
Avatar Fingerprinting for Authorized Use of Synthetic Talking-Head Videos

Ekta Prashnani Koki Nagano Shalini De Mello David Luebke Orazio Gallo
NVIDIA

{eprashnani, knagano, shalinig, dluebke, ogallo}@nvidia.com

Abstract

Modern generators render talking-head videos with im-
pressive levels of photorealism, ushering in new user expe-
riences such as videoconferencing under constrained band-
width budgets. Their safe adoption, however, requires a
mechanism to verify if the rendered video is trustworthy.
For instance, for videoconferencing we must identify cases
in which a synthetic video portrait uses the appearance of
an individual without their consent. We term this task avatar
fingerprinting. We propose to tackle it by leveraging fa-
cial motion signatures unique to each person. Specifically,
we learn an embedding in which the motion signatures of
one identity are grouped together, and pushed away from
those of other identities, regardless of the appearance in
the synthetic video. Avatar fingerprinting algorithms will
be critical as talking head generators become more ubiqui-
tous, and yet no large scale datasets exist for this new task.
Therefore, we contribute a large dataset of people deliver-
ing scripted and improvised short monologues, accompa-
nied by synthetic videos in which we render videos of one
person using the facial appearance of another1.

1. Introduction
Recent face portrait generators can synthesize real-time

talking-head videos hardly distinguishable from real ones.
Despite the risks for visual disinformation it poses, the le-
gitimate use of synthetic avatars will become ubiquitous,
bringing benefits to a myriad of applications ranging from
personalized avatars to AR filters for selfie videos.

In the context of video conferencing, for instance, in-
stead of sending the entire video of a person talking, we
can synthesize a video on the receiver’s end using a single
frame to specify the target identity, together with some com-
pact information about the motion of the driving video, thus
saving valuable bandwidth [43]. To enable safe use in such
cases, the relevant question is no longer whether a video is
“real” or not, but whether it is “trustworthy” or not. That is,

1Project page: https://research.nvidia.com/labs/nxp/
avatar-fingerprinting/
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Figure 1: Talking head generators produce realistic videos
of a target identity from driving videos of different identi-
ties. Our method extracts identity-agnostic temporal facial
features and learns an embedding in which videos driven
by one identity fall close to each other and far from those
driven by other identities, regardless of the appearance.

we want to determine if the person driving the video (ID1 or
ID2 in Figure 1) is authorized to control the likeness, or the
appearance, of the synthetic video portrait (target identity in
Figure 1). We call this novel task avatar fingerprinting.

To perform avatar fingerprinting, we leverage a simple
but fundamental observation: each person shows unique fa-
cial motion idiosyncrasies when talking and emoting. For
instance, someone may raise one of her eyebrows more
than the other, or shake their head more often while talk-
ing. These “dynamic identity signatures” [38] have been
shown to carry enough information for humans to recog-
nize other individuals, even when the physical appearance
of their face is altered [38, 22, 30]. This makes them attrac-
tive for our task, as they are derived solely from the driving
identity of an avatar, regardless of the appearance of the
generated video.

Fortunately, the level of sophistication of modern
talking-head generators allows them to capture even sub-
tle facial motions—and in the future they will improve even
further. To leverage this observation, then, we extract facial
landmarks and their temporal dynamics from the video. We
then use a novel contrastive loss that allows us to uniquely
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Figure 2: We introduce a large dataset of real and synthetic talking-head videos. We capture 46 subjects talking in both
scripted and free-form settings. To encourage a natural performance in a realistic setting, we record the subjects while
videoconferencing with each other (left). We also synthesize talking-head videos by using driving identities from both our
own data and other datasets (see Section 4.2). In the synthetic videos on the right, each row corresponds to a driving identity
(IDi→(·)) and each column corresponds to a different target identity ((·)→IDi). The videos in which driving and target identity
match are self-reenacments videos, the rest are cross-reenactments.

fingerprint them using a dynamic identity embedding space
of the talking head (see Figure 1). In this space, the embed-
dings corresponding to one driving identity across multiple
videos and target identities stay close to each other, and far
from those of other driving identities.

Avatar fingerprinting is a new task, and no existing
datasets completely serve its training and validation require-
ments. For a comprehensive evaluation of our algorithm, we
desire videos of multiple subjects delivering both scripted
and natural monologues, captured under typical conditions,
such as varying video quality and gaze direction. We
also need synthetic talking-head videos in which driving
and target identities are different (cross-reenactment), and
the case in which they match (self-reenactment). Un-
fortunately, existing datasets of real videos provide either
scripted [33] or natural [46] monologues, and synthetic
video datasets focus either on self-reenactment [18] or on
cross-reenactment [31, 39], but not both. Therefore, we col-
lected a large dataset of 46 subjects delivering both scripted
and free-form monologues, complete with synthetic videos
of self- and cross-reenactment [43]. We think that au-
thenticating the identity of a synthetic video regardless of
the target identity will be increasingly critical and hope to
aid community progress in this direction by releasing our
dataset. Therefore, we took particular care in designing the
capture protocol, including its legal and privacy-related as-
pects. In summary:

• We introduce the task of avatar fingerprinting, which
focuses on verifying the driving identity of synthetic
talking-head videos, rather than detecting them as syn-
thesized.

• We release the first large dataset of subjects delivering
scripted and natural monologues, complete of self- and
cross-reenactment synthetic videos.

• We propose a baseline solution to this novel task in the
context of video conferencing by extracting person-
specific motion signatures.

2. Related Work
Our avatar fingerprinting task addresses the authentica-

tion of synthetic media, but we do not focus on active foren-
sics techniques such as watermarking. While numerous
efforts exist in detecting deepfakes, to our knowledge, no
previous work has addressed authorized use of synthetic
talking-head videos as we do. While we do not focus on
the detection of deepfakes, our method is closely related to
a family of deepfake detection techniques that operate based
on person-specific identity features, such as the behavioral
features of a face. While we focus on verifying talking head
videos, we do not assume anything specific about the talk-
ing head generators and the same algorithm can be applied
to other types of generators in the future.

