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Fig. 1. Given a single RGB input image, our method generates 3D-aware images and geometry of an object (e.g., faces [top row] and cats [bottom row, left]) in

real-time, while the state-of-the-art 3D GAN inversion [Chan et al. 2022] does not generate a satisfactory result after 20 mins of fine-tuning [Roich et al.

2021] (top right). Our method can also be applied to a video frame-by-frame for video-based novel view synthesis (bottom row, right). Ours (LT) refers to a

lightweight faster version of our model that has almost the same quality as the full model. Credits to Erik (HASH) Hersman and 2017 Canada Summer Games.

We present a one-shot method to infer and render a photorealistic 3D rep-

resentation from a single unposed image (e.g., face portrait) in real-time.

Given a single RGB input, our image encoder directly predicts a canonical

triplane representation of a neural radiance field for 3D-aware novel view

synthesis via volume rendering. Our method is fast (24 fps) on consumer

hardware, and produces higher quality results than strong GAN-inversion

baselines that require test-time optimization. To train our triplane encoder

pipeline, we use only synthetic data, showing how to distill the knowledge

from a pretrained 3D GAN into a feedforward encoder. Technical contribu-

tions include a Vision Transformer-based triplane encoder, a camera data

augmentation strategy, and a well-designed loss function for synthetic data
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training. We benchmark against the state-of-the-art methods, demonstrating

significant improvements in robustness and image quality in challenging

real-world settings. We showcase our results on portraits of faces (FFHQ)

and cats (AFHQ), but our algorithm can also be applied in the future to other

categories with a 3D-aware image generator.
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1 INTRODUCTION

Digitally reproducing the 3D appearance of an object from a single
image is a long-standing goal for computer graphics and vision.
Interactive synthesis of photorealistic novel views opens new possi-
bilities for AR/VR, and for 3D telepresence and videoconferencing
when applied to humans. In this work, we propose a technique to
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Fig. 2. Comparison to the state-of-the-art 3D GAN[Chan et al. 2022] with test-time fine tuning[Roich et al. 2021] (EG3D-PTI). Single-view 3D GAN inversion

approaches trade off the 2D reconstruction quality and the 3D effects. When fine tuned longer (7500 iterations), EG3D-PTI can capture the same fine-scale

details as ours (𝐿𝑃𝐼𝑃𝑆 = 0.199), but the quality of another view starts to degrade. On the other hand, our method captures out-of-domain details (e.g.,

emblem) in one-shot while producing realistic rendering of another view, and operating in real-time. Credit to Obama White House.

infer a 3D representation for real-time view synthesis given a single
portrait-style input image (e.g., of a human face, see Fig. 1).
Recently, 3D aware-image generation approaches (e.g., [Chan

et al. 2022; Deng et al. 2022; Skorokhodov et al. 2022]) demonstrated
unconditional generation of photorealistic 3D representations from
a collection of single-view 2D images by combining NeRF-based
representations [Mildenhall et al. 2020] and GANs [Goodfellow
et al. 2014]. Notably, EG3D [Chan et al. 2022] proposed an efficient
triplane 3D representation and demonstrated real-time 3D-aware
image rendering with quality comparable to 2D GANs. Once trained,
the 3D GAN generators can be frozen and used for single-image
3D reconstruction tasks via GAN inversion [Karras et al. 2020] and
test-time fine tuning [Roich et al. 2021]. However, there are a few
challenges in this 3D-GAN inversion-based methods. (1) Due to the
multi-view nature of training a NeRF, it needs careful optimization
objectives and additional 3D priors [Xie et al. 2022a; Yin et al. 2022]
in the single view setting to avoid unsatisfactory results on novel
views and corrupted geometry (see Fig. 6). Fig. 2 shows the tradeoff
in the SOTA single-view 3D GAN inversion pipeline. (2) The test-
time optimization requires an accurate camera pose as input or to
be jointly optimized [Ko et al. 2023]. (3) The above optimization for
every single image is time-consuming, limiting the technique for
real-time video applications.

In this paper, we present a one-shot approach to lift an input 2D
portrait image to 3D in real-time (24fps on consumer hardware, see
Tab. 1). Unlike previous work that reuses a pre-trained generator,
we train an encoder end-to-end that directly predicts the triplane 3D
features from a single input image. In contrast to prior works that
use multiview real image acquisition setups, we do not need any real
images at all, nor do we require time-consuming physically-based
rendering of high-quality and expensive face assets.
Instead, we fully supervise the training of our triplane encoder

for novel view synthesis using multiview-consistent synthetic data
generated from a pre-trained 3D GAN. Together with our data aug-
mentation strategies and Transformer-based encoder, we present
a model which can handle challenging real-world input images in-
cluding occlusion and three-quarter views. We showcase our results
on human and cat face categories in this paper, but the methodology
can apply to any category for which 3D-aware image generators are
available. Our work may motivate applications such as temporally
consistent view synthesis; Fig. 1 (bottom right) shows our method

Table 1. Time taken to lift the input image to 3D (Encoding) and render

(Render) a 3D representation given an input image on a single RTX 3090

GPU. The end-to-end runtime with our model and our lightweight model

(LT) is significantly faster than NeRF-based baselines. †ROME employs

2D-based neural rendering with mesh-based neural textures, producing

the output at 256x256 resolution; it also requires a segmentation mask and

detected keypoints from off-the-shelf models which requires around 200ms.

Time H.NeRF ROME EG3D-PTI Ours Ours (LT)

Encoding 60s 60ms† 2 mins 40ms 16ms

Render 58ms 31ms 24ms 24ms 24ms

applied to a video in a frame-by-frame fashion without any special
handling.

In summary, contributions of our work include:

• We propose a feed forward encoder model to directly infer a
triplane 3D representation from an input image. No test-time
optimization is needed.

• We present a new strategy for training a feed forward triplane
encoder for 3D inversion using only synthetic data generated
from a pre-trained 3D-aware image generator.

• We demonstrate that our method can infer a photorealistic
3D representation in real-time given a single unposed image.
Together with our Transformer-based encoder and on-the-
fly augmentation strategy, our method can robustly handle
challenging input images of side views and occlusions.

2 RELATED WORK

Our work touches on light fields, few-shot view synthesis, learn-
ing with synthetic data, 3D-aware portrait generation, and GAN
inversion. Our focus is on real-time view synthesis from a single
image, and we do not address portrait relighting or editing. Tab. 1
summarizes runtime for inferring 3D representations from an input
and rendering. Our one-shot method is three orders of magnitude
faster than the NeRF-based state-of-the-art methods for inference,
enabling a real-time pipeline.

Light Fields and Image-Based Rendering. View synthesis or image-
based rendering has a long history in computer graphics and vi-
sion [Chen and Williams 1993; McMillan and Bishop 1995], and has
often been framed in terms of reconstructing the light field [Gortler
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et al. 1996; Levoy and Hanrahan 1996]. However, those methods typ-
ically required hundreds of views. Subsequent light field approaches
demonstrated few-shot general [Kalantari et al. 2016] and even sin-
gle image view synthesis for categories [Srinivasan et al. 2017], but
required light field camera training data. More recently, neural-field
based approaches [Mildenhall et al. 2020; Xie et al. 2022b] combine
recent neural implicit 3D representations [Chen and Zhang 2019;
Mescheder et al. 2019; Park et al. 2019; Sitzmann et al. 2019] with vol-
ume rendering for novel view synthesis, but require a large number
of input images per scene.

