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Figure 1. Left: Our results. The split view in the middle demonstrates the high degree of agreement between our 2D rendering and
corresponding 3D geometry. Our method can learn fine-grained 3D details (e.g., eyeglass frame and cat’s fur) that are geometrically well-
aligned to 2D images without multiview or 3D scan data. Right: Comparison with EG3D [7]. Our tight SDF prior provides smooth and
detailed surfaces on the face and hat while EG3D exhibits geometry artifacts and discrepancies between geometry and rendering. Please
see Fig. 5 and the accompanying video for more examples, and Fig. 6 for comparison to other baselines.

Abstract

3D-aware Generative Adversarial Networks (GANs)
have shown remarkable progress in learning to generate
multi-view-consistent images and 3D geometries of scenes
from collections of 2D images via neural volume render-
ing. Yet, the significant memory and computational costs of
dense sampling in volume rendering have forced 3D GANs
to adopt patch-based training or employ low-resolution ren-
dering with post-processing 2D super resolution, which
sacrifices multiview consistency and the quality of resolved
geometry. Consequently, 3D GANs have not yet been able
to fully resolve the rich 3D geometry present in 2D images.
In this work, we propose techniques to scale neural vol-
ume rendering to the much higher resolution of native 2D
images, thereby resolving fine-grained 3D geometry with

*This project was initiated and substantially carried out during an in-
ternship at NVIDIA.

unprecedented detail. Our approach employs learning-
based samplers for accelerating neural rendering for 3D
GAN training using up to 5 times fewer depth samples.
This enables us to explicitly ”render every pixel” of the
full-resolution image during training and inference without
post-processing superresolution in 2D. Together with our
strategy to learn high-quality surface geometry, our method
synthesizes high-resolution 3D geometry and strictly view-
consistent images while maintaining image quality on par
with baselines relying on post-processing super resolution.
We demonstrate state-of-the-art 3D gemetric quality on
FFHQ and AFHQ, setting a new standard for unsupervised
learning of 3D shapes in 3D GANs.

1. Introduction
Training 3D generative models from the abundance of 2D
images allows the creation of 3D representations of real-
world objects for content creation and novel view synthe-
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sis [59]. Recently, 3D-aware generative adversarial net-
works (3D GANs) [6, 7, 19, 43, 45, 49, 53, 69, 70, 74, 76]
have emerged as a powerful way to learn 3D representations
from collections of 2D images in an unsupervised fashion.
These methods employ differentiable rendering to compare
rendered 3D scenes with 2D data using adversarial train-
ing [18]. Among the various 3D representations, Neural
Radiance Fields (NeRF) [38] have become a popular choice
among recent successful 3D GANs. However, the signifi-
cant computational and memory cost of volume rendering
has prevented 3D GANs from scaling to high-resolution
output. For instance, generating a single 512x512 image via
volume rendering requires evaluating as many as 25 million
depth samples, if 96 depth samples are used per ray using
importance sampling [7, 10, 38, 53]. Given that GAN train-
ing typically requires rendering tens of millions of images,
the training process could require evaluating hundreds of
trillions of depth samples.

During training, all intermediate operations must be
stored in GPU memory for every depth sample for the back-
ward pass. Therefore, existing methods resort to working
on patches [10, 49, 53] or adopting a low resolution neural
rendering combined with post-processing 2D super resolu-
tion (SR) [7, 19, 43, 45, 70]. However, patch-based methods
have limited receptive fields over scenes, leading to unsatis-
factory results, and the hybrid low-resolution rendering and
SR scheme inevitably sacrifices the multiview consistency
and the accuracy of 3D geometry. While many techniques
have been developed to improve the image quality of 3D
GANs to match that of 2D GANs, the challenge of resolv-
ing the corresponding high-resolution 3D geometry remains
unsolved (see Figs. 1 and 6 for our results and comparison
to the current state-of-the-art).

Scaling 3D GANs to operate natively at the 2D pixel res-
olution requires a novel approach for sampling. Fig. 2 com-
pares the state-of-the-art 3D GAN, EG3D model, trained
with and without1 SR. EG3D employs 96 dense depth sam-
ples in total using two-pass importance sampling [38] dur-
ing training, which requires half a terabyte of GPU memory
at 256 × 256 resolution, making scaling to higher resolu-
tions infeasible. Furthermore, Fig. 2 demonstrates that us-
ing 96 dense samples still results in undersampling, as evi-
denced by the speckle noise patterns visible in the zoomed-
in view, leading to considerably worse FID (inset in Fig. 2).
3D GANs relying on post-processing SR layers can repair
these undersampling artifacts at the cost of a high-fidelity
3D representation.

In this work, we address the challenge of scaling neural
volume rendering to high resolutions by explicitly rendering
every pixel, ensuring that “what you see in 2D, is what you
get in 3D” — generating an unprecedented level of geomet-
ric details as well as strictly multiview-consistent images.
Our contributions are the following:
• We introduce an SDF-based 3D GAN to represent high-

1Triplane resolution is doubled to compensate for the loss of capacity
from removing the SR layers.

Figure 2. Samples from EG3D 256 model. Right: Volume render-
ing with 48 coarse samples and 48 fine samples per ray with two-
pass importance sampling [38] results in undersampling, leading
to noticeable noisy artifacts. Left: These artifacts are repaired by
super resolution (SR). An unsharp mask has been applied to the
zoomed views for presentation purposes.

frequency geometry with spatially-varying surface tight-
ness that increases throughout training (subsection 4.1
and 4.5), in turn facilitating low sample rendering.

• We propose a generalizable learned sampler conditioned
on cheap low-resolution information to enable full-
resolution rendering during training for the first time
(subsection 4.2 and 4.3).

• We show a robust sampling strategy for the learned sam-
pler (subsection 4.4) that produces stable neural rendering
using significantly fewer depth samples (see Fig. 8). Our
sampler can operate with just 20 samples per ray com-
pared to existing 3D GANs which must use at least 96
samples per ray (see Table 3).