Learning-based Attribution of Synthetic Media.
Learning-based approaches have been used to learn pat-
terns and common characteristics in images or videos to
identify the origin and authenticity of the media, or to
determine if it has been manipulated or altered in some
way. Previous work [6, 26] used a pre-trained GAN
generator to attribute a synthesized image to its generator
by projecting the image to the generator’s latent space. In
this case, a perfectly inverted image indicates the image
is generated by the generator, while a real image is less
invertible. Based on this, GAN-Scanner [47] used a variant
of StyleGAN2-based inversion to detect images generated
by never-before-seen GANs. A learning-based approach
was also used to learn camera fingerprints associated with
videos recorded by physical cameras to determine whether
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a media is manipulated [15]. Another line of work to verify
the authenticity of media is by embedding imperceptible
watermarks into images and videos [19, 7, 42, 34]. A
previous work [48] showed that they can embed invis-
ible watermarks into training data and a GAN model
trained with it can successfully transfer watermarks to the
generated images, allowing attribution of the generator.
More recent work [49] showed a framework to embed
watermarks in the form of a conditional GAN model for
scalable fingerprinting of generated images. While these
are viable solutions, our method focuses on a passive
forensics technique that operates given a probe video and a
set of verified user videos.

Deepfake Detection Based on Identity-Specific Features.
A family of deepfake detectors use identity-specific fea-
tures to verify whether the person depicted in a video is
who it purports to be, by posing the detection problem as
an identity-recognition problem. The advantage of this ap-
proach is that the forensics method only needs to be trained
with pristine videos and does not need to be trained against
specific generators, enabling generalization to unseen gen-
erators. Agarwal et al. [4] is the first to exploit person-
specific patterns in facial expressions and poses as the dis-
tinctive identity signature to detect fake videos. Follow
up works explored other types of person-specific soft bio-
metric features, such as, vocal mannerisms [10], phoneme-
visemem consistencies [3], word-facial expression consis-
tencies [5], and dynamics of ears [2]. While many of these
works need person-specific training, previous works [32, 1,
14, 13] extended this idea to train a CNN-based detector
using a large-scale in-the-wild video data [12] and variants
of contrastive learning [40, 44, 20, 28]. Agarwal et al. [1]
combined static facial appearance using a facial recogni-
tion model and dynamic facial behaviors using a CNN, and
showed that this approach is effective for detecting face-
swap deepfakes. ID-Reveal [14] used facial shapes and
motions encoded in a low-dimensional space of a 3D mor-
phable model [8] and demonstrated the ability to handle
both face-swapping and talking-head deepfakes. Beyond
these dynamic facial identity features, previous works ex-
plored temporal inconsistencies of face identities within a
video [32] and identity consistencies of inner and outer face
regions [16]. While these detection approaches aim for dif-
ferentiating real and synthetic videos, our avatar fingerprint-
ing task requires determining a driver among the synthetic
videos.

Dynamic Facial Identity Signatures. In ongoing re-
search on how humans recognize and attribute faces, cog-
nitive scientists have studied the impact of “dynamic facial
identity signatures” (i.e., characteristic or identity-specific
movements of a face) for identity recognition, especially

when limited appearance-specific “static identity” cues are
available [38]. In one experiment, scientists projected fa-
cial animations generated by human actors onto a computer-
generated average head [22]. Subjects were able to learn
to discriminate individuals based solely on facial motion.
In another, subjects correctly attributed animations of syn-
thetic faces and to their morphed versions [30]. These stud-
ies have focused on the learnability of dynamic signatures
by human observers and observed a positive trend when dy-
namic behavior was the most or the only reliable cue to
identity. Most recent work performed human user studies in
the context of deepfake videos and suggested that behavior
signatures could be used to distinguish synthesized videos
regardless of their visual appearance [37]. We wish to seek
such “dynamic facial identity signatures” in our efforts to
fingerprint a synthetic talking head. This will allow us to
abstract away the appearance of an avatar, and therefore, at-
tribute an avatar to the driving identity instead of the target
identity shown in the avatar.

Talking Head Generators. Given a target portrait and
a driving video of a user, modern talking head genera-
tors [45, 24, 41, 51, 50, 27, 17, 43, 25] reenact the tar-
get portrait by using motions (facial expressions and head
poses) from the driving video. Instead of using a single tar-
get frame, talking head generators may use an image set to
capture better person-specific appearance and unseen back-
ground [35]. To transfer the motions from the driver video,
most of these generators rely on additional deep neural net-
works to decompose motions from the appearance of the
driving video in a form of appearance-agnostic sparse key-
points and dense motion fields.

3. Terminology
We seek to verify the trustworthiness of a synthesized

talking-head video, termed target video. We assume that
an avatar-generation tool (e.g., [43]) created it by animat-
ing an image (target image) using the expressions and head
poses obtained from another video, which we term the driv-
ing video. We call driving identity the identity of the person
in the driving video, and target identity the identity of the
person in the target image. When driving and target identi-
ties match, the target video is a self-reenactment, while the
case of a driving identity used to animate a different target
identity is cross-reenactment. This allows us to more for-
mally state our goal: we want to verify that a target video
is self-reenactment. With this terminology, we introduce
our dataset, which includes real videos as well as self- and
cross-reenactment videos.

4. Dataset
Recall that avatar fingerprinting is not about detection

of synthetic media. Rather, we already know a video to
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Dataset Subjects Free or
Scripted Performance (S)elf- or

(C)ross-reenact.?
RAVDESS [33] 24 Scripted Prescribed Real only
CREMA-D [11] 91 Scripted Prescribed Real only

VFHQ [18] 36 Scripted Prescribed Real + (S) of [33]
CDFv2 [31] 59 Free Natural Real + (C)

Ours 46 Both Natural Real + (S) + (C)

Table 1: Comparison with existing datasets. “Performance”
refers to whether the subjects were asked to use a prescribed
emotion (e.g., anger). Our dataset is the first to have both
scripted and free-form monologues, and self- and cross-
reenactments to accompany the real videos.

be synthesized and seek to verify the driving identity, to
enable its safe use. Therefore, we need a dataset compris-
ing of both self- and cross-reenacted videos. Alas, existing
datasets only offer real, self-reenacted, or cross-reenacted
videos, but not all at the same time, see Table 1. We in-
troduce a large dataset of real and synthetic talking-head
videos that fills this void. Figure 2 shows an overview of
how the videos are captured and synthesized.

