CALM: Conditional Adversarial Latent Models for Directable Virtual

Characters

CHEN TESSLER, NVIDIA, Israel
YONI KASTEN, NVIDIA, Israel
YUNRONG GUOQO, NVIDIA, Canada

SHIE MANNOR, NVIDIA, Israel and Technion Institute of Technology, Israel
GAL CHECHIK, NVIDIA, Israel and Bar-llan University, Israel
XUE BIN PENG, NVIDIA, Canada and Simon Fraser University, Canada

Crouch-Walk

fsasssgnnnennnn Latent
v ! . ° Representation
Motion Captured Recording: Crouch-Walk

Motion Captured Recording: Kick

fsssssnsnnn
Motion Captured Recording: Roar

Fig. 1. Our framework enables users to direct the behavior of a physically simulated character using demonstrations encoded in the form of low-dimensional
latent embeddings of motion capture data. In this example, the character is instructed to crouch-walk towards a target, kick when within range, and finally

raise its arms and celebrate.

In this work, we present Conditional Adversarial Latent Models (CALM),
an approach for generating diverse and directable behaviors for user-controlled
interactive virtual characters. Using imitation learning, CALM learns a repre-
sentation of movement that captures the complexity and diversity of human
motion, and enables direct control over character movements. The approach
jointly learns a control policy and a motion encoder that reconstructs key
characteristics of a given motion without merely replicating it. The results
show that CALM learns a semantic motion representation, enabling control
over the generated motions and style-conditioning for higher-level task train-
ing. Once trained, the character can be controlled using intuitive interfaces,
akin to those found in video games.

1 INTRODUCTION

Virtual environments and interactive characters have become more
prevalent and user-friendly, but creating realistic and diverse be-
haviors for these virtual agents remains a challenge due to the
complexity of human motion. To create interactive and immersive
experiences, virtual agents must adapt to different environments
and user inputs in a life-like manner, and this requires the ability to
perform a wide range of behaviors on demand. To that end, we need
to develop control models that can generate complex and realistic

Authors’ addresses: Chen Tessler, NVIDIA, Israel, ctessler@nvidia.com; Yoni Kasten,
NVIDIA, Israel; Yunrong Guo, NVIDIA, Canada; Shie Mannor, NVIDIA, Israel and
Technion Institute of Technology, Israel; Gal Chechik, NVIDIA, Israel and Bar-Ilan
University, Israel; Xue Bin Peng, NVIDIA, Canada and Simon Fraser University, Canada.

behaviors, while taking into account the properties of the environ-
ment. For example, in virtual reality games, players that interact
with virtual characters and objects expect them to behave realisti-
cally. This includes responding to user commands and navigating
through virtual environments. When virtual agents fail to respond
naturally to user input, it can disrupt the immersive experience.

Recent advancements in machine learning and access to high-
quality human motion capture data have led to the development of
control policies that can replicate human behavior. Early studies in
this field, such as [Peng et al. 2018], focused on imitating single mo-
tion clips. However, as each motion is learned using an independent
controller, it does not effectively scale. Later research [Peng et al.
2022, ASE] aimed to improve the diversity of generated motion by
learning a latent-conditioned controller and maximizing a mutual
information objective. When trained on a dataset of diverse motions,
distinct behaviors emerged, however at the cost of losing the ability
to control the generated motion.

Building on these previous works, we present Conditional Adver-
sarial Latent Models (CALM), a method for learning a representation
of movement that captures the complexity and diversity of human
motion, while also providing a directable interface for controlling
a character’s movements. Given raw motion capture recordings,

2+ Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng

illustrated in Figure 1, CALM encodes them into a latent represen-
tation. CALM further decodes a given latent vector into a skill for
a physically simulated character, enabling it to perform high-level
tasks while being conditioned on a desired motion. As can be seen
in Figure 1, without any further training, using only predefined raw
motion data, the agent can solve challenging tasks using a set of
desired skills. A key benefit of our framework is that the policy
does not need to precisely replicate the original reference motion.
Instead, it has the flexibility to produce diverse movements, as long
as they resemble the distributional characteristics of the particular
motion clip. This enables the policy to deviate from the motion data
and generate new and diverse behaviors that appear natural even
though they were not explicitly depicted in the original dataset.

Compared to prior work, we focus on unsupervised techniques.
The data is unlabeled and we do not assume prior knowledge of
semantic connections between motions. We present an end-to-end
method that jointly learns a meaningful semantic representation of
skills and a control policy capable of producing the selected skills.
While previous work used language to derive semantic connections
[Juravsky et al. 2022], we demonstrate that semantic meaning can be
directly inferred from the motions and similarity is determined in the
context of the policy reproducing the motions. This ability to direct
the character’s motions then enables tasks to be solved using human-
like control and without further re-training, demonstrating CALM’s
ability to generate interactive and directable virtual characters. To
conclude, our contributions are as follows:

(1) We present a method for jointly training a generative motion
controller and a motion encoder, from unlabeled motion cap-
ture data. The resulting policy can be directed to generate a
motion M via its encoding z = E(M).

(2) We introduce precision training, a way to reuse the pre-
trained policy and leverage similarity within the learned la-
tent space to enable control over the produced motion when
solving high-level tasks, such as locomotion.

(3) Finally, we show that combining steps 1 and 2 enables the
design of simple FSMs to solve tasks without further train-
ing or meticulous design of reward functions or termination
conditions.

2 RELATED WORK

We aim to learn rich and reusable skill representations, from diverse
unlabeled data, for character control. The field of data-driven mo-
tion generation can be broadly divided into kinematic models and
physics-based models. Kinematic models directly generate pose tra-
jectories without explicitly considering physical constraints, while
physics-based models often use a physically simulated environment
to enforce realistic dynamics during motion generation.

We differentiate between two methods of control for paramet-
ric models: direct prediction and latent/language-based control. In
direct prediction, the model learns to generate motions for a pre-
defined task, while latent and language-based control involves learn-
ing a generative model for motions. As our focus is on creating
interactive, controllable characters, we build upon the literature of
physics-constrained generation and focus on latent-based control.

