME24 AIME25 LiveCodeBench-v6

BF16 Baseline 73.0 63.5 54.3
NVFP4 PTQ 69.4 58.7 52.0

NVFP4 QAT 62.1 46.1 45.9
NVFP4 QAD 71.7 62.0 53.3

SFT-Heavy Models. We evaluate QAD on two SFT-heavy models that both undergo multi-stage
post-training: Llama Nemotron Super V1 49B (Bercovich and Itay Levy, 2025) and Nemotron Nano 9B

2Benchmark numbers differ from the model card, as different evaluation tools and settings are used.
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V2 (NVIDIA, 2025a). Table 2 shows that QAD consistently outperforms QAT on challenging reasoning
benchmarks across both models. For Llama Nemotron Super V1, QAD outperforms QAT particularly on
AIME25 (+4.1%) and GPQA Diamond (GPQA-D) (+1.2%), recovering to near-BF16 performance. For
Nemotron Nano 9B V2, QAD achieves near-BF16 performance and significantly outperforms QAT on
AIME25 (+4.4%) and GPQA-D (+5.8%). These results demonstrate QAD’s effectiveness on multi-stage
trained models.

In addition, Nemotron Nano 12B v2 VL is a VLM model that undergoes a single SFT stage after
pre-training. We reported the results in Appendix A.

RL-Heavy Models We evaluate QAD on two RL-heavy models: Nemotron 3 Nano 30B-A3B (NVIDIA,
2025), a hybrid Mamba-Transformer model post-trained with multi-stage RL, and AceReason Nemotron
1.1 7B (Chen et al., 2025a; Liu et al., 2025c), a Qwen2.5-based model (team, 2025a) specialized for math
and code through RL. For RL-trained models, the RL training data typically contains only prompts, as the
model generates responses during training. However, RL models are typically initialized from a cold-start
SFT phase that teaches the base model to solve problems with chain-of-thought reasoning (DeepSeek-AI,
2025; Chen et al., 2025a; team, 2025b; Moonshot, 2025; Ling Team, 2025). This cold-start SFT data
provides a practical option for QAD and QAT training. Another option is to use generated data from RL
prompts (see Section 4.1) if cold-start SFT data is unavailable. In our experiments, we train Nemotron 3
Nano with a mixture of cold-start SFT data and RL-generated data, and AceReason with only cold-start
SFT data.

However, using cold-start SFT data (or mixtures containing it) poses a fundamental challenge for QAT, as
it can break the capabilities learned during RL training. Table 3 demonstrates this issue for both models:
QAT significantly degrades performance across all benchmarks compared to PTQ, even when the training
data includes RL-generated samples. In contrast, QAD successfully recovers near-BF16 performance,
as it matches the teacher’s output distribution rather than relearning from the data distribution. This
demonstrates that distillation is essential for recovering accuracy in RL-trained models. An alternative
approach would be to incorporate QAT into the RL training process itself, which remains an active
research topic.

These results underscore QAD’s key advantage for RL models: it avoids both the complexity of RL
training and the risk of breaking learned capabilities, requiring only the full-precision teacher model.

3.3. Robustness to Incomplete Domain Coverage

A key advantage of QAD is robustness to incomplete data coverage—the ability to recover accuracy even
when the training data does not cover all domains or capabilities of the model.

Cross-Domain Transfer on Multi-Domain Model. AceReason Nemotron is trained on both math
and code domains. Table 4 shows that QAD with partial data (math-only or code-only) nearly matches
full data (math+code) results across all benchmarks. Remarkably, QAD trained with only code data
recovers strong math performance, demonstrating effective cross-domain knowledge transfer through
distillation.

These results demonstrate that the teacher’s output distributions encode implicit knowledge about all
domains and capabilities, even when the input data comes from limited domains. By training the quantized
student to match these distributions, QAD enables cross-domain knowledge transfer, allowing the student
to approximate the teacher’s behavior across domains not explicitly represented in the training data.

3.4. Training and Evaluation Setup

Quantization Configuration. For Llama Nemotron Super V1 and AceReason Nemotron, we quantize
all GEMM layers to NVFP4. For Nemotron Nano 9B V2, a hybrid Mamba-Transformer architecture with
4 Transformer layers and 52 Mamba layers, we employ selective quantization: we keep attention layers in
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Table 4 | QAD on AceReason Nemotron 1.1 7B with partial domain coverage. QAD trained with math-only
or coding-only data achieves near-full data performance, demonstrating cross-domain knowledge transfer.