4.1. Real Data Capture

Capturing videos of monologues delivered by different
subjects for the purpose of identity verification introduces
two conflicting goals. On the one hand a controlled evalu-
ation of the trained models requires predictability of what
is spoken to prevent identification algorithms from latching
onto the spoken content itself. On the other, we want the
subjects to act as they would in a casual conversation, rather
than with a prescribed emotion, to capture their uniquely
identifying mannerisms. We address this tradeoff by record-
ing the subjects while videoconferencing with each other,
which creates the impression of being in a natural conversa-
tion. This differs from existing datasets, in which the sub-
jects are recorded while looking at the camera. We also
design two distinct recording strategies: a free-form stage
where the subjects are given only general guidance on the
topics, and a more controlled scripted stage, see Figure 2(a).
This paradigm fits well with our main application, which is
avatar fingerprinting for video conferencing. We captured
our videos with minimal instructions on how to setup the
video conference, allowing for the variability one can ex-
pect in a natural setting. For example, the backgrounds
present various degrees of clutter, and the available band-
width often affects the video compression. This was by de-
sign: we want the dataset to be as challenging as real-life
scenarios. In total we record 46 subjects of diverse genders,
age groups, and ethnicity.

Stage I: Free-Form Monologues. In this first stage, the
two subjects on the call alternate between asking and an-
swering seven pre-defined questions. The questions are de-
signed to avoid sensitive or potentially inflammatory topics.

This is critical because we later use sentences spoken by
one individual to animate the video of a second individual,
quite literally putting words in their mouths. Questions in-
clude topics such as one’s favorite family holiday, or their
least favorite house chore. (The complete list of questions
is in the Supplementary.) To further create a natural interac-
tion, the subject listening is encouraged to actively engage
with the one speaking (e.g., by nodding or smiling), while
remaining silent.

Stage II: Scripted Monologues. For this stage, we pre-
pared thirty short utterances consisting of two or three sen-
tences each. We chose this length to allow for memoriza-
tion, while still providing enough content to trigger facial
expressions. However, to avoid inducing unnatural expres-
sions, we did not prescribe specific emotions for each ut-
terance. For instance, we did not ask to express anger for
a sentence, but we did choose sentences that may naturally
evoke it, and used punctuation to encourage it, e.g. “Will
you please answer the darn phone? The constant ringing
is driving me insane!” We instructed the subjects to split
their screens to show both this list and the call video, see
Stage II in Figure 2(a). More details, including the full list
of utterances can be found in the Supplementary.

Privacy Considerations. Face videos are sensitive data,
since a person’s face is a key identifier. We took on this task
with care to ensure good data governance. Our proposal for
the data capture protocol was approved by an Institutional
Review Board (IRB). Our goal was to provide exhaustive
and transparent information to participants about our data
capture procedure, future plans with the dataset (includ-
ing our intent to create synthetic data samples), and con-
ditions under which future research would be conducted—
by us and interested third parties. The participants were also
asked to confirm whether their data can be used for research
beyond identity validation, and whether it could be shown
in public disclosures. Each file in our dataset is annotated
with their responses.

4.2. Synthetic Talking-Head Videos

In addition to the videos described in Section 4.1, we
also need synthetic videos to train and evaluate our avatar
fingerprinting algorithm. Existing datasets focus either on
self-reenactment [18] or on cross-reenactment [31, 39], but
not both. Our dataset fills this void and even uses identities
from one dataset to synthesize target identities from differ-
ent datasets.

Specifically, we pool the 91 identities from the original
videos of CREMA-D [11], the 24 identities from those of
RAVDESS [33], and the 46 from our own dataset, for a total
of 161 unique identities I. Recall that we have several real
videos for each identity IDi ∈ I. To avoid a combinatorial
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Figure 3: We extract landmarks from the frames of a
talking-head clip, compute their normalized pairwise dis-
tances, and concatenate the frame-wise features. We then
learn an identity embedding using a loss that pulls closer
features of videos driven by the same identity and pushes
away those driven by others. IDi → IDj indicates a video
of identity j driven by identity i.

explosion of synthetic videos, for all pairs of identities IDi

and IDj , we use IDj as the target identity and we randomly
select 8 of the videos of IDi to generate 8 cross-reenactment
videos, {IDk

i → IDj}k={1,..,8} (all 8 share the same target
image). We also generate a self-reenactment video for each
original video. We use Face-vid2vid for synthesizing the
videos [43]. We chose this portrait generator because it is
the state-of-the-art and it preserves the identity-specific fa-
cial motion dynamics, as needed to perform avatar finger-
printing. Nevertheless, the reconstruction is not perfect; for
instance, in the third row of Figure 2(b) the person’s eyes are
squinted in the driving video (ID3), but completely closed
in all reenactments—including in self-reenactment. In to-
tal we generate ∼218,000 cross-reenactment videos. More
details are in the Supplementary.

5. Method

Overview. We seek to verify the driving identity of a syn-
thetic video, independently of the target identity. We lever-
age the finding from cognitive science research that each
person emotes in unique ways when communicating, and
that this signal is sufficient for recognition, even when the
actual appearance is artificially corrupted [38, 22, 30]. We
note that these dynamic features are not a bi-product of the
generator, and come from the driving identity itself: they
may be the way a person smiles, or the way she frowns.
Notably, they are distinct from the temporal artifacts intro-
duced by the generator, and that existing algorithms use to
detect whether a video is synthetic or real [21].

An overview of our algorithm for avatar fingerprinting is
shown in Figure 3. To capture these expressions, we extract
the relative position of facial landmarks over time from the
input video, as shown in Figure 3(a) (Section 5.1). We then
project these temporal signatures onto a dynamic identity

embedding in which features belonging to the same driv-
ing identity are close to each other regardless of the target
identity used to generate the video, i.e., independently of
appearance (Figure 1). To learn this embedding we train a
neural network with a novel contrastive loss that pulls to-
gether all embedding vectors of synthetic videos driven by
an individual, while pushing away the embedding vectors of
videos driven by all others individuals (Section 5.2). More
details on the implementation are in Section 5.3.