• Together, our contributions result in the state-of-the-art
geometry for 3D GANs while rendering with quality on
par with SR baselines (see Fig. 1). For more results, see
Fig. 5 and for comparison to other baselines, see Fig. 6.

2. Related Work
We begin by reviewing the prior-arts of 3D generative mod-
els and their current shortcomings. We then cover founda-
tional techniques for 3D geometry representation and neural
rendering from which we take inspiration. We then discuss
existing methods for accelerating neural volume rendering,
which usually operate per-scene.

2.1. 3D Generative Models

Just like 2D GANs, 3D-aware GANs train from a collection
of 2D images, but employ a 3D representation and differen-
tiable rendering to learn 3D scenes without requiring multi-
view images or ground truth 3D scans. Some of the most
successful works use a neural field [68] in combination with
a feature grid [7] as their 3D representation, and use neural
volume rendering [38] as the differentiable renderer.
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However, due to the significant memory and compu-
tational cost of neural volume rendering, many previous
works perform rendering at low-resolution and rely on a
2D post-processing CNN [7, 19, 43, 45, 70], which hal-
lucinates the high-frequency details in a view-inconsistent
manner while sacrificing 3D consistency and the quality of
the resolved 3D geometry.

To ensure strict 3D consistency, other previous works
seek to render at high-resolutions and propose techniques
to address the prohibitive computational costs. One line
of work leverages the sparse nature of 3D scenes to speed
up rendering, in particular, structures such as 2D manifolds
[14, 67], multiplane images [75] and sparse voxels [50]. Al-
though they are more efficient, sparse representations pro-
vide only coarse [50] or category-specific [14, 67] accel-
eration structures, which poses constraints on the diversity
and viewing angles of the generated scenes. Our sampling-
based method, on the other hand, generalizes to every new
scene and adaptively accelerates rendering on a per ray
basis. Another line of work enables high-resolution ren-
dering with patch-based training [10, 53]. In particular,
Mimic3D [10] achieves significantly improved 2D image
quality, but the patch-based training limits the receptive
fields, and the generated geometry does not faithfully repre-
sent the 2D data due to the patch-wise perceptual loss. Our
method renders the entire image at once and the resulting
geometry is aligned with the rendering (see Figs. 1 and 6).

Recently, a new family of generative approaches us-
ing diffusion models has been proposed to tackle condi-
tional tasks including novel view synthesis [8, 58] and text-
based 3D generation[63]. Most of these 3D-aware diffu-
sion models combine a 3D inductive bias modeled via neu-
ral field representations and a 2D image denoising objec-
tive to learn 3D scene generation. While these models en-
able unconditional 3D generation, they require multiview
images [24, 55, 63] or 3D data, such as a point cloud [42].
Score Distillation Sampling [47] may be used for distil-
lation from a pre-trained 2D diffusion model when only
monocular 2D data is available, but diffusion models incur
significant computational costs due to their iterative nature
and most of the existing methods require optimization per
scene [9, 20, 33, 61, 66].

2.2. Learning High-Fidelity Geometry

Prior works on 3D GANs have typically represented the ge-
ometry as a radiance field [38], which lacks a concrete defi-
nition for where the surface geometry resides in the field, re-
sulting in bumpy surfaces. A number of works [44, 62, 71]
have proposed alternate representations based on implicit
surfaces (such as signed distance functions, or SDFs) that
can be used with neural volume rendering. In these works,
the implicit surface is typically softened by a parameter for
volume rendering.

Other works [32, 64] improve on these implicit surface
representations by leveraging feature grids for higher com-
putational efficiency and resolution. Adaptive Shells [65]

further improve on quality by making the softness parame-
ter spatially-varying, as many objects have hard boundaries
only in certain parts. We use an implicit surface repre-
sentation based on VolSDF [72], and leverage a spatially-
varying parameter similar to Adaptive Shells [65] to control
the softness of the surface, as humans and animals benefit
from both hard surfaces (e.g. skin, eyes) and soft, volumet-
ric representations (e.g. hair). Although other works such
as StyleSDF [45] have similarly leveraged implicit surfaces
in a 3D GAN framework, the lack of spatial-variance and
high-resolution rendering led to over-smoothed geometry
not faithful to the rendered images.

2.3. Accelerating Neural Volume Rendering

As mentioned in Section 2.1, accelerating 3D GANs typi-
cally relies on acceleration structures such as octrees [31,
56, 73], which in generative settings [14, 50, 67] are lim-
ited to be coarse or category-specific due to the difficulty
of making them generalize per-scene. Instead, we look
to a class of methods that do not rely on an acceleration
structure. Some of these works learn a per-scene sampling
prior on a per-ray basis using a binary classifier [41], a den-
sity estimator [30, 46], a coarse proxy from a 3D cost vol-
ume [34], or an interval length estimator [35] on discrete
depth regions along the ray. Other works use importance
sampling [21, 38] to sample additional points. We take in-
spiration from works on density estimators [30] and propose
to learn a scene-conditional proposal network that general-
izes across scenes instead of being category-specific or op-
timized per-scene.

There are also other methods to accelerate rendering by
utilizing more efficient representations, such as gaussian
splats [29] and light field networks [52]. More efficient
feature grids [40, 57] based on hashing can also be used
to accelerate rendering. However, mapping to these repre-
sentations in a GAN framework is not straightforward. In
contrast, our sampling strategy can be used for any NeRF
representation.