Few-shot novel view synthesis. Some recent work extends NeRF
for training from even a single view [Xu et al. 2022a] or for few-shot
novel view synthesis using fully implicit 3D representations [Jang
and Agapito 2021; Li et al. 2022; Trevithick and Yang 2021; Yu et al.
2021], 3D convolutions [Chen et al. 2021; Yu et al. 2022], or Trans-
formers [Lin et al. 2023; Wang et al. 2021b]. However these ap-
proaches do not generate novel views in real-time. Moreover, all of
the above approaches need multi-view images to train their mod-
els. Our method, on the other hand, only needs synthetic images
generated from a pre-trained 3D GAN, which is trained by a collec-
tion of single-view images. FWD [Cao et al. 2022] builds on top of
SynSin[Wiles et al. 2020] for real-time novel view synthesis using
depth-based image warping, but requires depth data from multi-
view stereo or a depth sensor. Yet another family of approaches
is the geometry-free method[Ren and Wang 2022; Rombach et al.
2021; Sajjadi et al. 2022], but they need a large number of images to
learn precise ray transformations; otherwise it may lead to blurry
or multiview inconsistent results.

Learning with synthetic data. Synthetic data provides useful su-
pervision for training a deep learning model when ground truth data
is not available. Previous methods used synthetic data for various
deep learning-based tasks such as dense visual alignment [Peebles
et al. 2022], 3D face reconstruction [Pan et al. 2021; Wood et al. 2022]
and analysis [Wood et al. 2021], portrait normalization [Nagano
et al. 2019; Zhang et al. 2020], and semantic segmentation [Tritrong
et al. 2021; Zhang et al. 2021]. Some previous work used synthetic
face portrait images generated by rendering 3D face assets using
a phycally-based pathtracer to train a model for portrait relight-
ing [Yeh et al. 2022] or relighting and view synthesis [Sun et al. 2021].
Since the CG rendering exhibits a synthetic look, they need an addi-
tional step to adapt to real images. Other concurrent work [Ko et al.
2023] uses a discrete number of pre-generated synthetic images
from a 3D-aware generator [Chan et al. 2022] for 3D GAN inversion
tasks. Instead, we generate an unlimited amount of synthetic data in
the training loop and show that on-the-fly camera augmentation is
critical for generalization to real images for synthetic data training.

3D-aware portrait generation and manipulation. For a well-known
category of object, such as human faces, previous work [Athar
et al. 2022; Gao et al. 2020; Groueix et al. 2018; Hong et al. 2022a;
Khakhulin et al. 2022; Kim et al. 2018; Mihajlovic et al. 2022; Nagano
et al. 2018; Wang et al. 2022a] used 3D face priors for few-shot
portrait synthesis. While the face priors provide additional capabili-
ties for facial manipulations and expression retargeting [Seol et al.

2011], they don’t generalize beyond humans. Recently, 3D aware-
image generation approaches [Chan et al. 2021; Nguyen-Phuoc et al.
2019; Niemeyer and Geiger 2021; Schwarz et al. 2020] started to
tackle the problem of unconditional generation of photorealistic
3D representations from a collection of single-view 2D images. By
combining neural volumetric rendering[Mildenhall et al. 2020] and
generative adversarial networks (GANs)[Goodfellow et al. 2014],
recent 3D GAN approaches[Chan et al. 2022; Deng et al. 2022; Gu
et al. 2021; Or-El et al. 2022; Rebain et al. 2022; Skorokhodov et al.
2022; Xiang et al. 2022; Xu et al. 2022b; Zhang et al. 2022; Zhou et al.
2021] started to demonstrate an ability to generate high-resolution
multi-view consistent images and geometry of a category of objects.
We adapt the efficient triplane 3D representation from EG3D [Chan
et al. 2022] and demonstrate single-view novel view synthesis on
similar categories.

3D GAN inversion. Following the success of GAN inversion in
2D domains for image editing and manipulations[Alaluf et al. 2021;
Dinh et al. 2022; Richardson et al. 2021; Tov et al. 2021; Wang et al.
2022c], existing 3D GAN inversion methods [Ko et al. 2023; Lin
et al. 2022; Sun et al. 2022] project a given image to variants of the
pre-trained StyleGAN2 latent space [Abdal et al. 2019; Karras et al.
2020]. Assuming multiview images, FreeStyleGan [Leimkühler and
Drettakis 2021] proposes to map projected camera coordinates to a
subject-specific StyleGAN2 latent space which allows the subject
to be rendered from specified cameras under the constraints of the
StyleGAN prior.While this global latent space provides an additional
ability for 3D-aware portrait editing, the StyleGAN2 latent space
trades off reconstruction fidelity for editability, making the exact
reconstruction of the input image challenging. Thus, existing 3D
GAN inversion approaches require an approximate camera pose
and slight generator weight tuning [Feng et al. 2022; Roich et al.
2021] at test time to reconstruct out-of-domain input images. Our
feed forward encoder takes an unposed image as input and does
not need test-time optimization for camera poses unlike concurrent
work [Ko et al. 2023].

Talking-head generators. Given a single target portrait and a driv-
ing video, recent talking-head generators can reenact the portrait
by transferring facial expressions and head poses from the driver
video [Doukas et al. 2021; Drobyshev et al. 2022; Hong et al. 2022b;
Wang et al. 2021a, 2022b; Zakharov et al. 2020; Zhao and Zhang
2022]. Trained by video datasets, their methods mainly focuse on
talking-head video generation by manipulating avatar poses and
expressions within a 2D portrait. As such, they do not predict volu-
metric representations that allow free viewpoint rendering including
background and do not provide dense 3D geometry like our method.
Therefore, we do not compare to these approaches.

3 PRELIMINARIES: TRIPLANE-BASED 3D GAN

We first give an overview of the state-of-the-art 3D GAN method,
EG3D, [Chan et al. 2022] from which our method will distill knowl-
edge. EG3D learns unconditional 3D-aware image generation from
a collection of single-view images and corresponding noisy camera
poses, where each image has resolution 512 × 512. As mentioned
in Sec. 2, EG3D makes use of a hybrid triplane representation to
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Fig. 3. Inference and training outline for our pipeline. At inference, we take an unposed image, and extract low resolution features 𝑭low with a DeepLabv3

backbone. These features are fed to a ViT yielding 𝑭 and then concatenated after convolution with high-resolution features 𝑭high before being decoded

with a ViT and convolutions to a triplane representation. These features condition the volumetric rendering process which yields depth, feature, color, and

superresolved images. During training, we sample an identity from EG3D and then render two supervision views. The first serves as the input to our encoder,

which predicts a triplane, which conditions volume rendering from the same two views. The rendering results are compared with those of EG3D as outlined in

Sec. 4. Feature maps are visualized for illustration.

condition the neural volumetric rendering process, whereby three
2D feature grids are stored along each of the three canonical planesś
𝑥𝑦, 𝑥𝑧, 𝑦𝑧. Using a StyleGAN2 generator [Karras et al. 2020], EG3D
maps a noise vector and conditioning camera poses to a triplane
representation 𝑻 ∈ R256×256×96 which corresponds to the 3 axis-
aligned planes, each with 32 channels. These features condition the
neural volumetric rendering.
To assign a point 𝒙 ∈ R3 with its feature, color and volume

density, (f, c, 𝜎), a lightweightMLP decodes the three feature vectors
gathered by projecting 𝒙 to each of the canonical planes:

(f, c, 𝜎) = MLP(Φ(𝒇𝑥𝑦,𝒇𝑥𝑧 ,𝒇𝑦𝑧)), (1)

where 𝒇𝑖 𝑗 are the features gathered by projecting 𝒙 to the 𝑖 𝑗 plane
and bilinearly interpolating the nearby features, and Φ is the mean
operator. Note that output values including the color are indepen-
dent of viewing direction and only depend on 𝒙 . By accumulating
many points along rays, and performing volume rendering [Max
1995] as in NeRF [Mildenhall et al. 2020], one may render a feature
image 𝑰𝑓 ∈ R32×128×128 and a raw neural rendering RGB image

𝑰128 ∈ R3×128×128 from a given camera pose. In practice, 𝑰128 corre-
sponds to the first three channels of the feature image 𝑰𝑓 .