2.1 Physics-constrained motion generation

In physics-constrained generation, the model predicts motor actu-
ations. These are fed into the simulator, which then produces the
next state by emulating the character’s motion while adhering to
the various governing laws (such as gravity and friction). Recent
advances in deep learning, specifically deep reinforcement learn-
ing, have enabled a leap forward in generation quality. Such an
example is DeepMimic [Peng et al. 2018], in which they defined a
motion-tracking reward that is used for training a policy to imi-
tate specific motions. However, these schemes focused on imitating
single, pre-defined, motion clips.

Direct prediction. In direct prediction, the goal is to directly learn
to solve a downstream task. For instance, the agent may be tasked
with reaching a goal location. Here, AMP [Peng et al. 2021] combines
adversarial imitation learning [Ho and Ermon 2016, GAIL] with
classic RL. The agent attempts to balance between maximizing the
task reward, whilst successfully fooling a discriminator. However,
when the demonstration data distribution does not fit the task,
the resulting behavior is unsatisfactory, and the resulting model
is unable to generalize to new tasks - requiring re-optimizing the
provided data and re-training per each task.

Latent-based control. Here the task is to learn a behavior manifold
that can be sampled from. Park et al. [2019] learn to predict future
states and then a controller to track that behavior. Won et al. [2022]
learn a conditional variational auto-encoder (VAE), conditioned on
the next state. Finally, closest to our work, ASE [Peng et al. 2022]
presents an unsupervised discriminative learning procedure. By
maximizing the mutual information between the latent space and
the produced next state, in addition to optimizing the imitation
learning objective, the agent learns to generate diverse motions.

These methods share a common theme - the resulting latent space
is complex to control. In this work, we learn a dense representation
of human motion jointly with a directable latent-conditioned policy.

2.2 Representation Learning

Representation learning, the task of capturing the underlying struc-
ture of data, has been a significant area of focus in the field of
machine learning, particularly in the representation of images and
videos. There are different ways to define similarity between data
points, but one approach that is closest to our method is by directly
utilizing a downstream task. For instance, generative adversarial
networks [Goodfellow et al. 2020, GAN] and VAEs [Kingma and
Welling 2013] learn a low-dimensional latent representation in order
to recreate data from the reference distribution.

In the context of learning representations for motions, VAE and
adversarial-based training can be differentiated. Motion VAEs [Ling
et al. 2020; Won et al. 2022] enable jointly learning to represent and
generate motion. While VAE-based methods are typically easier to
train, their pitfall is that they are driven by a reconstruction loss,
preventing the ability to deviate from the data distribution.

The benefit of adversarial methods is in their ability to generate
new motions that are likely under the reference data distribution.
This is important in the context of controllable characters. The

character must transition naturally between every motion pair, even
when it is not provided with an explicit demonstration.

As shown in ASE [Peng et al. 2022], the policy learns to gener-
ate diverse behaviors, generalizing beyond motion reconstruction.
However, their resulting latent space lacks global semantic struc-
ture. As a result, ASE tends to mode-collapse and does not provide
an easy way to map motions to the latent space, an important re-
quirement for directability and control. Alternative work such as
PADL [Juravsky et al. 2022] utilized supervision from natural lan-
guage These methods are able to train language-aligned motion
representations that can then generate behaviors based on natural
language commands. However, they require access to labeled data.

In this work, the data is unlabeled and the representation is
learned end-to-end with the imitation learning policy. Hence, the se-
mantic connections between motions are determined in the context
of the policy reproducing the motions.

2.3 Hierarchical Reinforcement Learning

Latent generative models can be seen as part of the options/skills
framework [Sutton et al. 1999]. The options framework differentiates
between a high and low-level controller. The low-level controller
produces micro-actions, which are high-frequency actions capable
of generating diverse behaviors. On the other hand, the high-level
controller often plans at a lower frequency. At each time step, it
selects which skill to play. Skills are temporally extended actions,
or, in our context, long-term motions.

Prior efforts in hierarchical reinforcement learning (HRL) have
shown that utilizing meaningful skills can not only speed up training
[Tessler et al. 2017], but also enforce the solution to reside within
the support of the data [Peng et al. 2022].

3 REINFORCEMENT LEARNING BACKGROUND

In this work, both the pre-training and the downstream tasks are
modeled as reinforcement learning problems, where an agent in-
teracts with an environment according to a policy 7. At each step
t, the agent observes a state s; and samples an action a; from the
policy a; ~ m(a¢|st). The environment then transitions to the next
state sy4+1 based on the transition probability p(s;+1|ss, ar). The goal
is to maximize the discounted cumulative reward, defined as

T
J=Ep(ein) [Z yire
t=0

where p(z|7) = p(so)HtT:’Olp(sHl |s¢, ap)(ag|sy) is the likelihood of
a trajectory 7 = [so, ag, 1o - - -, ST—1, 4T—1,'T—1,5T), and y € [0,1)
is the discount factor that determines whether the agent is short-
sighted or considers longer-term outcomes.

o = S]) (1)

4 OVERVIEW

In this paper, we introduce Conditional Adversarial Latent Mod-
els (CALM), a scalable, data-driven approach for creating directable
controllers for physically simulated characters. These characters
can be controlled in a similar way to how players control virtual
characters in games, by providing a sequence of instructions for
movement and actions. Figure 2 outlines our framework. It consists

CALM: Conditional Adversarial Latent Models for Directable Virtual Characters « 3

1. Low-level training

f Reference Motions

] Cond. Disc. .