3. Background
We begin with background on the methodology of the state-
of-the-art 3D-aware GANs as our method relies on a simi-
lar backbone for mapping to 3D representations. 3D GANs
typically utilize a StyleGAN-like [27] architecture to map
from a simple Gaussian prior to the conditioning of a NeRF,
whether that be an MLP [19, 45], MPI [75], 3D feature
grid [50], manifolds [14, 67] or triplane [7, 10, 53]. We in-
herit the latter triplane conditioning for its high expressivity
and efficiency, in which three axis-aligned 2D feature grids
(fxy, fxz, fyz), provide NeRF conditioning by orthogonal
projection and interpolation. As in the previous methods,
the mapping and synthesis networks from StyleGAN2 can
easily be adapted to create the 2D triplane representation
from noise z ∈ R512. Specifically, w = Mapping(z) con-
ditions the creation of the triplane T (w) ∈ R3×32×512×512

from a Synthesis network, corresponding to three axis-
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Figure 3. Here we show our proposed pipeline and its intermediate outputs. Beginning from the triplane T , we trace uniform samples to
probe the scene, yielding low-resolution I128 and weights P128. These are fed to a CNN which produces high-resolution proposal weights
P̂512 (weights are visualized as uniform level sets). We perform robust sampling and volume render to get the final image I512 and the
surface variance B.

aligned 2D feature grids of spatial resolution 512×512 and
feature size 32.

To create high-fidelity geometry, our method builds upon
VolSDF [72]: Instead of directly outputting the opacity σ of
a point x ∈ R3, an SDF value s is output and transformed
to σ using a Laplacian CDF:

σ =
1

β


1
2 exp

(
s
β

)
if s ≤ 0

1− 1
2 exp

(
− s

β

)
if s > 0

(1)

where β is the variance of the Laplacian distribution govern-
ing the “tightness” of the representation. One distinct bene-
fit of an SDF-based representation is the ease of extracting
the surface. StyleSDF [45] also utilizes this intermediate
geometry representation without a triplane, enforcing the
usual Eikonal constraint.

Using the triplane conditioning and Eq. 1, we can as-
sign each point in the volume with its opacity σ and radi-
ance c using a lightweight MLP. For a given camera ray
r(t) = o + td, we approximate the volumetric rendering
integral C(r) [36] by sampling ray distances ti with their
corresponding σi and ci before computing

Ĉ(r) =

N∑
i=1

wici where wi = Ti(1− exp(−σiδi)),

Ti = exp

−
i−1∑
j=1

σjδj

 and δi = ti+1 − ti.

(2)

Here, Ti denotes the accumulated transmittance and δi is
the distance between adjacent samples along the ray.

It is possible to develop a more efficient estimator for
this sum with fewer samples by using importance sampling
techniques in computer graphics. Typically, one computes
a piecewise constant probability distribution pj =

ŵj∑
j ŵj

,

where j refers to the jth bin or region, and ŵj is an estimate
of wj for that region, for example obtained by explicitly
tracing coarse samples. For a given t, we first find the region
j(t) and then set p(t) = pj . From this, one can compute a
(piecewise linear) cumulative distribution function or CDF

Φ(t) which has a range from 0 to 1. We can then perform
inverse CDF sampling to define the sample points,

ti = Φ−1(ui), (3)

where ui is a random number from 0 to 1 (sorted to be an
increasing sequence).
Discussion We improve on previous works such as
NeRF [38] and EG3D [7] by stratifying2 the random num-
bers ui during training; this leads to significantly lower ren-
dering variance, especially at low sample counts N [39].
We also develop a neural method to predict a good distribu-
tion pj (and hence Φ) for importance sampling at high spa-
tial resolution, without needing to exhaustively step through
the ray.

4. Method
In this section, we describe our method beginning with
our SDF-based NeRF parametrization (subsection 4.1). We
then overview how we render at high-resolution in three
stages: first, a low-resolution probe into the 3D scene (sub-
section 4.2); second a high-resolution CNN proposal net-
work (subsection 4.3); and third a robust sampling method
for the resultant proposals (subsection 4.4). Next we de-
scribe regularizations (subsection 4.5) for stable training,
and finally our entire training pipeline (subsection 4.6).

4.1. Mapping to a 3D Representation
Beginning from a noise vector z, we synthesize the initial
triplane T ′ with StyleGAN [25] layers as detailed in Sec. 3.
In contrast to previous methods, we then generate more ex-
pressive triplane features T with an extra synthesis block for
each orthogonal plane: fij = SynthesisBlock(f ′

ij) where
ij ∈ {xy, xz, yz} and f ′ are the features of T ′. This de-
sign choice allows disentanglement between the intermedi-
ate triplane features as plane-specific kernels can attend to
the features in each separate plane.

Given the triplane T (the left side of Fig. 3) and a point
x ∈ R3, we utilize an MLP to map to the SDF value s,
variance β and geometry features fgeo:

(s, β, fgeo) = MLPSDF(PosEnc(x), Tx) (4)
2dividing the unit interval into bins and taking a sample from each bin.
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where PosEnc is the positional encoding from NeRF [38]
and Tx are the features corresponding to x gathered from T
by projecting x to each of the axis-aligned planes and taking
the Hadamard product of the three resultant vectors [16].
We initialize the ReLU MLPSDF as in SAL [4] to ensure an
approximately spherical SDF in the early part of training.
Additionally note that β varies spatially in the volume un-
like [45, 72], allowing us to regularize its values later on.

Using Eq. 1, we transform s and β into opacity σ. We
can now predict the radiance with a separate MLPc condi-
tioned on the geometry features and viewing direction v as

c = MLPc(PosEnc(v), fgeo). (5)

Note that in contrast to most 3D GANs, we condition
radiance on the viewing direction, allowing a more expres-
sive generator. Thus, given a triplane, we can render any
pixel by computing σ and c for points along the ray to ap-
proximate the volumetric rendering integral as described in
Sec. 3.