We additionally extract a dense depth map 𝑰𝐷 ∈ R128×128 from
this volume rendering, which we use later to supervise our model.

The neural rendered images 𝑰128 and 𝑰𝑓 are then fed to a 2D super-
resolution network, which yields the final superresolved rendering
output:

SuperRes(𝑰𝑓 , 𝑰128) = 𝑰512 ∈ R3×512×512 . (2)

This 3D GAN pipeline is trained end-to-end following 2D GAN
training with a 2D (dual) discriminator. The reader is referred to the
original paper [Chan et al. 2022] for full details.

The efficient design of EG3D allows rendering from a triplane at
42 fps on the RTX 3090. At the same time, EG3D provides comparable
quality to even the state-of-the-art 2DGANs by FID. These attributes
provide a strong basis for supervising our encoder-based method
using EG3D-generated synthetic data.

4 METHOD

Our goal is to distill the knowledge of a fully trained EG3D gen-
erative model (learned over a category or set of categories) into
a feedforward encoder pipeline that can directly map an unposed

image to a canonical triplane 3D representation∗ which can be de-

coded with a NeRF. This pipeline requires only a single feedforward
network pass, thus avoiding the expensive GAN inversion process,
while allowing free viewpoint re-rendering of the input in real-time.

∗Note that each category has a different notion of canonical representation: for human
faces, the center of the head is the origin, and planes orthogonally intersect the head
up-to-down, left-to-right, and front-to-back.
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Fig. 4. FFHQ and AFHQ qualitative results from our model (left) and our lightweight model (LT) (right). We showcase reconstructed input and novel views, or

the learned geometry. In the bottom-right, note our model’s ability to infer structure consistent with the input behind occlusion. Credits to YuChen Cheng,

Montclair Film, Lydia Liu.

Note that our contribution focuses on the image-to-triplane encoder
and associated synthetic training method, as shown in the pipeline
of Fig. 3. We make use of the MLP volume renderer and superreso-
lution architectures from EG3D as per Eqns 1 and 2 and train all the
components end-to-end. In Tab. 1, the top row shows that our image
to triplane inference runs at up to 60 fps (16 ms), while rendering
has identical performance to EG3D (bottom row of Tab. 1).

4.1 Triplane encoder

We note that inferring a canonicalized 3D reprentation (i.e., the
inferred 3D representation is frontalized and aligned) from an arbi-
trary RGB image while simultaneously synthesizing precise subject-
specific details from the input is a highly non-trivial task. We break
this challenge into the two-fold goals: 1) to create a canonicalized
3D representation of the subject from an image, and 2) to render
high-frequency person-specific details. We note these goals are
often at odds with one another, and exemplify the bias-variance
tradeoff whereby the output will resemble the input well, but may
not be correctly canonicalized in 3D (see Fig. 12), or the output
will have the correct 3D structure, but not resemble the 2D input
image (see Fig. 11). Our encoder manages to accomplish both of
these goals simultaneously. Specifically, we develop and train a hy-
brid convolutional-Transformer encoder, E, which maps from an
unposed RGB image, 𝑰 , to the canonical triplane representation.
As seen in the upper half of Fig. 3, the architecture of our en-

coder begins with a fast convolutional backbone, DeepLabV3 [Chen
et al. 2017], which extracts robust low-resolution features, 𝑭low =

DeepLabV3(𝑰 ). These features are then fed to a Vision Transformer
(and CNN) which gives a global inductive bias to the intermediate
output features,

𝑭 = Conv(ViT(𝑭low)), (3)

where Conv is a CNN and ViT is the Vision Transformer Block from
Segformer [Xie et al. 2021] with efficient self-attention. We choose
the Segformer ViT for two reasons: 1) it was designed to quickly map
to a high-resolution output space similar to a triplane, and 2) the
efficient self-attention mechanism allows the use of high-resolution
intermediate feature maps so that all information flows from input
to triplane.
We consider the ViT features as having successfully created a

canonicalized 3D representation of the subject (completing the step
1 above), and found during our experimentation that this shallow
encoder is sufficient to reasonably canonicalize a subject, yet cannot
represent important high-frequency or subject-specific details like
strands of hair or birthmarks.
In order to simultaneously complete the second step (adding

high-frequency detail), we next reincorporate high-resolution image
features. We convolutionally encode the image again with only a
single downsampling stage with encoder Ehigh to obtain features
𝑭high = Ehigh (𝑰 ). These are concatenated with the extracted global
features and passed through another Vision Transformer, which
is finally decoded to a triplane with convolutions as seen in Fig. 3.
Thus, the output of our encoder has the following form:

𝑻 = E(𝑰 ) = Conv(ViT(𝑭 ⊕ 𝑭high)), (4)

where ⊕ denotes concatenation along the channel axis, and 𝑻 is
triplane feature representation used in Sec. 3.

4.2 Training with synthetic data

As seen in Fig. 3 in the training step, we train our triplane encoder
with synthetic data. Sampling a latent vector and passing it through
the EG3D generator yields a corresponding triplane, 𝑻 . Given camera
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parameters 𝑷 (a focal length, principal point, camera orientation and
position), we can render any image from the frozen EG3D generator
and 𝑻 . At each gradient step, we synthesize two images of the same
identity (same latent code) from a reference (input) camera 𝑷ref
and another camera 𝑷mv for multiview supervision. Using the same
notation as in Sec. 3, each rendering pass will give us four images:
𝑰𝑓 , 𝑰128, 𝑰512, and 𝑰𝐷 as seen in Fig. 3.
Again as shown in Fig. 3, the input to our encoder is the high-

resolution image 𝑰512 (highlighted in red) rendered from the input

camera 𝑷ref , so that 𝑻 = E(𝑰512). We then use 𝑻 to condition the
volume rendering process from both camera 𝑷ref and 𝑷mv, to get

two more sets of four images, which we denote as 𝑰 𝑓 , 𝑰 128, 𝑰 512,

and 𝑰𝐷 . Our loss intuitively compares those quantities synthesized
by EG3D and those created by our encoder, along with a generative
adversarial objective as follows:

𝐿 = 𝐿tri + 𝐿col + 𝐿LPIPS + 𝐿feat + 𝜆1𝐿adv + 𝜆2𝐿cate (5)