3 Rs!ereice] ' 3 Mt
3 -7+ 1simulation <+

' 'stop grad

A 4
3 A4 Encoder

)
Low-level Policy

a 9%
i

Environment

High-level Policy

-

t

A\ 4

D

>

'

Encoded M; ,
| 21 = run]
! 2y = strike 1
P , v i
: Low-level Policy |2t O #t Task FSM

21 towards the '

ﬁ P target, then 2».]
- J - J 1
4

ag 2t Zt
v St v
Environment (High-level Policy

-
A

Fig. 2. The CALM framework consists of three phases. 1) In the initial
training phase, both the encoder and low-level policy are developed by
utilizing feedback from a conditional discriminator. The encoder learns to
create a condensed representation that encapsulates the core of the motion,
while the low-level policy, which interacts with the environment, serves as
a decoder. 2) Once the pre-training phase has concluded, the encoder and
low-level policy are frozen. The next step is precision training. Here, a
high-level policy is trained to control the low-level policy. 3) In the last phase,
inference, the high-level policy is also frozen. Solutions to complex tasks
are then described using finite state machines (FSM), rule-based systems
that do not require training, instead of rewards. Based on the state of the
task, the FSM either provides a command to the high-level policy or provides
a latent directly to the low-level policy.

of three steps. (1) Low-level training of a motion encoder and mo-
tion generator. (2) Precision training using a high-level policy. (3)
Inference, during which tasks are solved without further training.
During low-level training, CALM learns an encoder E. It takes
a motion M from a reference dataset of motions M, a time-series
of joint locations, and maps it into to a low-dimensional latent
representation z € Z. Additionally, CALM also jointly learns a
decoder. The decoder is a low-level policy 7(als, z) that interacts
with the simulator and generates motions similar to the reference

4« Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng

dataset. This policy produces a variety of behaviors on demand, but
is not conditioned on the directionality of the motion. For example,
it can be instructed to walk, but does not enable intuitive control
over the direction of walking.

Next, to control motion direction, we train a high-level task-
driven policy to select latent variables z;. These latents are provided
to the low-level policy which generates the requested motion. Here,
the motion encoder is used to constrain the latents z; to be close to
pre-specified motions z;, thus guiding the high-level policy to adopt
a desired behavioral style. For example, move in a given direction
while performing a crouch-walking motion.

Finally, the previously trained models are combined to compose
complex movements without additional training. To do so, the user
produces a finite-state machine (FSM) containing standard rules
and commands. These determine which motion to perform, similar
to how a user controls a video game character. For example, they
determine whether the character should perform a simple motion,
performed directly using the low-level policy, or a directed motion
requiring high-level control. As an example, one may construct an
FSM like (a) "crouch-walk towards the target, until distance < 1m",
then (b) "kick", and finally (c) "celebrate" (Figure 1).

5 CONDITIONAL ADVERSARIAL LATENT MODELS

Learning a rich reusable skill representation enables characters to
generate a wide variety of motions on demand, opening a range of
potential applications such as games and visual effects. In CALM ,
these skills are modeled using a motion-conditioned policy 7 (als, 2),
where motions M are encoded into a latent variable z € Z. This
mapping is modeled using a motion encoder z = E(M), and learned
by solving a conditional imitation learning objective over motions
M sampled uniformly from a reference dataset M:

max ~Ejyze A1 [DJS (d” (s.5"I2) |Z=E(M)”dM (& §’))] - @

where Dys is the Jensen-Shannon divergence, and d” (s, s"|2) \z: E(M)

and dM (5,§’) are respectively the state transition distribution of
the policy and reference motions.

This objective is related to prior work in imitation learning litera-
ture, namely learning from observations (LfO) [Torabi et al. 2018]. In
this setup, the agent is provided with a demonstration dataset that
consists only of state transitions/observations, without the underly-
ing actions that produced those transitions. Generative Adversarial
Imitation from Observation [Torabi et al. 2018, GAIfO] jointly trains
a policy and a discriminator. The policy generates state transitions
(s, s”), while the discriminator tries to distinguish them from demon-
strations sampled from the data (3,). However, provided a variety
of motions, GAIfO is prone to mode-collapse, where the policy does
not model all of the different behaviors from a large dataset, and
the resulting model does not explicitly learn a skill embedding that
can be used to direct the policy on downstream tasks.

In previous research, ASE [Peng et al. 2022] attempted to address
these problems by introducing a latent variable and maximizing
mutual information. They demonstrated that the model can produce
diverse behavior when provided with randomly sampled variables.
However, solely relying on mutual information loss is not enough.
To avoid mode-collapse, ASE also employs a diversity loss, which

states that similar latent variables should produce similar action
distributions. Our study shows that this is particularly important
in terms of directability. The encoder learns an imprecise mapping
between motions and latents, resulting in a controller that does not
produce similar motions when conditioned on the same latent, mak-
ing it challenging to direct the policy to perform specific motions.

CALM mitigates the issues from prior methods by using a condi-
tional discriminator that forces the policy to reproduce each motion
in the dataset. At each iteration, a random motion M is sampled from
the reference dataset. The encoder maps the motion to a latent en-
coding z = E(M). Both the policy and the conditional discriminator
are then conditioned on this latent z. Conditioning the discriminator
on the latent helps to mitigate mode collapse, by forcing the policy
to produce motions that are similar to the corresponding motion of
a given latent. This leads to the following discriminator loss

Lo = -Epepm EdM(ig,)(logZ)(& §'|z)) 3)
+Byrio) (o) (1081 = D(s,5'12))) [z = B,
and policy objective
J=Emem |Ep(rin2) (Z ytr(st,st+1,z)|so = s) z=EM)|, (4
G
with rewards r(s;, sr+1,.2) = — log (1- D (51, s4112)).

5.1 Practical Considerations

In this section, we present design decisions needed for a practical
instantiation of CALM, as well as in-depth implementation details.

5.1.1 Encoder. An ideal representation is one that is optimized for
the control policy, rather than relying on auxiliary objectives to
drive the structure of the latent representation, as in contrastive
learning methods [Oord et al. 2018]. We show that an effective
encoder can be trained in an end-to-end fashion using gradients
from the policy when optimizing the pre-training objective Equa-
tion (4). Furthermore, this approach results in a latent space with a
clear semantic structure, where similar motions are grouped closely,
enabling interpolation in a semantically meaningful manner.

The encoder’s output is projected onto the I unit hypersphere.
This constraint is inspired by prior work in the field [Bojanowski
and Joulin 2017; Chen et al. 2020; Parkhi et al. 2015; Peng et al. 2022;
Wang et al. 2017; Wang and Isola 2020; Xu and Durrett 2018], and
has several benefits. For example, fixed-norm vectors are known to
improve training stability in machine learning, where dot products
are commonly used [Wang et al. 2017; Xu and Durrett 2018]. In
the context of motion generation, the structure imposed on the
latent space by the unit /; norm constraint reduces the likelihood
of unnatural behaviors arising from sampling out-of-distribution
latents during inference, as demonstrated by Peng et al. [2022].