4.2. High-Resolution Proposal Network
We now have our mapping from a latent code z to a 3D
NeRF representation. However, volumetric rendering of
NeRFs at higher resolutions requires extremely large num-
bers of samples, and thus both memory and time. Instead
of naive dense sampling at a high resolution, we propose
to leverage low-resolution renderings to cheaply probe the
3D representation (visualized on the left of Fig. 3) for the
creation of proposal distributions at high-resolution. Given
a target camera and triplane T , we first trace 192 coarse
samples at low-resolution (128 × 128) to compute a low-
resolution RGB image I128 ∈ R3×128×128 and a tensor
of weights P128 ∈ R192×128×128 (visualized after low-
resolution rendering in Fig. 3). Each 192-dimensional vec-
tor corresponds to a piecewise constant PDF with CDF Φ as
seen in Eq. 3.

Conditioned on the low-resolution probe, we predict a
tensor of proposal volume rendering weights at the high-
resolution (512× 512):

P̂512 = Softmax(CNN(P128, I128)) ∈ R192×512×512, (6)

where CNN is a lightweight network that up-samples the
low-resolution weights, Softmax produces discrete distribu-
tions along each ray, and the ˆ denotes that this is an esti-
mated quantity. This corresponds to the Proposal in Fig. 3
and the yellow distribution in Fig. 4. Note that allocating
192 samples at 128× 128 is equivalent to allocating just 12
at 512× 512.

4.3. Supervising the Proposal Network
Having described the input and output of our high-
resolution proposal network, we now show its supervision.
From the target camera, we can also trace 192 coarse sam-
ples at high resolution for a small 64 × 64 patch, giv-
ing us a ground truth tensor of volume rendering weights

Ppatch ∈ R192×64×64. We then prepare this tensor for super-
vision by computing:

P̄patch = Normalize(Suppress(Blur(Ppatch))) (7)

where Blur applies a 1D Gaussian kernel to the input dis-
tributions, Suppress(x) = x if x ≥ 5e − 3 and 0 other-
wise, and Normalize is L1 normalization to create a valid
distribution. This corresponds to the patch loss in Fig. 3
and the purple distribution in Fig. 4. These operations cre-
ate less noisy distributions to facilitate accurate learning of
the high-frequency integrand which may be undersampled
in the coarse pass.

We can then compare the predicted and cleaned ground
truth distributions with a cross-entropy loss:

Lsampler = CrossEntropy(P̄patch, P̂patch) (8)

where P̂patch is the corresponding patch of weights in P̂512

and CrossEntropy denotes the average cross-entropy be-
tween all pairs of pixelwise discrete distributions; for each
pair (p̄, p̂), we compute

∑
−p̄j log p̂j . Since we only need

to compute this supervision for a small patch, the overhead
of sampler training is not significant.

4.4. Sampling from the Proposal Network
Having shown how to train and predict high-resolution dis-
tributions, we now overview how to sample the resultant
proposals. As seen in Fig. 4, the proposals are often slightly
off; this is due to the high frequency nature of the underly-
ing integrand in blue.

In order to utilize the information from the sampler,
we propose to filter predicted PDFs for better estimation.
Specifically, for each discrete predicted PDF p̂, we com-
pute the smallest set of bins whose probability exceeds a
threshold τ = 0.98: We find the smallest subset I ⊆
{1, 2, ..., 192} such that∑

i∈I

p̂i ≥ τ. (9)

This operation resembles nucleus sampling in NLP [23].
We define our sampling PDF q with probability qi = 1

|I|
if i ∈ I and 0 otherwise (the green distribution in Fig. 4).

For each PDF q, we compute its CDF Φ and perform
stratified inverse transform sampling to create the samples
(illustrated as adaptive sampling near the surface in Fig. 3).
In practice, on top of the 12 samples from the coarse probe
(for the high-resolution image), we take an additional 18
samples per pixel adaptively based on the variance of the
predicted distributions. The details are given in the supple-
ment.

4.5. Regularization for High-Resolution Training
In order to render accurately under low sample budget per
ray, we desire the surface to be tight, i.e., the set of points
along the ray, which contribute to the accumulated radiance
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Figure 4. We visualize the volume rendering PDFs for the green
pixel in the images on the right along with sampling methods. The
ground truth distribution in blue is bimodal due to the discontinu-
ous depth. Without stratification, the samples from the predicted
yellow PDF completely miss the second mode. Stratification re-
duces the variance, yet also misses the second mode. Our robust
stratified samples hit both modes despite the inaccurate predic-
tions. The supervision PDF is visualized in purple as well.

to be small. To accomplish this, we introduce a regular-
ization for the spatially-varying β values. Replacing the ci
with the intermediate βi in Eq. 2, we can volume render
an image of scalars, B ∈ R512×512 (seen on the right of
Fig. 3). During training, we regularize B to be small so that
the surface tightens:

Lsurface =
∑
hw

(Bhw −Btarget)
2, (10)

where Btarget is a scalar quantity annealed towards ϵ > 0
during optimization. Note that this results in significantly
more pronounced and smooth geometry (see Fig. 7).

During training with the proposal network, the rendering
networks only receive gradients for points very near the sur-
face (which have high density). We find that this can lead to
undesirable density growing from the background into the
foreground. In order to combat this, we leverage the low-
resolution information from I128, which is computed for
uniform samples along the ray, and thus not concentrated
at the surface. Considering the SDF values intermediately
computed for rendering, S = S128 ∈ R192×128×128, we
enforce the SDF decision boundary by minimizing the SDF
likelihood under a Laplacian distribution similar to [45, 51]:

Ldec =
∑
zhw

exp (−2|Szhw|). (11)

4.6. The Training Pipeline
In order to begin making use of the learned sampler for
high-resolution rendering, we need a good NeRF represen-
tation from which to train it. Concurrently, we also need a
good sampler in order to allow NeRF to render at 512×512,
the input resolution to the discriminator D.

To solve this issue, in the early stages of training, we
first learn a low-resolution (e.g., 64× 64) 3D GAN through
the standard NeRF sampling techniques. We bilinearly up-
sample our low-resolution renderings to 512×512 and blur
the real images to the same level. After converging at the
lower resolution, we introduce the sampler training (sub-
section 4.3). Concretely, we not only render low-resolution
images with standard sampling, but also render sampler in-
puts P128 and supervision patches Ppatch. This results in a
good initialization for the sampler.