𝐿tri is the L1 loss between 𝑻 and 𝑻 ; 𝐿col is the mean L1 loss com-

puted between both sets of pairs (𝑰128, 𝑰 128) and (𝑰512, 𝑰 512); 𝐿LPIPS
is the LPIPS perceptual loss [Zhang et al. 2018] computed over both

sets of pairs (𝑰128, 𝑰 128) and (𝑰512, 𝑰 512); 𝐿feat is the mean L1 loss

computed between the pairs (𝑰𝑓 , 𝑰 𝑓 ); 𝐿adv is the adversarial loss us-
ing a pretrained dual discriminator from EG3D which is fine-tuned
during training; 𝜆1 is 0.1 for the reference image or 0.025 for the
multiview image; and 𝐿cate is an optional category-specific loss. For
human faces, we use 𝜆2 to be 1 with face identity features from
ArcFace [Deng et al. 2019a] following practice in 2D GAN inver-
sion [Richardson et al. 2021; Tov et al. 2021]. For cat faces, we set
𝜆2 to 0. This objective is optimized end-to-end, i.e., with respect
to all of the parameters of the encoder, rendering and upsampling
modules. Note that the rendering, upsampling, and dual discrimina-
tor modules are all fine-tuned from the pretrained EG3D. However,
the dual discriminator in our pipeline doesn’t rely on any real data;
instead, we train this discriminator to differentiate between images
rendered from our encoder model and images rendered from the
frozen EG3D. An ablation showing its effectiveness is provided in
Tab. 5 and Fig. 13.

On-the-fly augmentation. Naively optimizing this objective will
yield a model which performs almost perfectly on synthetic data,
but lacks the ability to generalize to real images (see Fig. 12). In order
to remedy this, we augment the standard EG3D rendering method
which assumes a fixed camera roll, focal length, principal point
and distance from subject. In contrast, we sample all four of these
values from random distributions to choose the camera parameters
𝑷ref . The details of these distributions for each dataset are given in
the supplement. For 𝑷mv, we choose fixed values as in the EG3D
model. For 𝑷ref , we sample the cameras from a pitch range of ±26◦

and yaw range of ±49◦ relative to the front of a human face. For
𝑷mv, we sample the cameras from a pitch range of ±26◦ and yaw
range of ±36◦ relative to the front of a human face. This allows the
supervision of our model to happen with highly variable camera
poses, forcing the model to learn to effectively canonicalize and
infer from challenging images as seen in Fig. 4.

Implementation details. Before training with the full adversarial
objectives in Eqn. 5, we warm up the model by training over 30k
iterations without the adversarial loss and continue to train the
model with the full loss functions in Eqn. 5 over 220k iterations.
Since we sample two camera poses per iteration (with batch size
32), we effectively use over 16 million images during the training,
which is not obtainable from real images (nor even physically-based
rendered images) in practice. For full implementation details, please
refer to the supplement. We train two encoders with two different
compute budgets: "Ours", which has 87M parameters and "Ours
(LT)", a lightweight model (LT) which has 63M parameters. The
main difference between the two is in resolution of the intermediate
feature maps, which result in fewer parameters in the LT model,
but both contain the same structure outlined above. "Ours" runs in
22ms on a single A100 GPU (where rendering takes 15ms) and 40ms
on RTX 3090 as seen in Table 1. "Ours (LT)" runs in just 16ms on
RTX 3090, while retaining strong performance (see the numerical
evaluations in Tabs. 2 and 3). Figures 1 and 4 show the qualitative
outputs from both models.

5 RESULTS

We evaluate methods for single-view novel view synthesis on 3
main aspects (1) 2D image reconstruction (LPIPS [Zhang et al. 2018],
DISTS [Ding et al. 2022], SSIM [Wang et al. 2004]) and likeness
(identity consistency) (2) general image quality (FID [Heusel et al.
2017]) and (3) 3D reconstruction quality (depth, and pose estimation).
For the reconstruction tasks, we need to re-render our outputs to
the input views for the purpose of the evaluation using a camera
pose estimated using an off-the-shelf pose predictor [Deng et al.
2019b]. However, we noticed that errors present in the estimated
poses create a small image misalignment between the ground truth
and our feedforward results (as opposed to inversion models which
directly optimize for the given view), making the raw pixel metrics
like PSNR and SSIM unreliable. For this reason, we mainly rely on
the deep perceptual image metrics such as LPIPS and DISTS, which
judge that the given images are of the same perceptual quality for our
evaluation. Nonetheless, we report SSIM results in the main paper
and include PSNR results in the supplement along with an analysis
of alignment issues. In the end, our experiments qualitatively and
quantitatively support that our method achieves the state-of-the-
art results on in-the-wild portraits as well as multiview 3D scan
datasets. For more results, please refer to the supplement video.

Datasets. Our method is evaluated on FFHQ [Karras et al. 2019], a
representative dataset for high-quality in-the-wild human portraits,
H3DS [Ramon et al. 2021], which has high resolution ground truth
3D scans and 360º images of 23 human heads with associated camera
calibrations, and AFHQv2 Cats [Choi et al. 2020; Karras et al. 2021],
a collection of high-resolution in-the-wild portraits of cats.

5.1 Comparisons

Baselines. We compare our methods against three state-of-the
art methods for 3D aware-image generation from a single image:
ROME [Khakhulin et al. 2022], HeadNeRF [Hong et al. 2022a], and
EG3D-PTI, which combines an unconditional EG3D generator [Chan
et al. 2022] and Pivotal Tuning Inversion (PTI) [Roich et al. 2021]. We
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Fig. 5. Qualitative results displaying our model’s reconstruction on the input view, and the learned geometry from the frontal view. The reconstructed

geometry remains faithful to the input image. Credits to Devon Weller, Jamie, SupportPDX, Mary Sawatzky, map, Herzliya Conference, Helse Midt-Norge,

Tom Munnecke, pter tr, UGA CAES/Extension, Rare Cancers Australia, Vladimir Agafonkin, Michael E. Macmillan, Nguyen Hung Vu.
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Fig. 6. Qualitative results displaying our model in comparison to baseline methods HeadNeRF, ROME, and EG3D-PTI, comparing the image quality (left) and

reconstructed geometry (right). EG3D-PTI occasionally exhibits corrupted 3D geometry (2nd and 4th rows) when the input is side view, indicating that the

learned 3D prior alone is not enough to ensure robust reconstruction. Credit to U.S. Dept. of HUD, Cristina Cifuentes, Rainforest Action Network, CENA

MINEIRA.

Fig. 7. Ground truth comparisons on the H3DS dataset including ground

truth geometry (second row) and unseen validation view (third row). Since

the H3DS ground truth data has inconsistent lighting, the lighting discrep-

ancy is expected for the validation view.

also compare with EG3D itself as an unconditional reference on FID.
We additionally provide extensive evaluations on our lightweight
model (LT), which is introduced in Sec. 4.