5.1. Dynamic Facial Identity Features

Our first step is to extract temporal features that summa-
rize short segments of the video we wish to fingerprint. For
each frame we want to extract features that must:

1. have minimal dependency on the appearance of the
face in the video (that is, the target identity),

2. reflect the dynamics of the expressions, and
3. can capture subtle expressions.

One choice could be per-frame 3DMM features [9]: a
strategy also used by Cozzolino et al. to detect synthetic
videos [14]. However, we empirically observe that 3DMM
features are not sufficiently expressive, and do not satisfy
requirement 3 (see ablation experiments in Section 6). We
observe a similar behavior for action units [4]. Facial land-
marks [23] address this issue, but are sensitive to the shape
of the face in the video, and thus to the target identity.

To leverage the expressiveness of facial landmarks while
abstracting from the underlying facial shape, we propose
to compute the pairwise normalized Euclidean distance be-
tween each of the landmarks of a frame. We concatenate
these distances into a single vector for the frame, df . A
small subset of the landmark features and their distances
are shown in Figure 3(a).

We then break the input video into clips, which are se-
quences consisting of F frames and offset by one frame
(e.g., [1,F], [2,F+1], etc.), and concatenate the vectors from
all the frames in each clip. Using the change in the relative
position of the landmarks over a short period of time (the
length of a clip) allows us to capture temporal dynamics
with minimal dependence on the absolute position of each
landmark, i.e. independently of the shape of the face.

We show empirically that our features are a good repre-
sentation for our task, and can even improve the results of
baseline state-of-the-art methods (Section 6).

5.2. Dynamic Identity Embedding Contrastive Loss

While the features described in Section 5.1 extract low-
level motion dynamics, they cannot be used directly to dis-
ambiguate two target videos based on the driving identity.
We tackle this problem by learning a dynamic identity em-
bedding, a space where videos driven by one subject map to
points that are close to each other and far from the videos
driven by anybody else.
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Specifically, we use a temporal CNN to extract an em-
bedding vector from a clip, which, as described before, is
a short segment of an input video. To train the network we
use a dataset of synthetic videos driven by different identi-
ties. We denote as Ck

ID1→ID2
(t) the embedding produced by

the network for the clip starting at time t in the k-th video,
of a target identity ID2 driven by identity ID1. As stated
above, we have two main objectives, which we capture with
the following two terms in our proposed loss function.

We Want to Pull Together All the Videos Driven by ID1.
To achieve this, we define the following term:

Nj,ID1,ID2(t) =
∑
IDl,k

max
n

s(Cj
ID1→ID2

(t), Ck
ID1→IDl

(n)),

(1)
where s(·, ·) = e−∥·,·∥2

is a similarity metric. Intuitively,
Equation 1 takes two videos, j and k, both driven by ID1.
Given a clip starting at time t in the first video, it looks for
the most similar clip in the second video. Since the driving
identity is the same for both videos, Equation 1 encourages
an embedding where clips that capture a similar expression
are closer to each other. Equation 1 is high even if only
one clip from video k has a similar temporal signature to
Cj

ID1→ID2
(t). That is because even just one occurrence of the

same expression is evidence that the driving identity may
be the same. Of course other driving identities may use
similar expressions and we address that with the loss term
described below. Additionally, we note that k spans the set
of all videos driven by ID1, and IDl spans all identities,
including IDl = ID1 and IDl = ID2.

We Want to Push Away Videos not Driven by ID1. We
define the following term:

Qj,ID1,ID2
(t) =

∑
IDl ̸=ID1,k

max
n

s(Cj
ID1→ID2

(t), Ck
IDl→ID2

(n)),

(2)
where, similarly to Equation 1, we take a clip from video
j, and look for the most similar clip in video k. However,
this time the two videos share the same target identity, but
are driven by different identities: we want all the videos
driven by identities different from ID1 to be pushed away
from those driven by ID1, including videos where ID1 is the
target identity. Note that ID2 spans all identities, including
ID2 = ID1 and ID2 = IDl.

Combining Equations 1 and 2, we write the probability
that the embedding vector Cj

ID1→ID2
(t) lies close to the em-

bedding vectors for all video clips driven by ID1 and far
from all the videos driven by others as

pj,ID1,ID2
(t) =

Nj,ID1,ID2(t)

Nj,ID1,ID2
(t) + Qj,ID1,ID2

(t)
, (3)

and the complete loss term as

L =
∑

j,ID1,ID2,t

−log(pj,ID1,ID2
(t)). (4)

5.3. Implementation

Parameter Choices. To extract the per-frame dynamic fa-
cial identity features df , we first estimate 126 facial land-
marks for each frame using a pre-existing implementa-
tion [23]. We compute the Euclidean distances between all
possible pairs of landmarks, to obtain a 7875-dimensional
vector for each frame. For all of the 161 identities in the
synthetic component of our dataset, we scan through orig-
inal videos to isolate a frame for each subject that shows
a neutral head pose and expression (frontal head pose, no
expression). The square root of the area occupied by the
bounding box of their face in this neutral frame is used nor-
malize the 7875 values of the pairwise distance vector, re-
sulting in df . The clip duration F is set to 51. A shorter clip,
while allowing computational efficiency, might not capture
meaningful expressions. In contrast, longer clips might cap-
ture multiple expressions making it tough to match to other
clips. After experimenting with different values for F (see
supplementary), we chose F = 51 as it allowed us to learn a
meaningful dynamic identity signature.

Training Details. Temporal convolutional networks that
operate on intermediate representations of frames have
shown remarkable success in modeling facial behavior and
its anomalies [21, 36, 14]. We use one such architecture, the
temporal ID network [14], after adapting the input layer to
match our input feature dimensions and, when needed, input
clip duration. This input tensor is obtained by concatenat-
ing df across F frames of the clip, to obtain a tensor of size
7875 × F. The neural network outputs a 128-dimensional
embedding vector for each clip, which is trained to cluster
based on the driving identity (Section 5.2). In each batch,
we include 8 unique identities. For each identity IDi, the
pull term (Equation 1) comprises of 16 clips: 8 are self-
reenactments, randomly sampled from the full set, and the
remaining are cross-reenactments with IDi as the driving
identity. These cross-reenactments can potentially show the
same words being spoken by different target identities. This
is crucial: it allows the neural network to learn to to pull to-
gether videos based purely on the facial motion, regardless
of the appearance of the video. The push term (Equation 2)
for IDi is composed of clips with the remaining 7 identities
in the batch serving as driving identities (8 clips per driving
identity). Therefore, for each identity, 72 clips are included
in a batch. The training is performed for 100,000 iterations,
with Adam optimizer [29] and a learning rate of 1e−4. We
will discuss additional details in the supplementary.