As motion clips can be arbitrarily long, we split the data into
overlapping sub-motions of 2 seconds. This results in motions that
are long enough to present distinct and coherent characteristics.
Additionally, sub-motions with close temporal proximity are likely
to have similar characteristics. We leverage this understanding to

improve the latent space structure by applying an alignment and
uniformity loss on the predicted embeddings [Wang and Isola 2020].

2
2] , ®)

2
Lunitorm =10g B, 0 [exp (—zHE(M> ~ E(M) 2)] . ©

where overlapping corresponds to two-second sub-motions (M, M)
from the same original motion sequence with non-zero overlap, and
i.i.d to sub-motions randomly sampled from the data.

Lalign = overlﬂppingM [”E(M) - E(M’)

E
(M,M")

5.1.2 Skill Transitions. When performing new tasks, agents often
need to sequentially transition between behaviors. Even in simple
tasks, like reaching a location, the character needs to utilize a com-
bination of skills like walking, turning, and standing. To enable
smooth and robust transitions between motions, we explicitly train
the model to transition between different motions by changing the
conditional motion M at random timesteps. This teaches the policy
to successfully transition between disparate motions.

5.1.3 Discriminative Loss. In adversarial imitation learning the dis-
criminative reward provides the learning signal to the agent. To
improve training dynamics, [Juravsky et al. 2022; Peng et al. 2022,
2021] propose to use a gradient penalty regularizer and negative
sampling. This regularization helps mitigate discriminator overfit-
ting and produces a smoother optimization landscape for the policy.
The result is improved training stability and overall quality of the
generated motion. In addition, as our goal is to learn a motion encod-
ing optimal for the control task, we prevent gradients from flowing
from the discriminator’s objective into the encoder. This results in
the following objective:

Lp=—Epyem (Ed”(s,s'|Z) [Iog (1-D¢, 5/|Z))] @
+Egum (s ¢) [log D(3,4'|2) +log (1 - D(s,5'|2" ~ 2))]

+ WepBam s o1y [llvei)(@)le:(g,ng)llz])Z = stop grad(E(M))) .

Here, wgp is the gradient penalty coefficient.

6 HIGH-LEVEL CONTROL

Once the low-level controller has been trained, it is used as a motion
generator, grounding the motions of the character to those seen in
the data. In this section, we present how to train a high-level policy
to control the direction in which motions are performed, which can
then be leveraged to solve complex tasks in varying forms without
specifically training on them.

6.1 Precision training

Provided a motion encoding 2 = E(M), the low-level policy gener-
ates a matching motion, however, providing the low-level policy
with the encoding for "run" does not control the running direction.
To provide better control we train a high-level policy to generate
motion in the requested form and direction.

Specifically, the high-level policy produces latent variables z;.
These are then provided to the low-level policy which controls
the character. The character is tasked with moving in a specified
direction dy while crouch-walking M, or alternatively sprinting M.

CALM: Conditional Adversarial Latent Models for Directable Virtual Characters « 5

We achieve this by combining a task reward with a latent similarity
loss. Specifically, given a motion encoding z = E(M), we train the

high-level policy with the following reward
2
< Toot

r}ocomotion = exp|—0.25 x>

d; -

t 2112
e +exp(~4llz — 2I12) .)
t

where x1°°! is the character’s velocity.

6.2 Exemplar guidance

Given a pre-trained encoder and low-level policy (Section 5) and
a pre-trained high-level policy (Section 6.1), the task designer de-
scribes how a task should be solved, in a natural and intuitive way,
overcoming the fragility of reward design. Here, the task designer
provides demonstrations for the various motions the agent should
perform, enclosed within a finite-state machine (FSM) that deter-
mines when to transition between behaviors. For instance, the task
of striking an object can be broken down into three phases "run
towards the object”, once within 0.5 meters then "perform an attack”,
and then "stand idle" until the next command.

Achieving such a level of control requires a combination of ver-
satility, provided by the low-level policy, and precision, provided by
a pre-trained high-level policy. During phases requiring precision,
such as moving in a specified direction, the FSM provides the high-
level policy with a requested motion embedding Z and a direction
in which this motion should be performed. When transitioning to
isolated motions, such as a specific sword swipe, the FSM provides
the motion encoding directly to the low-level policy.

This enables re-usability without re-training and resembles how
a user would interact with the character given a game controller.
A single combination of (a) low-level policy, (b) encoder, and (c)
high-level policy, are used to solve unseen tasks in varying forms.

7 EXPERIMENTS

The data: To acquire diverse motion control capabilities, the low-
level policy is trained using 160 motion clips totaling over 30 minutes
in duration [Reallusion 2022]. Each motion clip is broken down
into 2-second continuously overlapping sub-sequences, oblivious
to transition boundaries. Hence, if a motion clip contains multiple
skills, the 2-second clips may contain motions from several skills..
This includes basic movements such as various forms of walking, as
well as more complex motions such as sword-strike combinations.
This is explained in further detail in the supplementary material.

Training workflow: Throughout the pre-training process, the
agent interacts with the environment for rollouts of K steps. At
random timesteps, a random motion is sampled from the reference
dataset, it is then encoded and provided to the low-level policy.
The rollout then consists of the observed states resulting from the
low-level policy, conditioned on the latent z, interacting with the
environment. The low-level policy is then trained with respect to
the collected rollout using PPO [Schulman et al. 2017].

We parallelize training over 4096 Isaac Gym [Makoviychuk et al.
2021] environments on a single A100 GPU, for a total of 5 billion
steps. The low-level (high-level) policy takes decisions at a rate of
30 (6) Hz. The latent space Z is defined as a 64D hypersphere.

6 + Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng

‘ Encoder quality | ‘ Diversity T ‘ Controllability T
CALM 0.23 19.8+0.1 ‘ 78%

ASE 0.68 18.6+0.4 35%
Table 1. Pre-training: Quantitative evaluation of the learned encoder and
low-level policy. We measure Fisher’s concentration coeff. (Encoder quality),
Inception score (Diversity), and Generation accuracy (Controllability).

Model architecture The encoder is a standard MLP, mapping
E(M) ¥ z, the policy and conditional discriminator each contain
an additional input head H(z) for latent parsing, followed by an
MLP 7 (s, H(z)) — a, where a € R3L.