Qualitative results. Fig. 1 shows our qualitative results on FFHQ
and AFHQ. Fig. 4 and Fig. 5 show selected examples from FFHQ,

demonstrating high-quality novel views and 3D geometry recon-
structed by our method from a single portrait. Fig. 6 provides a qual-
itative comparison against baselines. While HeadNeRF and ROME
provide adequate shapes and images, they need image segmentation
as a preprocess, and struggle with obtaining photorealistic results.
Despite the 20 mins of fine tuning, EG3D-PTI does not ensure the
reconstruction looks photorealistic when viewed from a non-input
view (see Fig. 2). In contrast, our method reconstructs the entire
portrait with accurate photorealistic details. Fig. 7 provides com-
parisons to the ground truth validation view and 3D scan on H3DS.
The synthesized image and 3D geometry of ROME and HeadNeRF
generally lack the fidelity and reconstruct only a part of the head.
EG3D-PTI occasionally outputs a degenerate 3D shape due to the
highly unconstrained nature of single-view training of the NeRF
representation (see Figs 1, 6 and 7). Our geometry retains overall the
3D shape as well as person-specific facial details. We also provide
results on lifting 2D drawings and paintings into 3D in Fig. 8. While
our method is never trained with stylized images, it can reasonably
well handle those out-of-domain input images. Finally, we also show
the outputs of our method in comparison to baselines at varying
pitch and yaw in Figs 9 and 10, displaying the benefit of our method
for photorealistic facial frontalization of challenging images. In com-
parison to baselines, our method’s geometry does not collapse for
challenging yaws as EG3D-PTI, and shows a significantly higher
degree of photorealism than ROME and HeadNeRF.
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Fig. 8. Qualitative results displaying our model’s ability to lift StyleGAN2-generated drawings and paintings to 3D. These results display the generalizability

of our model, as it can canonicalize out-of-domain drawings and portraits, lifting them to 3D.

Table 2. Quantitative evaluation using LPIPS, DISTS, SSIM, pose accuracy

(Pose) and identity consistency (ID) on 500 FFHQ images. †Evaluated only

using the foreground on 2562 images. ‡Evaluated only using the face region.

LPIPS↓ DISTS↓ SSIM↑ Pose↓ ID↑

HeadNeRF‡ .2502 .2427 .7514 .0644 .2031

Ours‡ .1240 .0770 .8246 .0490 .5481

ROME (256)† .1158 .1058 .8257 .0637 .3231

Ours† .0468 .0407 .8981 .0486 .5410

EG3D-PTI .3236 .1277 .6722 .0575 .4650

Ours .2692 .0904 .6598 .0485 .5426

Ours (LT) .2750 .1021 .6655 .0448 .5404

Quantitative evaluations. Tab. 2 shows numerical comparisons of
our method against baselines on 500 randomly selected images from
FFHQ. We measure the 2D image reconstruction quality in the input
view using LPIPS, DISTS, and SSIM. We evaluate multiview con-
sistency using poses (Pose) estimated from synthesized images by
an off-the-shelf pose detector [Deng et al. 2019b] following similar
protocols as in previous work [Chan et al. 2022; Shi et al. 2021], and
identity (ID) consistency by computing the mean of MagFace [Meng
et al. 2021] (not used in our training) cosine similarity scores be-
tween the input view and synthesized view from a random camera
pose. Since HeadNeRF and ROME only produce the face region and
the foreground respectively, we also provide the same metrics from

Table 3. Scale- and translation-invariant depth evaluation using ground

truth geometry from H3DS datasets. 2Evaluated only using the face region.

Depth H.NeRF ROME EG3D-PTI Ours Ours (LT)

L1↓ 0.108† 0.054 0.071 0.048 0.049

RMSE↓ 0.147† 0.084 0.101 0.074 0.075

our models evaluated on the same masked region. Tab. 2 shows
that our model significantly outperforms the baselines on all the
metrics except SSIM; our SSIM score is only marginally lower than
EG3D-PTI despite the aforementioned issue of the image misalign-
ment and the fact that EG3D-PTI directly optimizes the pixels for
the evaluation view. The geometry evaluation in Tab. 3 on H3DS in
which we compare the depths of the ground truth from the input
view as predicted by each model validates that our models produce
more accurate 3D geometry.

5.2 Ablation study

We provide ablation studies comparing variants of our architecture
and different training strategies. All variants are evaluated after
training with 3M images.

Inference time and number of parameters. We compare the per-
formance of two variants of our model, which have the same ar-
chitecture but have different numbers of parameters and resolu-
tion of intermediate feature maps: "Ours" (87M params) and "Ours

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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Fig. 9. Comparison to baselines at various input pitch angles. Credits to Bjùrnar Tollaksen, Juliana Martuscelli, The 621st Contingency Response Wing, U.S.

Army Security Assistance Command, Sam Wadman, Laity Lodge Family Camp, U.S. President’s Malaria Initiative, SickKids Foundation.

(LT)" (63M params). Tab. 1 provide runtime comparisons of the two.
Tabs. 2 and 3 provide several comparisons of the two on image re-
construction, the accuracy of 3D shapes and identity consistencies.
These extensive evaluations suggest that our lightweight model
retains very close performance to our full model despite running
significantly faster. Figs. 1 and 4 show qualitative samples from both
our full model and our lightweight model.

Effects of Transformers. Fig. 11 compares results obtained with
or without the proposed Transformer layers in the encoder. For

this variant, we replaced the ViT module with CNN with matching
number of parameters. Tab. 4 provides numerical comparisons of the
two variants on image and 3D quality metrics. These quantitative
and qualitative comparisons show that the ViT layers are important
for creating more accurate 3D representations as well as achieving
more accurate 2D image reconstruction.

Effects of camera augmentation. Fig. 12 compares the models
trained with or without the camera augmentation for robustness
to camera noise (also see the first row of Fig. 6 for the results of

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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Fig. 10. Comparison to baselines at various input yaw angles. Credit to Lionel AZRIA, justinkim1, nonorganical, Paradox Wolf, Agência Senado, Ademir Brito,

Ariana Vincent, Jay Weenig, John Benson, Seong Bae.
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the same subject without the camera noise). We fix the camera
calibration and apply image space rotation, translation, and zoom
to the input image, emulating the effect of inaccurate camera ex-
trinsics and intrinsics. Although our model does not rely on any
camera information for canonicalization, the result is not robust
without the proposed camera augmentation. EG3D-PTI assumes
a fixed image alignment used to train the GAN model and is very
sensitive to small image misalignment in the input. Tab. 4 provides
numerical comparisons of our model with and without the proposed
augmentation.

Effects of fine-tuned synthetic discriminator. We provide an addi-
tional ablation on the discriminator loss (𝐿adv in Eqn. 5), which fine-
tunes the pre-trained EG3D discriminator with EG3D-generated
images. As seen in Tab. 5, removing this discriminator loss results
in a worse FID score. Moreover, as seen in Fig. 13, the renderings of
our proposed method are significantly sharper with the synthetic
discriminator tuning. Please see Sec. A1 and Tab. A2 for attempts
to train the discriminator with real images.

Table 4. Ablation studies evaluating the proposed camera augmentation

and the Transformer module. Without augmentation, the model acts as

an autoencoder, mapping real images to arbitrary 3D representations that

resemble the input (good ID score), but are not actually 3D (poor Pose

score). Without a transformer, the encoder can canonicalize the inputs well

(good Pose score), but cannot represent the details of the input (poor ID

score). Our full method achieves both good Pose and ID scores with high

reconstruction quality.

LPIPS↓ DISTS↓ Pose↓ ID↑ FID↓

No aug. 0.3846 .1286 0.1758 0.5359 3.42

No Transformer 0.5419 .1650 0.0426 0.1906 11.5

Ours 0.2894 .1053 0.0461 0.5230 4.45

Table 5. Comparison in FID between our model and an ablated model

without the synthetic discriminator.