6



0 0.5 1
0

0.5

1

Ours – AUC = 0.810
Agarwal et al. [4] – AUC = 0.726

ID-Reveal [14] – AUC = 0.720

Figure 4: ROC curves for our method and two baselines.

Training, Validation, and Test Datasets. We split the
training, validation, and test datasets based on identities.
Out of the total 161 identities (pooling together the iden-
tities from our dataset, RAVDESS, and CREMA-D— see
Section 4.2), we reserve 35 for testing, 14 for validation and
112 for training. We ensure that there is no cross-set cross-
reenactments: that is, identities in the training set only drive
other training-set identities (and similarly for validation and
test set). This allows us to evaluate the generalizability of
our method to novel facial mannerisms that are not seen
during training, as well as novel target identities.

6. Evaluation

We begin by evaluating qualitatively our method’s abil-
ity to extract embedding vectors based on the driving iden-
tity. Figure 5 shows a set of self- and cross-reenacted clips
(please view the animation in a media-enabled viewer). For
each row, we take one identity as reference and we compute
the embedding vectors of clips that use it both as driving
and target identity. We then compute the average Euclidean
distance of the resulting embedding vectors against those of
all other clips driven by the same reference identity. We
note that the average distance d is lower when the driving
identity matches the reference identity (first two columns).
We also note that the distance between the clips in the first
two columns is similar: this confirms that it is a function
of the motion, rather than the appearance. When the driv-
ing identity changes, the average distance increases, even if
the target identity matches the reference identity, which is
precisely our goal. More results are in the Supplementary.

To evaluate our approach more formally, we use 35
unique identities not used as driving or target identities in
the training set. One at a time, we treat each identity IDi

as target and synthesize cross-reenactments using all the re-
maining identities as drivers. This is the set of “unautho-
rized” synthetic videos for IDi. The self-reenacted samples
for IDi form the “authorized” set. Note that there are sev-
eral self-reenacted videos of IDi, one per original video of
IDi.

For each target identity IDi, we extract the dynamic iden-
tity embedding vector of all the clips in the pool of its self-

Reference Identity = ID1

ID1 → ID1 d=.730 ID1 → ID2 d=.729 ID2 → ID1 d=.835 ID3 → ID1 d=.850

Reference Identity = ID4

ID4 → ID4 d=.630 ID4 → ID2 d=.630 ID5 → ID4 d=.718 ID6 → ID4 d=.718

Figure 5: Animated figure. Open in a media-enabled
viewer like Adobe Reader and click on the inset. Our
embeddings capture the dynamics of an expression, rather
than the appearance of the face. For each row, we pick a
reference identity. The green box indicates reenactments
driven by the reference identity, the red and blue are cross-
reenactments of the reference identity. We compute the av-
erage distance of each clip shown here against all other clips
driven by the reference identity. The average distance to the
other clips of the reference identity is consistent for a given
motion, and lower (better) when the reference identity is
driving as compared to the cross-reenactments that use the
reference identity as target.

and cross-reenacted videos, and compute their Euclidean
distances. That is, for clip k we compute

d(Ck
IDi→IDi

, Cl
IDi→IDi

), ∀l ̸= k, and (5)

d(Ck
IDi→IDi

, Cl
IDj→IDi

), ∀l ̸= k, ∀i ̸= j. (6)

We threshold these distances for each target identity to get
an ROC curve, and average across the target identities to get
the overall area under the curve (AUC). We note that this
AUC measures one model’s ability to classify a synthetic
video as self-reenactment or as cross-reenacted.

6.1. Comparisons with Existing Methods

Avatar fingerprinting is a novel task, and no existing
methods directly address it. The closest related works aim
at detecting real versus synthetic media. As discussed in
Section 2, some of these detectors learn identity-specific
features such as facial expressions and head poses [4], or
facial shapes and motion [14] and can serve as baselines
for the task of avatar fingerprinting with some adaptation.
The work by Agarwal et al. trains a model to detect syn-
thetic videos of a specific identity [4]. To adapt it to our
task, we train 35 different models, one for each identity
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in the evaluation, by splitting the corresponding original
videos in two subsets. We then test each model on the self-
and cross-reenactment videos of the corresponding identity.
ID-Reveal, trained on a large-scale dataset, learns an em-
bedding space where real videos of a specific identity are
grouped together [14]. Since the method shows good gen-
eralization to new identities, for the task of synthetic me-
dia detection, we directly use the pre-trained model on our
data to detect, once again, self- versus cross-reenactment.
Figure 4 shows the ROC curve for our method compared
to these baselines. Our method (AUC=0.810) outperforms
by a wide margin both ID-Reveal (AUC=0.720), and the
method by Agarwal et al. (AUC=0.726). We also note that,
unlike ID-Reveal and our method, Agarwal et al. uses a dif-
ferent model for each identity.

6.2. Ablation Study

Our method outperforms existing baselines by introduc-
ing two novel components: the dynamic facial identity fea-
tures, which capture in a compact and expressive way the
face dynamics, and the loss function, which defines the
shape of the identity embedding. Here we study the contri-
bution of each. We evaluate the contribution of our dynamic
facial identity features by swapping them with 3DMM fea-
tures [8], a popular choice to capture facial dynamics. Since
we use ID-Reveal as our temporal CNN backbone, for this
ablation we use the loss function proposed in their original
paper [14]. We re-train the same network using our features
and observe a jump from 0.677 to 0.727 in terms of AUC.
Upon inspection we notice that the 3DMM features tend to
over-smooth the facial motion, and are unable to capture
subtle dynamics that prove critical to avatar fingerprinting,
and which our features capture (more visual comparison are
in the Supplementary). We also evaluate the contribution of
our identity embedding loss and observe a further improve-
ment. Table 2 summarizes this ablation study. ID-Reveal’s
loss distinguishes between real and synthetic videos. There-
fore, it can be satisfied more easily because of the artifacts
that only affect synthetic videos. Our loss only compares
synthetic videos and, therefore, must latch on the subtle dif-
ferences in self- and cross-reenactment videos: the under-
lying dynamics of the motion.