8 RESULTS

We tested the effectiveness of our method by using CALM to learn
skill embeddings that allow a simulated humanoid to perform var-
ious motion control tasks. We demonstrate that CALM learns a
semantically meaningful latent representation of diverse human
motion and a directable policy. We then trained a high-level policy
to control the direction in which these motions are performed. Fi-
nally, we show how these low and high-level policies can be re-used
for solving unseen tasks without further training. See the motions
produced by CALM in the provided supplementary video 1.

8.1 Controllable motion generation

We begin by analyzing three aspects of CALM: (1) the encoder quality,
(2) diversity of the low-level controller, and (3) controllability of the
combined system. Results are reported in Table 1. We focus our
comparison on ASE [Peng et al. 2022], a latent generative model
which learns to map arbitrary latent variables to motions.

Experiment 1: Encoder quality. Using Fisher’s class separability
metric [Bishop et al. 1995] over the representation learned by the
encoder, we measure the separability between the motion classes
within the latent space, where a motion class is defined as sub-
motions within a single motion file. As shown in Table 1, CALM learns
to encode motions into representations with much better separation.

Experiment 2: Diversity. We trained a classifier using the reference
dataset from Section 5 to map a motion sequence to the originating
motion index. We report the Inception Score [Salimans et al. 2016]
over generated motions, when generated from randomly sampled
latents z ~ Z. As seen in Table 1, CALM significantly improves the
diversity of generated motion.

Experiment 3: Controllability. Finally, we quantified how well
CALM generates the requested motions, using a user study. Pro-
vided a reference motion and a textual description (taken from
Juravsky et al. [2022]) raters were asked to classify the generated
motion as similar or not. For each model, we presented raters with
40 reference motions and 3 generations per reference. We report the
accuracy, measured as the percentage of accurate generations by the
controller. The results show that CALM enables better control over
the generated motions, compared to ASE, increasing the accuracy
of perceived generation from 35% to 78%.

!See Section 9 for an explanation on rendering artifacts within the visualization process.

Crouch
Walk 0.94 0.91

0.99 L)} 1
0.97 > 0.99

Table 2. Quantitative evaluation of directional motion control (heading)
and zero-shot task solution. We consider three forms of locomotion: run,
walk, and crouch-walk, each characterized by a different speed and style. For
each task, we consider various finishing motions. For the location task, we
consider § (stand idle), Y (celebrate, arms-up), and x® (crouch idle). In the
strike task, we consider: (kick), L)] (shield charge), and N (sword swipe).

Motion Heading Location Strike
Style Score | Ending Score | Ending Score
] 0.98 - 0.96
Run 1 0.92 Y 0.99 L)} 1
& 0.96 » 0.99
] 0.99 - 0.98
Walk 0.81 0.92 Y 1 L)} 1
& 0.97 > 0.96
] 0.98 - 0.99
¥
&

This was enabled by performing end-to-end learning of both the
representation (encoder) and the generative motion model (low-
level policy) using a conditional discriminative objective. As a result,
CALM learns to encode motion onto a semantically meaningful
representation and a controller capable of generating motion with
similar characteristics to the demonstration.

8.1.1 Qualitative analysis. In Figure 3, we show motions generated
by CALM . Throughout a single episode, the conditional motions
were changed, resulting in human-like transitions between the re-
quested motions. Additionally, to illustrate the semantic structure
of the latent space, we encode two semantically connected motions
"sprint” and "crouching idle" and interpolate between their encod-
ings over time. As shown in Figure 3e, CALM smoothly transitions
between the two motions, decreasing both speed and height while
continuously performing a form of walking motion.

8.2 Solving downstream tasks

Using the encoder and low-level policy from Section 8.1, we show
how they can be used to compose motions for solving unseen tasks
using commands akin to video game control.

8.2.1 Directional motion control. First, we show that provided a
reference motion M and a direction d*, a high-level policy can learn
to control the low-level policy. We refer to this task as Heading.
The character should produce motions with similar characteristics
in the requested direction. We demonstrate the learned motions in
Figure 4 and quantify them in Table 2 under the Heading column.
Here, a high-level policy was conditioned on jointly learning "run",
"walking with a raised shield", and "walk crouching".

During the evaluation, the high-level policy is conditioned on a
fixed style and the direction is changed at random timesteps. We
report the success in generating the requested style, measured using
human raters, and the direction of motion, measured as the cosine
distance between the requested and actual movement direction.

CALM: Conditional Adversarial Latent Models for Directable Virtual Characters « 7

velocity

.
- 503
= BYTR-E ..

04 06 08 1.0 .

°
°
°
~

(e) Interpolation over time: from sprinting to crouching-idle

Fig. 3. Low-level training: Skills generated by a low-level controller conditioned on the encoding of a demonstrated motion.

(a) Heading: Run (b) Heading: Walk, shield up (c) Heading: Crouch-walk

Fig. 4. Precision training: A single high-level controller is trained to generate style-constrained locomotion via reward guidance.

.ta 4y

i 0 -
i W\&, ., 5
M Be
i1

i«

(e) Strike: Crouch-walk, then Shield-swipe (f) Strike: Walk, then Kick

Fig. 5. Inference: Without any further training, CALM solves multiple different tasks and the same task in multiple different forms.

8 + Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng

The results show that by constraining the latents to reside close
to the reference motion encoding, the high-level policy is capable
of generating motion in the specified style while ensuring it moves
in the requested direction.

8.2.2 Solving tasks without further training. In our final experi-
ment, we combine the directable low-level controller together with
the high-level locomotion policy to provide zero-shot solutions to
unseen tasks. We consider two tasks, location and strike. For the
location task, the agent should reach and remain within the goal
position - illustrated as a circle around the flagpost. Strike, a more
complex task, requires the agent to reach the target and strike it
down. In both cases, the character is controlled by conditioning
a sequence of reference motions. To do so, the direction vector is
provided to the target location, represented in the character’s local
coordinate frame. Once within range, the low-level policy is directly
provided the latent corresponding to the requested action, e.g., kick,
shield charge, or sword swipe.