FID↓ FFHQ

w/o synthetic disc. 7.71

Ours 4.45

5.3 Application: real-time 3D telepresence

We apply our method for lifting a monocular RGB video input
to 3D in real-time, as would be needed for 3D telepresence. Our
method processes the video frame by frame. Despite being trained on
individual frames of synthetic data and processing the input video
in a frame to frame fashion, our method can provide reasonable
temporal consistency. Please refer to the teaser Fig. 1 (bottom right)
for the output from our lightweight model as well as video examples
from the supplement. Fig. 14 shows our system set up and running
off of a desktop with a single RTX 4090. Our method can lift a
monocular RGB video frame from a mobile phone to 3D in real-
time.

Fig. 11. Ablation study comparing our model with and without the proposed

Transformer modules. The model w/o Transformer replaces all Transformer

Blocks with resolution-preserving residual CNNs with similar parameters.

Credit to Kirill Chebotar.

Fig. 12. Camera augmentation ablation study. Note that this is the same

image as the first row of Fig. 6 except rotated and cropped non-centrally.

Without augmentation, our result exhibits artifacts when the input image

has zoom or camera roll. Similarly, EG3D-PTI is also sensitive to the image

misalignment, as the camera pose becomes noisy, while ourmethod correctly

canonicalizes the face. Images are cropped and aligned for visual consistency.

Credit to U.S. Dept. of HUD.

Fig. 13. Comparison between our model and an ablated model trained with-

out the synthetic discriminator. Note the blurriness without the adversarial

loss. Credit to Mohd Fazlin Mohd Effendy Ooi.

6 DISCUSSION

Limitation. When the input is a strong profile view (e.g., 60 de-
grees yaw angle), our method may struggle with properly canon-
icalizing the input, as it is highly out-of-distribution with respect
to EG3D-generated images and FFHQ. Please see Figs. 9 and 10 for
various challenging levels of pitch and yaw for input images. While
our method can predict a canonicalized 3D representation without
requiring camera poses as input, the rendered image may be slightly
misaligned when compared to the input view (see Fig. A8 in the
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Fig. 14. Our system applied to create a 3D telepresence live from a monocu-

lar RGB input. Please see the supplement video for the live demonstration.

supplement for the detailed analysis) possibly due to the combina-
tion of the imperfect canonicalization and noisy camera poses from
an off-the-shelf pose estimator. Finally, although our method can
provide reasonable temporal consistency when applied to a video
in a frame-by-frame fashion, temporal inconsistencies remain as
the canonicalizations change slightly per frame, and the predicted
camera poses are entirely independent.

Future work. In the future, combining our method with camera
pose optimization [Ko et al. 2023] may lead to more accurate 3D
reconstruction and camera pose estimation. Additionally, jointly
predicting the camera poses and triplanes in an autoregressive or re-
current context [Kalchbrenner et al. 2017; Shi et al. 2015; Srivastava
et al. 2015] may result in more consistent frame-by-frame results.
Next, it would be interesting to incorporate real images in the train-
ing as our preliminary attempts did not yield improvements. Finally,
as our pipeline does not necessarily assume any category-specific
priors, we can view it as a general method to distill the knowledge
of a 3D GAN into a feedforward encoder. Thus, extending 3D GANs
to more general scenes [Skorokhodov et al. 2023] may allow our
pipeline to create 3D representations of arbitrary scenes in the fu-
ture. Specifically extending our work to handle hands or the full
body, is of interest for real-time telepresence applications.

Conclusion. We proposed a one-shot encoder-based framework
to lift a single RGB image to 3D in real-time and demonstrated our
method, trained entirely from synthetic data, can handle challeng-
ing (even out-of-domain) real-world images. We believe that this
opens up possibilities for accessible 3D reconstructions of real-world
objects and interactive 3D visualization from a picture.
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In this supplement, we first provide the additional results including
additional evaluations and comparisons in Sec. A1. We provide the
implementation details of our models, including architecture de-
tails, camera augmentation, training details, and hyper parameters
in Sec. A2. We also provide further experiment details in Sec. A3.
Finally, we discuss the limitations of our work in Sec. A4. We encour-
age the readers to view our accompanying videos in the supplement,
which include the additional visual comparisons, results, and live
demonstration of the novel view synthesis from a video input.

A1 ADDITIONAL RESULTS

A1.1 Additional qualitative results

We provide additional qualitative results generated from a single
input image from FFHQ in Fig. A1 and AFHQ in Fig. A2. Fig. A1
shows that our method can handle complex hairstyles (first row),
and asymmetric facial expressions (second and third rows). Fig. A2
shows our method can handle unconstrained poses of cats present
in the portraits as well as a wide variety of their textures.
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A1.2 Qualitative comparisons to [Ko et al. 2023]

In Fig. A3, we provide comparisons to the state-of-the-art 3D GAN
inversion work by [Ko et al. 2023]. While their method needs test-
time optimization for the camera parameters and generator tuning,
our method can process an unposed input in one-shot.

A1.3 Additional comparisons

We provide additional comparisons to HeadNeRF, ROME, and EG3D-
PTI in Fig. A6. HeadNeRF only reconstructs the head region and
struggles to reconstruct out-of-domain hair color (first row). ROME
reconstructs the foreground image well, but requires background
segmentation and the geometry does not fully capture the hairstyles
and eyeglasses (second and third rows). EG3D-PTI reconstructs full
RGB images and geometry, but occasionally produces distorted 3D
shapes (first row, better viewed in 3D in the accompanying video)
when the input view is non-frontal. Our method produces consistent
image and geometry reconstruction quality across the variety of
inputs including a non-realistic human image (fourth row).

A1.4 Percentile results based on LPIPS

In Fig. A7, we show our results on FFHQ and AFHQ shown in the
order of the LPIPS percentile scores. For FFHQ, we use the same
randomly selected 500 FFHQ test set described in the main manu-
script and for AFHQ, we randomly selected 485 images for which
we computed the LPIPS scores. The percentile results preferred by
the LPIPS scores show that our method can demonstrate consistent
quality for the large portion of the test images.

PSNR and SSIM on misaligned images. We provide our analysis
on PSNR and SSIM metrics on images when images are aligned
and when images have a small misalignment in Fig. A8. While
LPIPS scores can tolerate a small image misalignment (little change
when images are aligned or misaligned), the PSNR and SSIM scores
significantly change, which make these metrics unreliable for our
tasks when the reconstructed images are not perfectly pixel-to-
pixel aligned. The issues of PSNR and SSIM scores sensitivity under
geometry transformation are reported by previous work [Ding et al.
2022]. The DISTS [Ding et al. 2022] metric can also tolerate slight
misalignment.

A1.5 Evaluation of FID

Tab. A1 provides comparisons on FID calculated over 50K images
from FFHQ and 10K images from AFHQ. Our lightweight model
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Fig. A1. Additional qualitative results generated by our method on FFHQ. Credits to USAID | Southern Africa, TimothyJ, toan đào song, Travis Rock, Curt
Mills, UGA CAES/Extension.
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Fig. A2. Additional qualitative results generated by our method on AFHQ.
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Fig. A3. Qualitative comparisons to the concurrent work[Ko et al. 2023]
that relies on test-time camera optimization and generator weights tuning.

Fig. A4. Visualization of the limits in pitch and yaw of the camera pose
distribution for synthetic input images used to supervise our model.

Fig. A5. Visualization of two sigmas of noise in the principal point and focal
length used for camera augmentation during our training.

Table A1. Comparisons to an unconditional reference on FID evaluated over
50K images of FFHQ and 10k images of AFHQ (including horizontal flips).
†Using transfer learning from a pretrained FFHQ model.