6.3. Limitations

Our algorithm is less discriminative of subjects that are
less emotive and more neutral most of the times. In the fu-
ture, relying on more granular dynamic signatures that can
extract micro-expressions can help alleviate this. Since our
avatar fingerprinting algorithm relies on facial landmarks,
their robustness affects its accuracy as well. The perfor-
mance of our method degrades when expressions that are
critical to verifying the driving identity are not captured by
the synthetic portrait generator. For instance, if a synthetic

Input Features Loss AUC
3DMM ID-Reveal rec. loss 0.677
LM dist ID-Reveal rec. loss 0.727
LM dist Our loss 0.810

Table 2: Ablation study showing the importance of our in-
put features and loss function.

portrait generator does not animate eyebrows in the ren-
dered video, we cannot discriminate between identities that
differ only in the way they move their eyebrows. Lastly, our
dataset currently features only one type of interaction: one-
on-one conversations. Expanding it to include other forms
of conversational interactions would be beneficial.

7. Societal Impact

We acknowledge the societal importance of introducing
guardrails when it comes to the use of talking-head gen-
eration technology. We present this work as a step to-
wards trustworthy use of such technologies. Nevertheless,
our work could be misconstrued as having solved the prob-
lem and inadvertently accelerate the unhindered adoption of
talking head technology. We do not advocate for this. In-
stead we emphasize that this is only the first work on this
topic and underscore the importance of further research in
this area. Since our dataset contains human subjects’ facial
data, we have taken many steps to ensure proper use and
governance with steps including: obtaining IRB approval,
informed subject consent prior to data capture, removing
subject identity information, pre-specifying the subject mat-
ter that can be discussed in the videos, allowing subjects the
freedom to revoke our access to their provided data at any
point in future (and stipulating that interested third parties
maintain current contact information with us so we can con-
vey these changes to them).

8. Conclusions

Highly photo-real portrait talking-head generators are
becoming increasing beneficial to applications such as
video conferencing. This trend raises the important new re-
search question of how best to also ensure their safe use in
such scenarios. To this end, we investigate the new problem
of avatar fingerprinting to authenticate legitimate talking-
heads created by authorized users. We leverage the fact that
driving individuals have uniquely identifying dynamic mo-
tion signatures, which are also preserved in the videos that
they drive. Since none exists, we contribute a new large
dataset carefully designed to further research on avatar fin-
gerprinting. While our seminal work shows promising re-
sults and establishes a baseline in the field, we hope that it
lays the foundation for much further research on this deeply
impactful topic.
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Nießner, and Luisa Verdoliva. ID-Reveal: Identity-aware
DeepFake video detection. In IEEE International Confer-
ence on Computer Vision (ICCV), 2021. 3, 5, 6, 7, 8, 12

[15] Davide Cozzolino Giovanni Poggi Luisa Verdoliva. Extract-
ing camera-based fingerprints for video forensics. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2019. 3

[16] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Ting Zhang,
Weiming Zhang, Nenghai Yu, Dong Chen, Fang Wen, and
Baining Guo. Protecting celebrities from deepfake with iden-
tity consistency transformer. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 3

[17] Nikita Drobyshev, Jenya Chelishev, Taras Khakhulin, Alek-
sei Ivakhnenko, Victor Lempitsky, and Egor Zakharov.
MegaPortraits: One-shot megapixel neural head avatars.
2022. 3

[18] Gereon Fox, Wentao Liu, Hyeongwoo Kim, Hans-Peter Sei-
del, Mohamed Elgharib, and Christian Theobalt. Video-
ForensicsHQ: Detecting high-quality manipulated face
videos. In IEEE International Conference on Multimedia
and Expo, 2021. 2, 4

[19] Jessica Fridrich. Steganography in Digital Media: Princi-
ples, Algorithms, and Applications. Cambridge University
Press, 2009. 3

[20] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2006.
3

[21] Alexandros Haliassos, Konstantinos Vougioukas, Stavros
Petridis, and Maja Pantic. Lips don’t lie: A generalisable and
robust approach to face forgery detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2021. 5, 6

[22] Harold Hill and Alan Johnston. Categorizing sex and identity
from the biological motion of faces. Current Biology, 2001.
1, 3, 5

9



[23] Sina Honari, Pavlo Molchanov, Stephen Tyree, Pascal Vin-
cent, Christopher Pal, and Jan Kautz. Improving landmark
localization with semi-supervised learning. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2018. 5, 6

[24] Fa-Ting Hong, Longhao Zhang, Li Shen, and Dan Xu.
Depth-aware generative adversarial network for talking head
video generation. 2022. 3

[25] Hui Zhang Jian Zhao. Thin-plate spline motion model for
image animation. 2022. 3

[26] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of StyleGAN. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. 2

[27] Taras Khakhulin, Vanessa Sklyarova, Victor Lempitsky, and
Egor Zakharov. Realistic one-shot mesh-based head avatars.
In European Conference on Computer Vision (ECCV), 2022.
3

[28] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2020. 3

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv, 2014. 6

[30] Barbara Knappmeyer, IM Thornton, and HH Bülthoff. Facial
motion can determine facial identity. Journal of Vision, 2001.
1, 3, 5

[31] Yuezun Li, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-DF:
A large-scale challenging dataset for DeepFake forensics. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2, 4

[32] Baoping Liu, Bo Liu, Ming Ding, Tianqing Zhu, and Xin Yu.
Ti2net: Temporal identity inconsistency network for deep-
fake detection. In IEEE Winter Conference on Applications
of Computer Vision (WACV), 2023. 3

[33] Steven R Livingstone and Frank A Russo. The ryer-
son audio-visual database of emotional speech and song
(RAVDESS): A dynamic, multimodal set of facial and vo-
cal expressions in north american english. PloS one, 2018.
2, 4, 12