As shown qualitatively in Figure 5 and quantitatively in Table 2,
CALM can be used to solve tasks similarly to how a human, given
a game controller, would solve them. Thanks to the controllability
aspect of CALM, without any further training or task-specific re-
ward design, the FSM sequentially orders the character to transition
between motions. The result is a composition of human-like motion
that solves the task.

9 LIMITATIONS

The results in Tables 1 and 2 show how CALM learns a diverse
repertoire of motions without sacrificing controllability. This can
then be leveraged to learn style-conditioned locomotion and finally
to compose motions for solving multi-step, unseen, tasks. In this
section, we highlight open challenges and questions that arise from
this work.

Pre-training — mode collapse: We have shown that our algorithm
CALM improves the controllability of generated motions compared
to the existing approach, ASE, with a significant boost in perfor-
mance from 35% up to 78%. However, mode collapse remains an
open challenge. For instance, we have observed that conditioning
the low-level controller on idle-motions can lead to unrealistic micro-
motions that slowly move the character. Although our approach
addresses the problem of mode collapse to a large extent, there
remains room for further improvements.

Pre-training — unseen motions: Our work focuses on learning
a latent generative motion controller for in-distribution motions.
However, when conditioning the character on encodings from un-
seen motions, we cannot guarantee the quality of the generated
motions. While we have observed that some unseen motions map
to semantically similar motions from the data, such as tip-toe map-
ping to bounce-walk, we anticipate that the model may fail as the
motions become increasingly out of distribution.

Precision-training — beyond locomotion: In Table 2 our approach
is shown to leverage the learned latent space and achieve style-
conditioned locomotion. However, controlling intricate movements
such as the path of a sword or shield in an attack may require
additional innovations in the pre-training phase, such as learning
motions with a larger distributional discrepancy to the data.

FSM - robustness: Our approach has demonstrated the ability to
solve tasks using classic tools from the gaming and animation indus-
try, such as FSM and behavior trees, presenting a game-controller-
like interface, as shown in Figure 5. However, we anticipate that the
policy’s robustness envelope may limit its ability to solve tasks with
vastly different dynamics from those seen during training, such as
climbing stairs or walking on uneven terrain. Therefore, further
innovations and training may be required to solve such tasks.

Rendering — artifacts: To illustrate how our work can be inte-
grated into the gaming industry, we visualize the motions using
high-resolution characters, rendered within Omniverse (OV). Al-
though physically accurate motion is recorded in IsaacGym (IG)
where physical constraints are maintained without visual artifacts,
the visualization character in OV is not subject to these constraints
during rendering. Consequently, due to the difference in character
geometry, the visualization character may exhibit penetrations and
other visual artifacts that do not occur in IG. It is worth noting that
the issue of rendering artifacts is not an inherent problem with our
proposed algorithm CALM , but due to the differences in character
geometry. One way to minimize these artifacts is by ensuring that
the simulated character’s geometry is closer to that of the visualiza-
tion. Another solution is robustifying the training process to handle
varying character morphologies to directly control the visualization
character while enforcing physical constraints.

10 DISCUSSION AND FUTURE WORK

In this work, we presented CALM, a framework for learning reusable
and directable motor skills for physics-based character animation.
Our model enables the character’s behaviors to be directed using
motion clips. Given an unlabeled motion dataset, CALM learns both
an encoder and a low-level controller. The encoder maps motions
onto a semantically meaningful low-dimensional representation
and a low-level controller takes the role of a decoder and produces
motions with similar characteristics to those encoded within the
learned representation. These reference motions can be used both
for controlling low-level skills and to guide higher-level controllers
and specify which motions the character should use when solving
complex tasks. The ability to control the generated motion of the
character enables zero-shot solutions to complex multi-step tasks, a
step towards real integration of interactive virtual characters.

Our motion-constrained training enabled guiding the solution
towards utilizing pre-specified motions. However, successfully learn-
ing to produce the requested motion in the specified direction re-
quired delicate tuning of the reward parameters. We are interested
in exploring ways for disentangling the representation of direction
from the representation of the content motion. Such disentangle-
ment will enable high-level policies to learn with simplified rewards,
while ensuring that they produce motion with the desired charac-
teristics. Finally, some motions require coordinated interaction with
the environment. For instance, aerobatic motions like handsprings
and vaults can only be performed while interacting with a vaulting
table/elevated box. We intend to investigate automation methods for
understanding the motion-object pairs, and the integration of such
objects throughout training for learning the respective motions.

REFERENCES

Christopher M Bishop et al. 1995. Neural networks for pattern recognition. Oxford
university press.

Piotr Bojanowski and Armand Joulin. 2017. Unsupervised learning by predicting noise.
In International Conference on Machine Learning. PMLR, 517-526.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In International
conference on machine learning. PMLR, 1597-1607.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial networks.
Commun. ACM 63, 11 (2020), 139-144.

F Sebastian Grassia. 1998. Practical parameterization of rotations using the exponential
map. Journal of graphics tools 3, 3 (1998), 29-48.

Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
Advances in neural information processing systems 29 (2016).

Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2022. PADL: Language-
Directed Physics-Based Character Control. In SSGGRAPH Asia 2022 Conference Papers
(Daegu, Republic of Korea) (SA "22). Association for Computing Machinery, New
York, NY, USA, Article 19, 9 pages. https://doi.org/10.1145/3550469.3555391

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. 2020. Character
controllers using motion vaes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
40-1.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. 2021. Isaac Gym: High Performance GPU Based Physics Simulation
For Robot Learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2). https://openreview.net/forum?
id=fgFBtYgJQX_

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learn-
ing predict-and-simulate policies from unorganized human motion data. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1-11.

Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep face recognition.
(2015).

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. 2018. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions On Graphics (TOG) 37, 4 (2018), 1-14.

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. ASE:
Large-scale Reusable Adversarial Skill Embeddings for Physically Simulated Char-
acters. ACM Trans. Graph. 41, 4, Article 94 (July 2022).

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021.
Amp: Adversarial motion priors for stylized physics-based character control. ACM
Transactions on Graphics (TOG) 40, 4 (2021), 1-20.