Having learned an initial low-resolution 3D GAN and
high-resolution sampler, we transition to rendering with the
sampler predictions. The high-resolution proposals P̂512 are
downsampled to the current rendering resolution, which is
progressively increased to the full 512×512 resolution dur-
ing training. After introducing all losses, we optimize the
parameters of the generator G to minimize the following:

L = Ladv+λsamplerLsampler+λsurfaceLsurface+λdecLdec (12)

where Ladv is the standard GAN loss [18]
Softplus(−D(G(z)). Note that we do not enforce the
Eikonal constraint as we did not see a benefit. The discrim-
inator D is trained with R1 gradient regularization [37]
whose weight is adapted as the resolution changes. Gener-
ator and discriminator pose conditioning follow EG3D [7].
The details of all hyperparameters and schedules are
presented in the supplementary material.

5. Results
Datasets. We benchmark on two standard datasets for 3D
GANs: FFHQ [25] and AFHQv2 Cats [11, 28] both at res-
olution 512× 512. We use the camera parameters extracted
by EG3D [7] for conditioning and rendering. Our AFHQ
model is finetuned from our FFHQ model using adaptive
data augmentation [26]. For more results, please see the
accompanying video.

5.1. Comparisons
Baselines. We compare our methods against state-of-
the-art 3D GAN methods including those that use low-
resolution neural rendering and 2D post-processing CNN
super resolution: EG3D [7], MVCGAN [74], and
StyleSDF [45]; and methods that operate entirely based on
neural rendering: Mimic3D [10], Epigraf [53], GMPI [75],
and GramHD [67].

Qualitative results Fig. 5 shows the curated samples gen-
erated by our method with FFHQ and AFHQ, demonstrat-
ing photorealistic rendering as well as high-resolution de-
tails that align with the 2D images. Fig 6 provides qual-
itative comparisons to baselines. EG3D shows significant
artifacts and cannot resolve high-resolution geometry since
it performs neural rendering at only 128 × 128. Mimic3D
and Epigraf render all pixels with neural rendering, but the
patch-based nature of these methods harm the overall 3D
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Figure 5. Curated samples on FFHQ and AFHQ. Our method can resolve high-fidelity geometry (e.g., eyeglasses) and fine-grained details
(e.g., stubble hair and cat’s fur) as seen in the geometry and normal map.

Figure 6. Qualitative comparisons on FFHQ with EG3D [7], Mimic3D [10] and Epigraf [53]. EG3D performs neural rendering at resolution
128× 128 and relies on 4× super resolution to generate images. On the right, Mimic3D and Epigraf directly generate the image via neural
rendering. While all other baselines use up to 192 dense depth samples per ray, our method can operate at 30 samples per ray.

Figure 7. Ablation study on the effect of beta regularization.

geometry (e.g., distorted face and missing ear). Our method
provides both high-fidelity 3D shape (e.g., well-defined ears
and isolated clothing collar) and high-resolution details.

Quantitative results. Tabs. 1 and 2 provide quantitative
comparisons against baselines. We measure the image qual-
ity with Fréchet Inception Distance (FID) [22]. We assess

the quality of the learned geometry with a face-specific Nor-
mal FID (FID-N) [15]. We render 10.79k normal maps
from the NPHM [17] dataset by solving for the approxi-
mate alignment between the average FFHQ 2D landmarks
and the provided 3D landmarks. Examples are given in
the supplement. For each mesh, we render two views with
approximately 20 degrees of pitch variation relative to the
front of the face. These views are processed to remove the
background with facer [13]. For each baseline, we render
10k normal maps and remove their background using the
predicted mask from facer on the rendered image. We com-
pute the FID between the two sets of images. Finally, we
also evaluate the flatness of the learned representations with
non-flatness score (NFS) [54].

Our results show the state-of-the-art image quality
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Method FID ↓ FID-N↓ NFS↑
FF

H
Q

-5
12

w
/o

SR
Epigraf [7] 9.92† 67.33 33.95

Mimic3D [10] 5.37 64.97 16.76
GRAM-HD [67] 12.2†∗ - -

Ours 4.97 60.76 29.35

w
SR EG3D [7] 4.70 63.02 17.54

StyleSDF [45] 11.19† 87.42 22.75
MVCGAN [74] 13.4†∗ - -

Table 1. Quantitative comparison with baselines with and without
super resolution (SR) on the FFHQ dataset. † as reported in the
previous works. * indicates FID evaluated on 20k images.

Method FID ↓ NFS↑

A
FH

Q
-5

12

w
/o

SR

GRAM-HD [67] 7.67† -
GMPI [45] 7.79† -

Mimic3D [10] 4.29 12.67
Ours 4.23 21.89

w
SR EG3D [7] 2.77 14.14

StyleSDF [45] 7.91 33.89

Table 2. Quantitative results on AFHQv2 Cats. † as reported in the
previous works.

among the methods that operate only with neural rendering,
while achieving FID comparable to the state-of-the-art SR-
based method, EG3D. Our geometry quality outperforms all
existing methods as indicated by our state-of-the-art FID-
N. Additionally, our high NFS scores show the 3D aspect
of our geometry. However, since NFS simply measures the
variations of depth as a measure of non-flatness, it does not
quantify the quality of geometry above a certain threshold.

We also compare other methods’ ability to render with
low sample count in Tab. 3. With just 20 samples, the ren-
dering quality of our method drops by only .3 in FID, com-
pared to the precipitous drop for other methods. This vali-
dates our strategy to jointly learn a sampler and ensure tight
SDF surface for operation under a limited sample budget.