[34] Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and
Peyman Milanfar. Distortion agnostic deep watermarking.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020. 3

[35] Arun Mallya, Ting-Chun Wang, and Ming-Yu Liu. Implicit
Warping for Animation with Image Sets. In Advances in
Neural Information Processing Systems (NeurIPS), 2022. 3

[36] Brais Martinez, Pingchuan Ma, Stavros Petridis, and Maja
Pantic. Lipreading using temporal convolutional networks.
In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020. 6

[37] Qiaomu Miao, Sinhwa Kang, Stacy Marsella, Steve DiPaola,
Chao Wang, and Ari Shapiro. Study of detecting behavioral
signatures within deepfake videos, 2022. 3

[38] Alice J O’Toole, Dana A Roark, and Hervé Abdi. Recog-
nizing moving faces: A psychological and neural synthesis.
Trends in Cognitive Sciences, 2002. 1, 3, 5
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Avatar Fingerprinting for Authorized Use of Synthetic Talking-Head Videos
(Supplementary)

A9. Dataset

We now provide additional details for our proposed
dataset, including details about question prompts and sen-
tences spoken in both stages, instructions to the participants,
demographics of the dataset, and other relevant statistics.

General Instructions to Subjects. The subjects were
asked to join pre-assigned Google Meet video calls using a
laptop or a desktop. For the recorded video call, the subjects
were also asked to position themselves so that their face was
centered and parallel to the screen. However, in some cases
with specific video-conferencing setups, this constraint was
only approximately satisfied. Additionally, subjects were
instructed to avoid hand motion since it can occlude their
face, and also excessive body motion that might impair
the visibility of their face. Before beginning each mono-
logue, subjects were asked to speak “start topic” in a loud,
clear voice, and, similarly, the end of each monologue was
marked by the subjects speaking “end topic”. These key-
words allowed for quicker time-stamped transcription to
isolate relevant portions of the Google Meet recordings.
Right after a subject said “start topic”, they were instructed
to pause for a few seconds and look directly at the camera
with a frontal head pose, while holding a neutral expres-
sion. These frames with neutral expressions are crucial for
successful generation of synthetic talking-head videos us-
ing face-vid2vid [43]. Face-vid2vid works by transferring
expression changes from a driving video to the target im-
age. Therefore, it is important that the expression of the
target image and that of the first frame of the driving video
match. Asking subjects to provide a neutral expression be-
fore commencing with their monologues proves to be an
effective way to achieve this: these neutral frames serve
as good target images, while driving videos that start with
these neutral frames allow for effectively animating the tar-
get image showing a similar expression. During the second
stage of the data capture, where we record scripted mono-
logues, subjects were instructed to memorize and speak the
sentences to their recording partner, without referring back
to the printed text from which they memorized the sen-
tences. In case the subject forgot a sentence, they were
instructed to start from the beginning of the sentence set.
The whole recording session with both subjects in a video
call typically lasted an hour, which also included miscella-
neous interactions in between the monologues. The current
dataset release excludes such interactions and only focuses
on data captured for the two stages (Free-Form Monologues
and Scripted Monologues).

Stage I: Free-Form Monologues. Subjects were asked
to alternate between speaker and prompter roles. The
prompter’s task was to ask each of the following questions
to the speaker, and the speaker was instructed to answer
these questions in their natural manner.

1. Describe a day when you had to rush to an appoint-
ment.

2. Talk about an an important milestone you have missed
in the past and your feelings about it.

3. What is your favorite family holiday?
4. How is the weather in your area typically?
5. Is there a household chore you don’t like doing?
6. Tell me about an incident that really surprised you.
7. Tell me about an incident that really scared you.

Stage II: Scripted Monologues. The following sentence
sets were memorized and recited by each subject (alternat-
ing with their recording partner) in the second stage of the
data capture. We did not ask subjects to explicitly demon-
strate specific emotions for any sentence set. Rather, we
chose to allow subjects to perform these memorized sen-
tences in a manner natural to them.

1. My friend has a very cute dog. But, he can be scary
when he barks.

2. Will you please answer the darn phone? The constant
ringing is driving me insane!

3. My aunt was in the hospital for a week. Unfortunately,
she passed away yesterday and I will need some time
to grieve.

4. I hate rushing to get to the airport. The stress is too
much for me to handle.

5. A slice of cake is the perfect ending to a meal.
Wouldn’t you agree?

6. It is going to be great working with you! I am surprised
we didn’t connect sooner!

7. You need to take the trash out right now! Your whole
apartment smells like rotten eggs!

8. My internet connection is unreliable today. I hope it
gets better before my meeting or I will have to call in!

9. I know the deadline is around the corner, but I just
don’t have any updates yet, I’m sorry.

10. Why can’t the banker figure out what’s going on? I
should have got my money last night!

11. It’s really nice out today. I might go for a walk if I get
off work early and the kids aren’t back from school.

12. There is a famous coffee shop around the corner that
also serves snacks. Would you like to go tonight?

13. My dog almost got run over by a car today! Thank
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God he is safe!
14. It is getting very cold outside. I feel like having some

hot chocolate. Would you like some?
15. I have been exercising so much lately. But I am not

getting any stronger!
16. I have an old tie that I can wear to the interview. My

grandfather gave it to me last year.
17. I had fun last night - we had quite a few drinks. But

I have a really bad hangover this morning and I am
considering calling in sick.