AIME24 AIME25 LiveCodeBench-v6

BF16 Baseline 73.0 63.5 54.3
NVFP4 PTQ 69.4 58.7 52.0

NVFP4 QAD (math only) 71.0 61.7 53.1
NVFP4 QAD (code only) 71.0 62.0 53.3
NVFP4 QAD (math+code) 71.7 62.0 53.3

Transformer blocks and the first and last two layers at BF16 to maintain a better PTQ baseline. For
Nemotron 3 Nano, a Mixture-of-Experts hybrid Mamba-Transformer with only 6 self-attention layers,
we keep the 6 self-attention layers and their preceding Mamba-2 layers at BF16, quantize the remaining
network to NVFP4, and quantize KV-Cache to FP8.

Hyperparameters. We use conservative learning rates: 1e-6 for Llama Nemotron Super V1 and Nemotron
Nano 9B V2, and 1e-5 for AceReason Nemotron and Nemotron 3 Nano. The softmax temperature is set
to 𝑇 = 1 for both teacher and student to precisely match the teacher’s output distribution. Batch sizes
and sequence lengths are kept similar to those used in the original post-training.

Data. QAD requires significantly less data than the original post-training. The exact amount depends
on the model size and task complexity. We report the amount of data required for convergence.

• Llama Nemotron Super V1 49B: ∼0.3 billion tokens
• Nemotron Nano 9B V2: ∼6 billion tokens
• Nemotron Nano 12B V2 VL: ∼0.5 billion tokens
• Nemotron 3 Nano 30B-A3B: ∼2.5 billion tokens
• AceReason Nemotron 7B: ∼0.8 billion tokens

Evaluation. For each experiment, we evaluate the top 10 checkpoints with the lowest validation loss and
select the one that performs best on average across evaluation benchmarks. For Llama Nemotron Super
V1, Nemotron Nano 9B V2, and AceReason Nemotron, we report results using multiple sampling runs per
problem: 48 runs for AIME 2024 (Zhang and Math-AI, 2024) and AIME 2025 (Zhang and Math-AI, 2025),
12 runs for LiveCodeBench (Jain et al., 2024), 20 runs for GPQA Diamond (GPQA-D) (Rein et al., 2023),
and 5 runs for IFEval (Zhou et al., 2023). All evaluations use temperature 𝑇 = 0.6 and top-𝑝 = 0.95 for
sampling. For Nemotron 3 Nano, we report average results across: 16 runs for AIME 2025, 8 runs for
LiveCodeBench-v5, 8 runs for GPQA-D, and 5 runs for AA-LCR (Team, 2025) and SciCode (Tian et al.,
2024). For SciCode, we report subtask accuracy. All evaluations use temperature 𝑇 = 1.0 and top-𝑝 = 1.0
for sampling.

4. Ablation study

This section provides detailed ablation studies of QAD, specifically focusing on the impact of training
data quality and learning rate sensitivity.

4.1. Training Data Quality

An important practical question of QAD is the sensitivity to data quality and source. We conduct ablation
studies on AceReason Nemotron to understand the impact of different data sources. Similar robustness is
observed for Nemotron 3 Nano (see Appendix B).

Table 5 shows QAD’s performance with different data sources for AceReason Nemotron. Cold-start SFT
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Table 5 | Impact of training data on QAD for AceReason Nemotron 1.1 7B. We test different data sources:
(1) SFT data: original cold-start SFT data used during training; (2) Generated from RL prompts:
BF16-generated samples from RL prompts; (3) Generated from RL prompts (correct only): filtered
to include only correct solutions; (4) Generated from BOS token: data generated by providing a single
initial token following Liu et al. (2023b); (5) Random tokens: completely random token sequences.
QAD shows remarkable robustness across all data sources. All experiments use the same amount of data.

Training data AIME24 AIME25 LiveCodeBench-v6

BF16 Baseline 73.0 63.5 54.3
NVFP4 PTQ 69.4 58.7 52.0

SFT data 71.7 62.0 53.3
Generated from RL prompts 71.9 61.3 52.6
Generated from RL prompts (correct only) 70.5 61.6 52.3
Generated from BOS token 70.1 60.9 52.4
Random tokens 68.6 60.0 51.7

data and BF16-generated data from RL prompts both achieve near-BF16 performance, demonstrating
that synthetic data is highly effective for QAD. Interestingly, using all generated samples (including
incorrect ones) performs better than using only correct samples, suggesting that incorrect generations
also provide useful information for distillation. Even with completely random tokens, QAD maintains
comparable performance to the PTQ baseline without breaking the model, demonstrating remarkable
stability.

For Nemotron 3 Nano, we observe similar robustness across different data sources (SFT data, RL-generated
data, and their mixtures), with all achieving comparable performance (see Appendix B for details). These
results demonstrate that QAD is remarkably robust to data source and quality.