5.2. Ablation Study

Without our surface tightness regularization (Eq. 10), the
SDF surface may get fuzzy, resulting in a less clean surface
(see Fig. 7) and worse geometry scores (see Tab. 4). With-
out our sampler or stratification during sampling, the model
cannot learn meaningful 3D geometry with limited depth
budgets, creating degenerated 3D geometry as can be seen
in Fig. 8 and significantly worse FID-N. Without our robust
sampling strategy, the sampling becomes more susceptible
to slight errors in the sampler due to the high-frequency na-
ture of the PDF (see Fig. 4), resulting in a noticeable drop
in FID and occasionally creating floater geometry artifacts
(see Fig. 8), while geometry scores remain similar.

Method FID (20)↓ FID (50)↓ FID (96)↓

Mimic3D 53.57 13.31 5.37
EG3D 193.75 36.82 4.70
Ours 5.28 4.97 4.97

Table 3. FID comparison on FFHQ using various sample counts.
The samples per pixel are given in the parentheses of the metric.

Method FID ↓ FID-N ↓ NFS ↑

- Learned Sampler 38.29 93.88 30.95
- Stratification 5.60 86.02 5.97
- Robust Sampling 5.67 60.78 24.79
- Beta Regularization 5.27 64.25 28.88
Ours 4.97 60.76 29.35

Table 4. Ablation study.

Figure 8. Qualitative comparisons for ablation study.

6. Discussion

Limitations and future work. While our method demon-
strates significant improvements in 3D geometry genera-
tion, it may still exhibit artifacts such as dents in the pres-
ence of specularities, and cannot handle transparent objects
such as lenses well. Future work may incorporate more ad-
vanced material formulations [5] and surface normal reg-
ularization [60]. While 3D GANs can learn 3D represen-
tations from single-view image collections such as FFHQ
and AFHQ with casual camera labels [7], the frontal bias
and inaccurate labels can result in geometry artifacts, espe-
cially on the side of the faces. Fruitful future directions may
include training 3D GANs with large-scale Internet data as
well as incorporating a more advanced form of regulariza-
tion [47] and auto-camera calibration [3] to extend the gen-
erations to 360 degrees. Finally, our sampling-based accel-
eration method may be applied to other NeRFs.

Ethical considerations. While existing methods have
demonstrated effective capabilities in detecting unseen
GANs [12], our contribution may remove certain charac-
teristics from generated images, potentially making the task
of detection more challenging. Viable solutions include the
authentication of synthetic media [1, 2, 48].

8



Conclusion. We proposed a sampler-based method to ac-
celerate 3D GANs to resolve 3D representations at the
native resolution of 2D data, creating strictly multi-view-
consistent images as well as highly detailed 3D geometry
learned from a collection of in-the-wild 2D images. We
believe our work opens up new possibilities for generating
high-quality 3D models and synthetic data that capture in-
the-wild variations and for enabling new applications such
as conditional view synthesis.
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Rendering Every Pixel for High-Fidelity Geometry in 3D GANs

Supplementary Material

In this supplement, we first provide additional visual re-
sults (Sec. A1) and additional evaluations (Sec. A2). We
follow with details of our implementation (Sec. A3) includ-
ing the details of our adaptive sampling approach (Sub-
sec. A3.4). We discuss experiment details (Sec. A4) such as
the details of our Normal-FID evaluation metric and base-
lines. We finally provide discussion (Sec. A5) including
limitations of our work that may be addressed in future
work. Please refer to the accompanying video, which con-
tains additional visual results and comparisons.

A1. Additional Qualitative Results
We first show both curated and uncurated results for both
our FFHQ and AFHQ models. Curated FFHQ results can
be seen in Fig. A1. Please note the highly-detailed and vari-
able facial expressions along with well-defined 3D acces-
sories like hats and glasses. Long hair is not pasted onto the
foreground, but rather retains a 3D aspect. Curated AFHQ
results can be seen in Fig. A2. Note the detailed textures of
the cat geometry and the well-defined noses and ears. For
unbiased presentation, we also show uncurated results (the
first 8 seeds) for FFHQ (Fig. A3) and AFHQ (Fig. A4). All
results shown are with Truncation = 0.7.

A2. Additional Evaluations
A2.1. Comparing Sampling Methods at Various

Sampling Counts
In this section, we show the robustness of our proposed
sampling strategy from the predicted P̂512 at very low sam-
ple counts, in comparison to unstratified and stratified sam-
pling methods. In Fig. A5, we show our proposed robust
sampling method in comparison to unstratified and stratified
inverse transform sampling. At very low samples per pixel
(spp), our method vastly out performs the standard sampling
technique. Please see the insets where our method can han-
dle depth discontinuities without jagged artifacts even at 8
samples per pixel.

We also render a pseudo ground truth image using 384
(192 coarse and 192 importance) samples and compare the
PSNR of various sampling methods in Fig. A6. Most im-
portantly for GAN training, our method’s worst-case is sig-
nificantly better than previous method’s worst-case. This
is integral to GAN training, where the discriminator will
always focus on the easiest attribute to discriminate. As
sampling artifacts cannot be amended by G, the worst-case
results dictate how well the GAN converges.

A2.2. Effectiveness of Adaptive Sampling
Fig. A7 demonstrates the effectiveness of our proposed
adaptive sampling method compared to other baselines. By

allocating a small portion of samples to uncertain regions
(e.g., depth discontinuity; see the top right of Fig. A7), our
method can generate an artifact-free result even at the depth
count budget of 10 samples per pixel (10spp) compared to
the same spp without adative sampling (top left), which has
jaggy artifacts around the depth discontinuity. Without our
sampler (bottom row of Fig. A7), the standard two-pass im-
portance sampler [11] results in significant artifacts. Please
see Subsec. A3.4 for the implementation details of our adap-
tive sampling.

A2.3. Single Image Reconstruction
We additionally showcase an application of our method for
single-view 3D reconstruction in Fig. A8. The learned prior
enables high quality reconstruction of images and 3D ge-
ometry, despite the under constrained nature of the prob-
lem. We incorporate Pivotal Tuning Inversion (PTI) [13],
optimizing the latent code, camera, and noise buffers for
600 iterations, followed by optimization of the camera and
generator weights for another 350 iterations with MSE and
LPIPS [18] losses computed between the input view and
rendering.