18. Please don’t interrupt me when I am talking! Now I
have forgotten what I wanted to tell you.

19. It was such a pleasure talking to you. I hope we stay in
touch.

20. I can’t believe I misplaced my keys yet again! I have
to leave for the airport right now.

21. Gosh! the boy jumped right off the cliff into the ocean.
He is lucky he didn’t hit a rock.

22. The baby just spit up on my brand new clothes. I am
going to be late for our dinner tonight.

23. The food smells disgusting but tastes delicious. How
strange is that!

24. I was about to park when I saw a person with a gun. I
kept driving and called the police right away.

25. I decided to take a nap during my lunch break. I am so
glad I did! I feel very refreshed.

26. The food didn’t get delivered on time. We had to keep
our guests waiting while we searched for options.

27. I was walking down an alley the other night. I had the
strange feeling that someone was following me.

28. She twisted her ankle while ice-skating. It was her final
performance for the season.

29. Who moved my boxes from this room? I need to find
my shoes before I can head out.

30. We miss our old home in the mountains quite a bit.
This new place just doesn’t feel as cozy.

Subject demographics. Out of the total pool of subjects
that volunteered data for our 2-stage data capture, 50% are
female, 47.8% are male, and the remaining chose “a gen-
der not listed here”. Amongst different age groups, 37%
of the participants are 25-34 years old, 32.6% are 35 − 44
years old, 17.4% are 45-54 years old, 6.5% are 18-24 years
old, and 6.5% are 55-64 years old. In terms of race and
ethnicity, 41.3% are Caucasian, 47.8% are Asian (includ-
ing South Asian, East Asian, South-east Asian), 6.5% are
African, 2.2% are Hispanic / Latino, 2.2% are Pacific is-
lander, and others remained unspecified.

Synthetic Talking-Head Videos. As mentioned briefly
in the main paper, we pool together videos for the 46
identities from our own 2-stage data capture, along with
videos from 24 identities of RAVDESS (scripted mono-

Clip duration F AUC
31 0.754
51 0.810
71 0.813
91 0.811

Table A3: Ablation study for different values of F.

logues only) [33], and 91 from CREMA-D (short scripted
monologues only) [11], resulting in a total of 161 unique
identities. For each of these 161 identities, the remaining
160 are used to drive cross-reenactments, with 8 driving
videos randomly selected from the total set of videos for
each driving identity. Moreover, all videos for the identity
are used to drive self-reenactments. This results in at least
1300 synthetic videos per identity, with 1280 obtained from
cross-reenactments. For any given target identity, we incor-
porate synthetic videos driven by every remaining identity.
During training, such a large variety of cross-reenactments
enable effectively learning an appearance-agnostic dynamic
facial identity feature space.

A10. Implementation Details

The temporal ID net [14] is trained using our input fea-
tures after appropriately modifying the number of input
channels to match our feature dimension. To adjust the re-
ceptive field of the temporal ID net so that it predicts an em-
bedding vector for longer or shorter input clips, we modify
the number of layers of the network, and the dilation factor
for the layers. Specifically, here are the kernel sizes and di-
lation factors for each of the layers in the temporal ID net,
depending on the choice of input clip duration F:

1. F = 31 frames: (1, 1, 1, 1, 2, 2, 2, 2, 4)
2. F = 51 frames: (1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 4)
3. F = 71 frames: (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4)
4. F = 91 frames: (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4)

The kernel sizes are all set to 3 apart from the first layer,
which is 1. All other details of the temporal ID network are
adapted from the existing implementation [14]. To imple-
ment the push and pull terms in Equations 1,2 in the main
paper, n and t span over 5 consecutive F-frame clips in a
video. That is, during training, the temporal ID net receives
as input (F+4)-frame videos, and outputs 5 embedding vec-
tors, one for each of the 5 F-frame clips in the video. The
max operation in Equations 1,2 is performed over the 5 dif-
ferent clips (therefore, 5 different values of n), and the over-
all loss term in Equation 4 accumulates over 5 values of t.
So, when a batch of videos is loaded for a training iteration,
it comprises of (F+4)-frame “videos”, which are split into 5
clips. These (F+4) frames are randomly selected from the
entire video.
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A11. Evaluation
In Table A3, we report the the results of our experiment

with varying values of F, which is the number of frames
provided to the network to make a prediction about the dy-
namic facial temporal identity signature. We observe that
increasing clip duration beyond 51 frames shows compara-
ble performance to the result with F=51 (with a little AUC
gain of about 0.003). Shorter clips might allow for com-
putational efficiency and the ability to deploy our system
for continuous online verification, but they also need to be
long enough to capture meaningful expressions. Based on
this experiment, we chose F=51 since it provides the best
trade-off between the two competing requirements.

In Figure A6, we show more samples similar to the ones
shown in Figure 5 of the main paper. For each row of results
in Figure A6, we choose a reference identity, and a held-
out set of reference self-reenacted videos for each of these
identities. Then, we report the average Euclidean distance
of the following videos with respect to the held-out self-
reenacted videos for the reference identity:

1. a new self-reenacted video by the reference identity
(not included in the held-out reference set) – high-
lighted with a green border,

2. a cross-reenacted video where the reference identity is
the driver – highlighted with a green border, and

3. two cross-reenacted videos where the reference iden-
tity is the target, driven by some other identity – high-
lighted with a red and a blue border.

Based on the reported distance values, we observe that
videos where the reference identity is the driver are closer
to the set of other self-reenacted videos driven by the ref-
erence identity and far from those where reference identity
is the target to be driven by other identities. This further
confirms the ability of our model to fingerprint synthetic
avatars based purely on facial motion, independent of the
appearance of a synthetic talking-head video.

Reference Identity = ID1

ID1 → ID1 d=.616 ID1 → ID2 d=.611 ID2 → ID1 d=.800 ID3 → ID1 d=.924

Reference Identity = ID4

ID4 → ID4 d=.543 ID4 → ID5 d=.562 ID5 → ID4 d=.702 ID6 → ID4 d=.701

Reference Identity = ID7

ID7 → ID7 d=.506 ID7 → ID8 d=.512 ID8 → ID7 d=.758 ID9 → ID7 d=.756

Figure A6: Animated figure. Open in a media-enabled
viewer like Adobe Reader and click on the inset. Contin-
uing Figure 5 from the main paper, we show more visual re-
sults to demonstrate that our method indeed predicts embed-
ding vectors that lie close together when the clips have the
same driving identity. As a reminder, for each row, we pick
a reference identity. The green box indicates reenactments
driven by the reference identity, the red and blue are cross-
reenactments of the reference identity. We compute the av-
erage distance of each clip shown here against all other clips
driven by the reference identity. The average distance to the
other clips of the reference identity is consistent for a given
motion, and lower (better) when the reference identity is
driving as compared to the cross-reenactments that use the
reference identity as target. Note that the indexing used to
denote an identity (such as “N” in IDN ) is only intended to
convey when an identity is different from another. These in-
dices are not global and what is denoted as ID1 in this figure
may not match another figure.
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