Reallusion. 2022. 3D Animation and 2D Cartoons Made Simple. (2022). http://www.
reallusion.com

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi
Chen. 2016. Improved techniques for training gans. Advances in neural information
processing systems 29 (2016).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence 112, 1-2 (1999), 181-211.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. 2017.
A deep hierarchical approach to lifelong learning in minecraft. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 31.

Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Generative Adversarial Imitation
from Observation. CoRR abs/1807.06158 (2018). http://arxiv.org/abs/1807.06158
Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, 11 (2008).

Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. 2017. Normface: L2
hypersphere embedding for face verification. In Proceedings of the 25th ACM inter-
national conference on Multimedia. 1041-1049.

Tongzhou Wang and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
Conference on Machine Learning. PMLR, 9929-9939.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2022. Physics-based character
controllers using conditional VAEs. ACM Transactions on Graphics (TOG) 41, 4
(2022), 1-12.

Jiacheng Xu and Greg Durrett. 2018. Spherical Latent Spaces for Stable Variational
Autoencoders. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. 4503-4513.

CALM: Conditional Adversarial Latent Models for Directable Virtual Characters

9

https://doi.org/10.1145/3550469.3555391
https://openreview.net/forum?id=fgFBtYgJQX_
https://openreview.net/forum?id=fgFBtYgJQX_
http://www.reallusion.com
http://www.reallusion.com
http://arxiv.org/abs/1807.06158

10 + Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng

A STATE AND ACTION SPACE

In this work, we consider a 3D physically-simulated humanoid
character wielding a sword and a shield, with 37 degrees of freedom.
A similar character was used in Peng et al. [2022]. To encode the
state, we follow the same representation technique from Peng et al.
[2021]. The agent observes:

e Root (character’s pelvis) height.

e Root rotation with respect to the character’s local coordinate
frame.

Local rotation of each joint.

Local velocity of each joint.

Positions of hands, feet, shield, and the tip of the sword, all
in the character’s local coordinate frame.

The character’s local coordinate frame is defined with the origin
located at the root, the x-axis oriented along the root link’s facing
direction, and the y-axis aligned with the global up vector. The 3D
rotation of each joint is encoded using two 3D vectors, correspond-
ing to the tangent u and the normal v of the link’s local coordinate
frame expressed in the link parent’s coordinate frame [Peng et al.
2021]. In total, this results in a 120D state space.

A.1 Low-level policy

In addition, the low-level policy observes a 64D latent representation
of motion.

To control the character, the agent provides an action a that rep-
resents the target rotations for PD controllers, which are positioned
at each of the character’s joints. Similar to Juravsky et al. [2022];
Peng et al. [2022, 2021], the target rotation for 3D spherical joints
are encoded using a 3D exponential map [Grassia 1998], resulting
in a 31D action space.

A.2 Encoder

The encoder learns to map fixed-length motions onto a low-dimensional

representation. We consider 2-second motions. As the low-level con-
troller operates at 30Hz, this results in 60 frames. During training,
we randomly sample motion clips. If the motion clip is longer than
2 seconds, we randomly sample a continuous 2-second window and
interpolate between the discrete supports of the motion. On the
other hand, if the motion is shorter than 2 seconds, we apply zero
padding.

A.3 Discriminator

The discriminator is trained similarly to ASE [Peng et al. 2022].
Given a 2-second motion clip M, the discriminator is conditioned
on the corresponding latent encoding z = E(M) and tasked with
differentiating between (i, . ..,$10) randomly sampled from the
reference motion M and the transition sequence (sy,...,$10) gen-
erated by the policy, also conditioned on the same latent z.

A.4 High-level policy

The high-level policy observes additional task information and pro-
duces latent variables z € Z that are provided to the low-level

policy.

A.4.1 Block. In the block task, a projectile is launched toward the
agent. The agent is required to block the projectile using its shield.
In each episode, the projectile has two phases. During the warmup
phase, it remains static, followed by a launch phase in which it
travels towards a target area in the character’s body.

The high-level policy observes

o The relative progress within this process.

e The location of the origin, in the character’s local coordinate
frame.

o The local of the projectile, in the character’s local coordinate
frame.

o The angle to the projectile.

o The projectile’s velocity and its angular velocity.

this results in an additional 18D task-specific observation.

A.4.2 Reach. The goal of reach is to place the tip of the sword
in a specified location and maintain this position. Here, the agent
observes the 3D position of the goal location, in the character’s local
coordinate frame.

A.4.3 Locomotion. The locomotion task is a motion-conditioned
task. Provided a set of motions M, at time ¢, the high-level policy is
tasked with moving in a specified direction, while utilizing motions
with similar characteristics as M; € M. To do so, it observes

o The target direction, in the character’s local coordinate frame.
o A one-hot encoding | M| of the current specified motion M;.

B ARCHITECTURE DETAILS

In this work, all networks are composed of fully connected layers.
The encoder and high-level policies are standard MLP networks.
Prior to concatenating the latent representation with the observa-
tion, the low-level policy and the conditional discriminator also
incorporate a pre-processing MLP for the latent variable z.

C COMPARISON OF CALM TO OTHER
PHYSICS-CONSTRAINED MOTION GENERATION
FRAMEWORKS

Prior work has also considered the challenge of physical character
animation. In this section, we compare our method CALM with
prior work, highlighting the differences both in the method and the
results.

C.1 Motion matching

Initial efforts in generating complex character motion focused on
heuristics for motion matching. In DeepMimic [Peng et al. 2018],
a reward is formulated for the deviation between the character’s
current pose and the corresponding pose in the data. This was later
extended with motion VAEs enabled a certain degree of control by
developing character controllers using the VAE paradigm. Notable
efforts are Ling et al. [2020] and Won et al. [2022] that learned, re-
spectively, an unconditional and conditional motion VAE for motion
reconstruction.

Citing Won et al. [2022], we highlight the main challenge in
motion-matching schemes:

“our controller can also have the sinking problem mentioned in
[Ling et al. 2020], where it fails to transition among different behav-
iors if the input trajectories lack such transitions. Using datasets
composed of many heterogeneous behaviors where individual record-
ings are relatively short might cause this problem. Augmenting
datasets by constructing motion graphs, which we used in our ex-
periments, might be a quick remedy, however, preparing datasets
rich in transitions would create the most natural-looking motions.”