A3. Implementations Details
A3.1. Inference Details and Time
During inference, our method, by default, uses 17.6 depth
samples (see Subsec. A3.4 for details) at high resolutions in
addition to samples from the low-resolution probe, which is
equivalent to 12 samples at high resolutions; this results in
29.6 samples per ray at high resolutions. While our model
learns view-dependent effects during training (see Eq. 5 in
the main PDF), we use a constant frontal-viewing condition
during inference for our qualitative results. Rendering from
cached triplanes runs at 4.5 FPS using plain PyTorch scripts
on a single A100 GPU and requires <15GB of VRAM.

A3.2. Training Details
In this section, we present the details of the training of our
proposed model. For the schedule of the hyperparameters of
the FFHQ model, please see Tab. A3. We train the FFHQ
model for 28.2 million images with a batch size of 32 im-
ages on 16 80GB NVIDIA A100 GPUs, which takes about
11 days. The AFHQ model is finetuned from this model
with adaptive discriminator augmentation [7] for 1.2 mil-
lion images and R1 gamma value of 6, and all other hyper-
parameters the same as in the end of the FFHQ training.

A3.3. Network Details
The architecture of the generator for T ′ follows EG3D [2]
exactly, except doubling its capacity (channel base from
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32768 to 65536). As mentioned in the main paper, we add
three extra Synthesis Blocks from StyleGAN2 [8] applied
to the channels of T ′, in order to get the final triplane T–
one for each of the orthogonal planes and each applied to
one of the three slices of 32 channels of T ′.

For the details of the architecture of the proposal net-
work, please refer to Tab. A4. Slightly abusing notation, we
have labelled the image of viewing directions correspond-
ing to the target camera as ϕ128, parameterized as normal-
ized vectors per pixel. The other inputs, P128 (weights) and
I128 (image), follow the same notation as the main paper.

For MLPSDF, we embed the input 3D positions with the
embedding from NeRF [11] and 6 frequencies (sampled in
logspace). The architecture of this network is given in Ta-
ble A1. The first two components of the 66 dimensional
output correspond to the SDF value s and pre-activated
βpre. We map to the variance with the following equation:
β = 0.01 + Tanh(2 · βpre)(0.01 − 0.0001). This activa-
tion ensures that the variances are approximately 0.01 at
the beginning of training and prevents them from becoming
negative.

We also show the details of MLPc in Table A2. The po-
sitional encoding of the viewing direction is 2 frequencies
sampled in logspace. We finally map the 3 output compo-
nents cpre to the RGB value as Sigmoid · (cpre)(1+0.002)−
0.001.

A3.4. Details of Adaptive Sampling

As mentioned in the main paper, we use a proxy for the
variance to adaptively allocate more samples to more dif-
ficult pixels. Specifically, considering the predicted high-
resolution distributions P̂512, for each distribution, we com-
pute a scalar value to dictate how many samples to allocate.
We operate under the simplified assumption that we will al-
locate 16 samples to 90% of pixels, and 32 to the remaining
10%, resulting in total 17.6 samples per ray. To compute
which pixels receive more samples, we compute a proxy for
the variance.

To do so, for a given predicted distribution p, we com-
pute the leftover probability mass after removing the largest
16 bins. Precisely, we consider the set of non-repeating non-
negative integers less than 192,

S = {(z1, . . . , z16) | zi ∈ Z≥0, zi < 192, zi ̸= zj ∀ i ̸= j} .

We then find

Smax = max
(z1,...,z16)∈S

16∑
i=1

pzi .

The final scalar 1 − Smax is the leftover probability mass
after removing the largest 16 bins. We choose the 10% of
pixels from P̂512 which have maximized this quantity. A
visualization of these pixels is given in Fig. A7. We can see
that they are most concentrated on the depth discontinuities

where the distributions may not be unimodal. Adaptively al-
locating samples in this manner allows us to accurately ren-
der the most challenging pixels without wasting too many
samples on the “easier” distributions. As can be seen in
Fig. A7, using the same total sample count, we can avoid
jagged and inaccurate renders. For illustration purposes,
we first show an example where all pixels are rendered with
10 samples (top-left of Fig. A7) and then with 9 samples
for 90% of pixels, and 19 samples for the remaining 10%,
resulting in an average sample count of 10 (top-middle of
Fig. A7). The samples to which we allocate more samples
are visualized (top-right of Fig. A7). We compare to vary-
ing sample counts with standard sampling in the bottom row
of Fig. A7.

A3.5. Details of Stratified Sampling
As discussed in subsection 4.4, we compute the robust dis-
tribution q from the predicted distribution p̂ from the pro-
posal network. Let I = {i ∈ Z : qi > 0} denote the set
of non-zero bins each with equal probability (as in the main
paper). For stratified sampling, we partition the unit inter-
val into c = |I| strata. We assume we are given a sample
budget s > 1. We allocate ⌊ s

c⌋ samples to each of the c
strata. We then allocate one extra sample to the (s mod c)
bins with maximal p̂i. Note that as we allocate more sam-
ples to a particular stratum, the distance δi between adjacent
intrastratum samples shrinks, thus introducing no additional
bias. In practice, we also clip the δi to the bin width to pre-
vent outsized contributions from the endpoints of nonzero
regions. For s < c, this is biased; however, in practice, due
to our tightening regularization and adaptive allocation of
samples, we almost always have s ≥ c. Additionally, at ex-
tremely low spp, our method outperforms unbiased methods
(see left column of Fig. A5).