FID↓ FFHQ AFHQ

EG3D 4.05 2.88†

Ours 3.48 2.39†

Ours (LT) 4.25 2.11
†

"Ours (LT)" produces competitive FID scores to our full model
("Ours").

Table A2. Additional ablation study comparing variants of our models.
"10K" refers to when we pre-compute 10K triplanes (subjects) and generate
supervising views on the fly using EG3D. "w/real data" shows preliminary
results of our initial attempt to incorporate real images in the training.

LPIPS↓ DISTS↓ Pose↓ ID↑ FID↓

10K 0.2797 0.995 0.0458 0.5000 4.60
w/real data 0.3060 0.1125 0.0539 0.4556 6.15
Ours 0.2894 .1053 0.0461 0.5230 4.45

A1.6 Ablation study

We provide additional ablation studies concerning the importance
of the training dataset size and describe our preliminary attempt to
incorporate real images into the training.

Adding real data to the training. We attempted to incorporate real
data into the training pipeline in a variety of ways, but each one
proved unsuccessful. Our most succesful attempt was to train the
real part of the discriminator with images from FFHQ (using the
same conditioning as the original EG3D) and add significant noise
to the discriminator pose conditioning. Tab. A2 shows the results of
our preliminary attempt to incorporate real images in the training.
As can be seen in Fig. A9, even this method fails to reconstruct the
input image faithfully.

Size of training data. We additionally performed an ablation on
the number of subjects in the training set. To do so, we chose 10k
latent codes from EG3D and rendered images from only these. We
found that training with 10k subjects with on the fly supervising
view generation (theoretically each subject has infinite views to
supervise) performs similarly to our method which synthesizes new
identities on the fly, as seen in Tab. A2. We hypothesize that this is
because the number of subjects is similar to the datasets, such as
VGGFace2 [Cao et al. 2018] (9K subjects) and CASIA-WebFace [Yi
et al. 2014] (10K subjects), used to train a one-shot face recognition
model.

A1.7 Additional Applications

Portrait frontalization. Our method can be applied to portrait face
frontalization, which is useful for 3D reconstruction and avatar
digitization [Nagano et al. 2019]. Please see the examples in Figs. A1
(4th column), A2 (4th column), A7 (3rd and 7th columns).

A2 IMPLEMENTATION DETAILS

We implement our framework in PyTorch on top of the official EG3D
codebase (https://github.com/NVlabs/eg3d).

EG3D pre-trainedmodel. For human faces, we use the EG3Dmodel
trained on the FFHQ dataset (ffhqrebalanced512-128.pkl). To sim-
plify our encoder training supervision, we replaced the latent code
𝑊 injected to the StyleGAN2-based super-resolution layer with a
constant 1 and fine tuned the entire EG3D models on FFHQ for
additional 6.8 M images of training. This resulted in the FID score
4.05 for FFHQ as reported in the main manuscript. For cats faces,
we performed transfer learning [Karras et al. 2020] from this FFHQ
checkpoint and trained additional 3.2M images on the cat split of
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Fig. A6. Additional qualitative comparisons against baselines on input view reconstruction and geometry. Credit to Steffen Geyer, Force Ouvrière, Matt Hamm,
scarlett1854, The Society of Motion Picture and Television Engineers.

AFHQv2, which resulted in the FID score 2.88, again reported in
the main manuscript. Please refer to the samples of synthetic data
generated by the EG3D model in Figs. A4 and A5.

Encoder for 𝑭low. We modify the first layer of the DeepLabV3
[Chen et al. 2017] architecture from the Pytorch Segmentation Mod-
els repo [Iakubovskii 2019] by concatenating the 2D pixel coordinate
of each pixel, so that the input is 5 channels. We also remove all
instances of batch norm (reintroducing the biases in all of the con-
volutional layers). Otherwise, we use the standard encoder-decoder
as implemented with a ResNet34 encoder. We take the feature map
output of the decoder of DeepLabV3 (the layer before bilinear up-
sampling and segmentation head). As seen in the top half of the
pipeline figure in the main paper, this gives us a feature map 𝑭low.

Encoder for 𝑭 with Conv Layers. 𝑭low is fed to a hybrid convolutional-
transformer architecture. We will denote OverLapPatchEmbed as
the patchwise embedding from Segformer [Xie et al. 2021] with
patch_size=3, and TransformerBlock as the efficient self-attention
block from Segformer [Xie et al. 2021]without dropout, with kqv_bias,
and with layer normalization. Then the DeepLabV3 decoder fea-
tures are fed to the module given in Fig. A10, which outputs the
low-resolution canonical features 𝑭 as seen in the top half of the
main paper’s pipeline figure. Note that the output of this module is

not technically 𝑭 , and instead 𝑭 after being processed by additional
convolutional layers.

Encoder for 𝑭high. We then encode the image again (with its
stacked pixel coordinates) with Ehigh with architectures given in
A11. Note that the input to the LT model’s high-resolution encoder
is the second layer output features of DeepLabV3, rather than the
raw conditioning image.

Final triplane encoder. Finally, 𝑭 and 𝑭high are concatenated and
decoded to the triplane 𝑻 with the architectures seen in Fig. A12,
completing the final encoding stage seen in themain paper’s pipeline
figure.

Misc. For super-resolution, we used the same super-resolution
network architecture as EG3D, but replaced the 𝑤 to be constant
1 as mentioned earlier. For volume rendering and decoding the
triplane, we follow EG3D; specifically, we use 48 depth samples for
coarse and fine passes for training. For discriminator, we use 2D
dual-disciriminator from EG3D.

Training. In practice, we alternate between taking gradient steps
with reference view supervision andmultiview supervision. To do so,
we begin by synthesizing synthetic input images for our encoder by
sampling from the distribution for 𝑷ref as detailed in the main paper.
We render these cameras from triplanes from the frozen, pretrained
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Fig. A7. Results generated by our method on FFHQ and AFHQ shown in the order of percentile. Note that percentiles for FFHQ are calculated with alignment,
whereas AFHQ percentiles are calculated without alignment from a test set. Credits to yasminehabib, Rutgers Council on Public and Internation Affairs,
davitydave, Laity Lodge Family Camp, Houston Marsh, Ordiziako Jakintza Ikastola, Edgar Caraballo, NGÁO STUDIO, Debbie, WorldSkills UK, Craig Duffy.
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Fig. A8. LPIPS, DISTS, PSNR, and SSIM scores computed on images that
have a small misalignment. Previous work [Ding et al. 2022] reported that
LPIPS can tolerate small geometric misalignment better than PSNR and
SSIM; DISTS is most robust to small image misalignment. Credits to Dong
Quang, Presidencia de la Republica Mexicana.

Fig. A9. Comparisons showing the output of our initial attempt in incorpo-
rating real images. Credit to Mario Krajčír.

EG3D. These are then fed to our encoder, whereby a triplane is then
predicted. We can then render the same input cameras to take a
gradient step for a loss computed only over the input views. We
can additionally sample some cameras 𝑷mv, render ground truth
from the EG3D triplanes, and render from the predicted triplanes
for a multiview loss as well. In particular, at every gradient step, we
always render 32 input cameras and 32 multiview cameras from the
aforementioned distributions from the frozen EG3D. However, we
do not always perform a gradient step for the input view loss.