4.2. Learning Rate

QAD requires careful learning rate selection, with different optimal ranges depending on the original
training. Overall, we recommend a learning rate between 1e-5 to 1e-6.

For SFT-trained models, we find that using learning rates at or below the original post-training learning
rate works best. As shown in Tables 6 and 7, Nemotron Nano 9B V2 achieves optimal performance at

Table 6 | Learning rate sensitivity of QAD for AceReason Nemotron 1.1 7B (RL-heavy) and Nemotron
Nano 9B V2 (SFT-heavy). For AceReason, the optimal LR (1e-5) is notably higher than standard RL
rates, while for Nano V2 9B, increasing the learning rate above the original SFT LR (1e-6) degrades
performance or causes unstable training.

Model Learning Rate AIME24 AIME 25 LiveCodeBench

1e-6 70.8 61.0 52.6

AceReason Nemotron 1.1 7B 5e-6 71.0 60.9 53.2
1e-5 71.7 62.0 53.3
1e-4 72.4 61.8 53.0

Nemotron Nano 9B V2 1e-6 80.4 71.5 67.8
5e-6 80.0 71.0 66.8
1e-5 80.8 69.4 67.4
1e-4 78.8 65.2 64.0
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Table 7 | Learning rate sensitivity for Nemotron Nano 12B v2 VL (SFT-trained). The model achieves
optimal performance at LR of 2e-6, which is 10× lower than its original SFT LR (2e-5).

Learning Rate AI2D ChartQA DocVQA InfoVQA OCRBench TextVQA

1e-4 67.0 76.0 75.0 47.6 685 70.6
2e-5 85.3 87.6 91.6 72.2 820 82.8
2e-6 87.1 89.7 94.0 78.9 857 84.7

1e-6 (matching its original SFT learning rate), while Nemotron Nano 12B v2 VL performs best at 2e-6
(10× lower than its original SFT learning rate of 2e-5). Higher learning rates degrade performance or
even diverges, likely because these models are already well-converged on the SFT data distribution after
post-training.

For RL-trained models, the situation is notably different. Since the final RL stage shifts the model away
from the cold-start SFT data distribution, QAD benefits from larger learning rates. Table 6 shows that
for AceReason Nemotron, the optimal QAD learning rate is 1e-5, which is substantially larger than typical
RL learning rates (∼1e-6) (Shao et al., 2024b; Luo et al., 2025; Chen et al., 2025a).

Table 8 | KL divergence vs. MSE on different models. KL divergence consistently outperforms MSE.

Model Loss GPQA-D AIME24 AIME25 LiveCodeBench

AceReason Nemotron 1.1 7B KL-Div / 71.7 62.0 53.3
MSE / 71.7 60.1 52.4

Nemotron Nano 9B V2 KL-Div 62.7 80.4 71.5 67.8
MSE 60.3 80.0 71.5 66.7

4.3. Additional Choices

KL Divergence vs. MSE. We use KL divergence as the distillation loss for QAD, which is the
standard choice for matching probability distributions. While other distance metrics such as MSE on
logits could theoretically be used, Table 8 shows that KL divergence consistently outperforms MSE across
benchmarks. This is likely because KL divergence is better suited to measure distributional differences
and provides better gradients for probability matching.

Table 9 | Results of Nemotron Nano 9B V2 NVFP4
distilled by different teachers. Using the original
model as teacher outperforms using a larger teacher.

Teacher AIME24 AIME25 LiveCodeBench

9B BF16 80.4 71.5 67.8
12B BF16 80.2 69.8 66.7

Using a Larger Teacher. Unlike traditional
knowledge distillation where a larger teacher trans-
fers knowledge to a smaller student, QAD uses the
original BF16 model as the teacher to recover its
exact distribution. While using a larger teacher
from the same model family is feasible, as they
typically trained with similar data and techniques.
We tested this on Nemotron Nano 9B V2 using
both the original 9B BF16 teacher and a larger
12B BF16 teacher. Table 9 shows that the 9B
teacher outperforms the 12B teacher, One potential reason is that adapting to a different distribution
requires more triaining data compared to typical QAD. For efficient accuracy recovery, we still recommend
using the original model as the teacher.

© 2026 NVIDIA. All rights reserved. 9
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5. Conclusion

This technical report presents quantization-aware distillation (QAD) as a practical and effective method
for recovering inference accuracy of LLMs and VLMs quantized to NVFP4 format. Through experiments
on Nemotron Nano, Nemotron Nano VL, Llama Nemotron Super, and AceReason Nemotron, we show that
QAD reliably brings NVFP4 models back to near-BF16 accuracy across a wide range of tasks, including
models trained with complex SFT, RL, and model merging pipelines where replicating the original training
procedure is impractical for standard QAT.