A4. Experiment details
A4.1. Geometry Visualization
For geometry visualization, we extract iso-surface geome-
try using March Cubes [10]. We use the voxel resolution of
5123 for comparisons and 10243 for our main results. For
SDF-based methods (ours), geometry is extracted from an
SDF field at the 0th level set. For NeRF-based methods
(EG3D, Mimic3D, and Epigraf), the surface is extracted
from the density field using the level set provided by the
official script from the authors. We render these extracted
models using Blender for visualization. To visualize nor-
mal maps, we derive the normal by taking the gradient of
the SDF field for SDF-based methods and density field for
NeRF-based methods with respect to positions.

A4.2. Normal-FID
As mentioned in the main text, we use normal maps ex-
tracted from the meshes of the NPHM [6] dataset. 255
subjects are scanned with highly variable expressions. We
provide examples of these normal maps in Fig. A9. For
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Layer Type Input Activation Dimension
Input 0 Input XYZ positions - 3
Input 1 Input Triplane features - 32

1 PosEnc Input 0 - 39
2 Concatenation Input 1, Layer 1 - 71
3 Linear Concatenation Softplus 128
4 Linear Layer 3 Softplus 128
5 Linear Layer 4 - 66

Table A1. Architecture of the MLPSDF network with embedding.

Layer Type Input Activation Dimension
Input 0 Input Viewing Directions ϕ - 3
Input 1 Input fgeo - 64

1 Embedding Input 0 - 15
2 Concatenation Input 1, Layer 1 - 79
3 Linear Layer 2 Softplus 64
4 Linear Layer 3 - 3

Table A2. Architecture of the MLPc network with embedding for viewing direction.

Normal-FID computation, we ensure all coordinate conven-
tions are consistent between baselines so that the color maps
are likewise consistent. We sample all methods with trun-
cation of 0.7 (cutoff = 14) due to the lack of diversity in
the ground truth images (see Fig. A9). Using PyFacer [4],
we also mask the background pixels to black. For Epi-
GRAF [14], we crop all sample images using HRN [9].

A4.3. Details of baseline methods

For all the baselines, we use publicly released pre-trained
models if they are available; otherwise, we quote the FID
numbers from previous work. For Mimic3D [3], Epi-
graf [14] and EG3D [2], we used the corresponding pub-
licly released models from the original authors for N-FID
and non-flatness score computation; unless explicitly spec-
ified otherwise, we also use the provided default evaluation
options for all methods. For EG3D, Mimic3d, Epigraf this
is 48 samples for a coarse pass and 48 samples for a fine
pass for two-pass importance sampling. For StyleSDF this
is 24 samples per ray.

For StyleSDF [12], we re-trained an FFHQ model at
512 resolutions and AFHQv2 cats-only model at 512 res-
olutions as they were not publicly available and used them
for geometry evaluations. We train our StyleSDF geome-
try network on FFHQ using the publicly released code, for
200k iterations as recommended by the authors, on 8 A100
NVIDIA GPUs. For our StyleSDF geometry network on the
AFHQv2 cats-only split, training with the provided AFHQ
config from scratch was unstable and collapsed. Instead,
we finetune the publicly released StyleSDF AFHQv2 all-
animals geometry network on our cats-only split for 50k

iterations and use that for evaluation.

A5. Discussion
A5.1. Limitation and Future Work

We showcase three failure cases of our method in Fig. A10.
In the first row, we see that there are seams in the side of
the face in both the geometry and rendering. We hypothe-
size this issue may be related to the frontal camera bias in
FFHQ and may be ameliorated by a more uniform sampling
of cameras. In the second row, we see that in some samples
with large amounts of specularity, the surface may become
unnaturally rough, which may be remedied by additional
regularization on the surface normal [17]. Finally, in the
third row, we see a rare phenomena where density close to
the camera occludes the subject.

Future works may utilize more balanced datasets with
larger coverage around the entirety of the face [1]. Extend-
ing to the human body [5] or more general classes [15], is
also extremely interesting. Combining our approach with a
3D lifting approach [16] using our method as 3D synthetic
data, may allow high-fidelity geometry estimation from a
single image.
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Figure A1. Curated samples from our FFHQ model.

6



Figure A2. Curated samples from our AFHQ model.
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Figure A3. Uncurated (seeds 1-8) samples from our FFHQ model.
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Figure A4. Uncurated (seeds 1-8) samples from our AFHQ model.
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Figure A5. We show the rendering results of various sampling methods at different sample counts. We visualize both the rendering and a
color map for the L2 error.
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Figure A6. We show the PSNR for the worst percentage of pixels for all three sampling methods (subject is the same as Fig.A5). As seen
in the charts, our method significantly outperforms the previous sampling methods at very low samples per pixel, e.g., 2 samples. At higher
sample counts, our proposed sampling method has a significantly better worst-case result, e.g., for the worst 1% or 0.1% of pixels, as seen
in the lower half. The importance of this is detailed in A2.1. The red dotted line indicates the maximal number of samples during training
that fit on one 80gb A100 when rendering two images (per GPU).
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Figure A7. We visualize the effectiveness of our proposed adaptive sampling approach. In the top-left, we see that using 10 samples for all
pixels results in jagged artifacts. Using the same number of samples, we allocate 9 samples to 90% of pixels and 19 to the remaining 10%,
which prevents these jagged artifacts. The top 10% of pixels by the quantity computed in Subsec. A3.4 is visualized in the top right. In
comparison, we also show the standard method without the learned sampler with 10 and 22 samples in the bottom-left and bottom-middle,
respectively. 22 corresponds to 10 samples along with the 12 samples allocated for the initial probe P128. Finally, we show the ground-truth
rendering with 384 samples (192 coarse and 192 importance) in the bottom right.
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Figure A8. We showcase examples of single-view 3D reconstruction with our method. The left column shows the test image inputs, the
right three columns show our inversion sample from three novel views.
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Figure A9. 20 sample normal maps from [6] masked using Facer [4], from which we compute the N-FID score.
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Figure A10. Three failure cases of our 3D generative model. First row shows seams on the side of the face; second row displays surface
roughness to simulate specularity; and third row shows a rare phenomena where density appears close to the camera, occluding the subject.
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