In the first stage of the training, we compute losses for the refer-
ence set of cameras once every 10 triplane syntheses and perform
gradient steps with respect to multiview supervision at every gradi-
ent step. We additionally do not incorporate any adversarial loss,
nor category loss, and do not train the MLP decoder and super-
resolution network parameters at all. We train for 30k iterations
without these objectives in this first stage. In the second stage, we
add the adversarial and category losses and backpropagate to all pa-
rameters in the pipeline, computing losses for the reference cameras
every 2 gradient passes. In this stage, we remove the feature loss,
and set the weight of the triplane loss to 0.01. After 37.5k iterations,
we begin to compute multiview supervision and reference view
supervision at every EG3D triplane synthesis step and continued to
reach 220k iters in total (including the first 37.5k). We use a learning
rate of 1e-4 for the encoder parameters, except for the transformer
parameters, which have a learning rate of 5e-5. We use the same
settings as EG3D for the the discriminator. We train for about 10
days on 8 A100 GPUs or 8 A40 GPUs, for about 220k iterations in
total.
For training our model for cat faces, we used transfer learning

following [Chan et al. 2022; Karras et al. 2020]. We initialized our
cat face model with our human face model that is already trained,
and ran training for additional 5 million images using the AFHQv2
checkpoint from EG3D.

Camera augmentation. EG3D assumes a fixed camera radius of
2.7, focal length of 18.83, zero camera roll, and a central principal
point. For the FFHQ experiments, we sample the focal length from
a normal distribution with standard deviation 1 centered at 18.83,
the camera radius from a normal distribution centered at 2.7 with
standard deviation 0.1, the principal point from a normal distribution
with standard deviation 14 and centered at 256, and camera roll with
a normal distribution of mean 0 and standard deviation 2 degrees.
For the AFHQ experiments, we sample the focal length from a

normal distribution with standard deviation 1.5 centered at 18.83,
the camera radius from a normal distribution centered at 2.7 with
standard deviation 0.1, the principal point from a normal distribution
with standard deviation 25 and centered at 256, and camera roll with
a normal distribution of mean 0 and standard deviation 6 degrees.

Training data. We visualize the distribution of synthetic training
data in two figures. Fig. A4 visualizes the limits of the input image
poses in pitch and yaw for two subjects. Fig. A5 visualizes two
sigmas of noise in the focal length and in the principal point used
to augment camera information during our training.

Inference. To calculate the timings of our method, we wrap the
forward calls of the encoder (not the rendering) in autocast, which
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Fig. A10. Details of the hybrid convolutional-transformer architecture which decodes the DeepLabV3 features before being concatenated with the high-
resolution image features later on.

Fig. A11. Details of 𝐸high which maps the input image to a high-resolution feature map.

Fig. A12. Details of the hybrid convolutional-transformer architecture which decodes the concatenated transformer features and high-resolution image
features directly into a triplane representation.

we use for real-time applications. For renderings, we use 48 depth
samples for real-time applications and 96 depth samples for the
offline videos, following EG3D.

A3 EXPERIMENT DETAILS

A3.1 Baselines

For all the baselines we used, we used official code from the authors
with released pre-trained checkpoints.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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ForHeadNeRF, we used the highest resolutionmodel model_Reso64
on the official website (https://github.com/CrisHY1995/headnerf),
which produces the final output at 512 resolution using a feature
map of resolution 64.
For ROME, we use the pre-trained model from the official code

release (https://github.com/SamsungLabs/rome), which produces
the output at 256 resolution.
For EG3D models, we used the FFHQ and AFHQv2 fine tuned

models as described in Sec. A2, which are derived from the official
EG3Dmodels. The baseline "EG3D-PTI" combines the unconditional
EG3D model with the lightweight generator tuning at test time
using Pivotal Tuning Inversion (PTI) [Roich et al. 2021] for 3D GAN
inversion from a single image. For the PTI inversion experiment,
we follow the hyperparameter settings from the original PTI paper
and the PTI experiment done in the EG3D paper, and optimize the
latent code for 600 iterations, followed by fine tuning the generator
weights for an additional 350 iterations. Unless noted otherwise, we
used this setting for all our experiments.

FFHQ. For the comparisons on FFHQ between our model and
other baselines, we postprocess our images with a rigid 2D warp.
To accomplish this, we estimate 2D landmarks with an off-the-shelf
facial landmark model [Bulat and Tzimiropoulos 2017] for both the
ground truth and our predicted image. We then solve the Orthog-
onal Procrustes problem [Virtanen et al. 2020] to find the optimal
orthogonal matrix to rigidly align our image onto the target image
approximately around the face region using the facial landmarks.
Examples of this alignment can be seen in Fig. A8. We found that
this alignment resulted in worse performance for EG3D-PTI and
HeadNeRF, so we do not postprocess these methods’ renderings.
For comparison to ROME, we align our renderings and ROME’s
renderings to ROME’s warped input (lower-resolution) image with
the same process before computing the metrics. In any cases where
the warp produced black pixels on the border (out of bounds), we
set the ground truth, and the baselines pixels to black there as well,
to ensure that we are comparing the exact same pixels between the
methods. For ROME and HeadNeRF, we compare only on their valid
pixels, using the provided masks from these methods.

To ensure fairness in the ID and Pose comparisons of our model
against HeadNeRF and ROME, we postprocess our images to align
with the output of each baseline. For HeadNeRF, we mask both
our results and the ground truth results to the non-empty region
using the provided HeadNeRF masks, and calculate the Pose and
ID losses on the modified images. For ROME, we first downsample
both our output and the ground truth images from 5122 to 2562

to align with the ROME output, then align the ROME output to
the ground truth images using the same landmark detection and
Procrustes alignment as described for PTI. Again, we mask both
our output and ground truth to the non-empty region predicted by
ROME, then calculate Pose and ID on the processed images.

H3DS.. For the depth evaluations on the H3DS dataset [Ramon
et al. 2021], we select a frontal image from all 23 subjects, then
render the ground truth depth from the corresponding camera pose
and the ground truth mesh. We normalize each depth to lie within
[0,1]. We then feed the RGB images as input to all baselines, and
compute each method’s corresponding depth maps. For ours, ours

(LT), EG3D-PTI, and ROME, we compute the scale- and translation-
invariant L1 and RMSE errors only on the valid depth pixels from
the ROME prediction. For HeadNeRF, we use only the valid depth
pixels from its prediction. We found that the geometry of HeadNeRF
can collapse to a plane in front of the predicted 3D face.

A4 DISCUSSION

Ethical considerations. Since our method does not predict a latent
space for portrait editing, it offers limited capabilities for portrait
manipulations for malicious uses. However, it may be used to ma-
nipulate the viewpoint of a portrait. Potential solutions include
detection of unseen image generators [Corvi et al. 2022; Nagano
and Luebke 2021] and image watermarking [Yu et al. 2021, 2022].

Adding real images to the training. Intuitively, incorporating real
data into the training pipeline may be desirable in order to maximize
the photorealism of rendered images and robustness in the most
challenging settings. Future work may investigate the best way to
use both synthetic and real data in conjunction with one another.

Extension to handling a video input. The framework of our model
is such that we require only a single image at inference time. Our
single-image method can be extended to handle a video input in a
frame by frame fashion, but this may lead to flickering and temporal
inconsistency when rendering videos due to the single-image nature
of our model. In such cases where multiple images of a subject are
available at inference, it is desirable to incorporate all such available
information. Further work may investigate making the triplane
autoregressive or recurrent, conditioned on the previous frames so
that occlusions are handled in a consistent way, and there is greater
temporal coherence.
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