Our ablations further demonstrate that QAD is robust to data coverage and quality: it can leverage
partial-domain or synthetic data, and remains stable even when trained on random tokens. Combined
with modest data and compute requirements compared to original post-training, these properties make
QAD a practical default for NVFP4 accuracy recovery when PTQ alone is insufficient. The NVFP4 QAD
checkpoints and code are available at the links provided in the abstract, enabling practitioners to adopt
these techniques in real deployments.

© 2026 NVIDIA. All rights reserved. 10
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A. Llama Nemotron VL results

Nemotron Nano 12B v2 VL is a VLM model that undergoes a single SFT stage after pre-training. unlike
other post-trained LLMs, QAT for this model achieves comparable accuracy to QAD. We believe this is
attributed to the simple training pipeline and also the small accuracy drop from PTQ.

Table 10 | Accuracy comparison of different methods on Llama Nemotron Nano 12B v2 VL with AI2D (Kem-
bhavi et al., 2016), ChartQA (Masry et al., 2022), DocVQA (Mathew et al., 2021b), InfoVQA (Mathew
et al., 2021a), OCRBench (Liu et al., 2024a), and TextVQA (Singh et al., 2019)

Method AI2D ChartQA DocVQA InfoVQA OCRBench TextVQA

Baseline 87.3 89.7 94.3 79.3 855 85.2
PTQ 86.8 89.6 93.8 78.2 850 84.8
QAT 86.5 89.8 93.7 78.3 848 84.8
QAD 86.7 89.4 93.9 78.4 858 85.2

B. Nemotron 3 Nano Data Quality Ablation

For Nemotron 3 Nano, we test QAD with three different data sources: (1) cold-start SFT data only, (2)
BF16-generated data from RL prompts only, and (3) a mixture of both. Table 11 shows that all three
data sources achieve similar performance, with the SFT+RL mixture performing slightly better.

Table 11 | Impact of training data on QAD for Nemotron 3 Nano 30B-A3B. All three data sources achieve
comparable performance, demonstrating QAD’s robustness to data composition.

Training data AA-LCR AIME25 GPQA-D LiveCodeBench-v5 SciCode

BF16 Baseline 35.9 89.1 73.0 72.1 33.0
NVFP4 PTQ 31.3 85.0 71.6 68.9 30.5

SFT data 32.6 86.0 72.7 70.0 31.7
Generated from RL prompts 34.0 82.7 73.9 70.4 33.1
SFT+RL generations mixture 34.3 87.9 72.7 68.9 32.3

C. PTQ for Large Models

An empirical finding is that larger LLMs are more robust to quantization. In Table 12, we show one
example each for NVIDIA trained models and community models. More results and quantized checkpoints
can be found under HuggingFace - NVIDIA collections.

Table 12 | PTQ results on large models (hundreds of billions of parameters). Large models are robust to
NVFP4 PTQ, achieving near-original accuracy without any fine-tuning.

Model Method MATH500 AIME24 GPQA-D GSM8K

Llama Nemotron
Ultra V1 (253B)

BF16 96.6 75.0 75.7 /
NVFP4 PTQ 96.2 76.0 74.8 /

DeepSeek R1
(671B)

Official FP8 95.4 80.0 69.7 96.3
NVFP4 PTQ 94.2 80.0 69.2 96.1
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Figure 2 | Comparison of quantization-aware training (QAT) and native quantized training. QAT only
quantizes the forward pass for inference recovery, while native quantized training quantizes all three
GEMMs (Fprop, Wgrad, Dgrad) to reduce training cost. QAD has a similar compute graph as QAT.

D. Comparison of QAT/QAD with native quantized training

Native quantized training traces its origins to mixed precision training (FP16/BF16), with both
approaches sharing the primary goal of reducing computational cost during training. Native quantized
training is primarily used during pretraining, where training is compute-bound since batch sizes can be
made arbitrarily large. The core idea is to quantize three GEMMs: forward propagation (Fprop), weight
gradient (Wgrad), and data gradient (Dgrad). To perform these GEMMs in low precision, all three of
their inputs (activations, weights, and output gradients) must be quantized. Examples include DeepSeek
V3’s FP8 training (DeepSeek-AI, 2024) and recent NVFP4 and MXFP4 pretraining (NVIDIA, 2025;
Chmiel et al., 2025; Chen et al., 2025b; Rouhani et al., 2023). These methods focus on reducing the cost
of pretraining frontier models from scratch.

QAT/QAD select the quantization targets similarly, as both of them quantize weights and/or activations
while leaving gradients in high precision. As a result, the two GEMMs (Wgrad and Dgrad) in backward
pass cannot be calculated in lower precision. Figure 2 illustrates the key difference between QAT and
quantized training.
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