As the low-level controller learns based on a state-reconstruction
loss, it lacks the built-in ability to generalize beyond what was seen
in the data. A core strength of adversarial techniques is that they
force the behavior to be likely under the reference data distribu-
tion, enabling the emergence of new and novel movements such as
transitioning between motion classes, as seen in Figure 7.

On the other hand, a core benefit of methods aiming to directly
mimic demonstrations is that the per-trajectory loss is highly in-
formative of the agent’s ability to reconstruct a given motion. This,
which may be non-trivial in adversarial methods, can easily be
leveraged for adaptive sampling [Park et al. 2019], thus reducing
mode-collapse and improving overall quality.

C.2 Adversarial techniques

More similar to our line of work are adversarial techniques. Here,
the motion-matching reward is replaced with a discriminative signal.
The discriminator produces a signal corresponding to how likely
the generated motions are, given the data.

Initially, AMP [Peng et al. 2021] focused on solving single tasks
using an unconditional policy and unconditional discriminator. The
lack of conditioning prevents the ability to direct the behavior.
Hence, optimizing the adversarial objective results in generating the
entire reference data distribution. To force human-like solutions, the
reference data distribution is carefully tuned to match the expected
task statistics.

This effort was later extended by ASE [Peng et al. 2022] to split
learning into two phases — low-level training, followed by high-level
training. First, a low-level conditional policy is trained with an un-
conditional discriminator on a diverse dataset with an information
maximization term. This enabled learning diverse behaviors that
can be controlled by fixing the conditioning variable z. However,
the lack of correspondence between motions and latents results in
mode-collapse, requiring tricks such as a diversity loss in order to
improve the quality. As a result, controlling the motions generated
by ASE is not trivial.

Finally, closest to our work, PADL [Juravsky et al. 2022] intro-
duced a scheme composing both a conditioned policy and a discrim-
inator. The main differences between CALM and PADL are that (1)
PADL requires labeled data, which is both costly to acquire and less
expressive than demonstrations. We do not assume any supervision
beyond the ability to obtain sequences of motions. (2) PADL learns
the representation separately from the control. We jointly learn the
control and representation. (3) PADL directly learns a task-driven
controller whereas we learn a general low-level conditional skill
generator that can be re-used without further re-training.

Asaresult, CALM learns without supervision (1) a well-structured
latent representation that captures the semantic meaning of motions.

CALM: Conditional Adversarial Latent Models for Directable Virtual Characters « 11

‘GOAL: Glasty the GENERATED moton

Instructions

Fig. 6. Motion classification system

This is seen in the interpolation experiment Figure 3e where the
character transitions smoothly through a semantically meaningful
path. (2) CALM provides a more scalable approach, where the same
low-level controller can be re-used for multiple tasks as shown in
Figure 5.

D QUALITATIVE ANALYSIS OF THE LOW-LEVEL
CONTROLLER

In this section, we present some additional information regarding
the quantitative results from Section 8.1.

To analyze what CALM has learned, we performed two tests. The
first aims to evaluate the encoder and what it has learned. We report
the Fisher’s distance, which measures the concentrability. Given a
motion file M and 2-second sliding window portions of it M;

o EM)-EG

B Mi,MjEM ‘M|2

coef f(M) = s [IE(M;)—E(Mg)|| ©
MieMMee M ™ TMIIM]

and the score is defined as the average concentrability coefficient
over motion files.

Next, we tested the ability of the low-level controller to generate
motions on demand. We randomly selected a subset of 40 motions
from the dataset. We conditioned CALM and ASE, each with their
own respective encoder, to generate motion with similar character-
istics. The initial state was randomly sampled from the data. Human
raters were tasked with classifying each generated motion, where
we generated 3 motions per reference clip.

We report the mean accuracy over all generated motions. In
addition, we present a screenshot from our questionnaire in Figure 6.

E ADDITIONAL EXPERIMENTS

Complementing the experiments in the main paper, we present some
additional results. The motions are best seen in the supplementary
video.

E.1 Ablation analysis

To analyze the importance of the various design decisions for the pre-
training phase, we perform an ablation experiment. We compare the
full model, with removing negative samples from the discriminator
training, and with removing the latent space regularization term.

As shown in Table 3, adding each design element further improves
the generation quality of the model.

E.2 Skill transitions

To test the ability of the agent to transition between skills in a
natural manner and on demand, we run the low-level policy on a
long episode. During the episode, we sample a motion clip from

12« Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng

Concentration | ‘ Generation T ‘ Accuracy T

CALM
w/o negative samples
w/o negative samples, w/o regularization

0.23 19.8+0.11 78%
0.24 15.7+0.07 62%
0.35 12.8+0.05 61%

Table 3. Pre-training ablation: We perform ablation for various design choices for the pre-training phase.

the reference dataset and condition the agent on the corresponding
latent.

As can be seen in Figure 7, the agent learns to transition between
complex motions.

E.3 Downstream tasks

In the paper we focused on the unique benefits of our method,
namely, enabling the solution of unseen tasks without any addi-
tional training. Despite zero-shot applications being of great interest,
sometimes an automated solution is needed.

In Figure 8 we present scenarios where the high-level policy is
trained directly to solve downstream tasks without style condition-
ing.

E.3.1 Block. In the block task, a projectile is thrown at the agent
and it is required to block it with the shield. To solve the task,
the high-level policy is provided with a positive reward when a
projectile hits its shield

r}’l“k = 1(projectile blocked by shield) . (10)

E.3.2 Reach. Since the ‘Block’ task tests control over the shield-
bearing arm, we also showcase the ‘Reach’ task, which requires
precise sword motions. Here, the agent is tasked with bringing
the tip of its sword to a specified x* location. To achieve this, it is
provided a reward

r{each = exp (_4||x?word _ x*“%)) (11)

where xflword is the location of the tip of the sword at time t.
E.3.3 Location. During ‘Block’ and ‘Reach’ the character remains
rooted in the same spot, yet requires accurate low-level motions. To
showcase the ability to compose motions directly from reward, as
shown in Peng et al. [2022], we also train a ‘Location‘ and ‘Strike’
task.

In the location task, the character needs to reach a target location.
The high-level policy receives a reward

rll‘ocation = exp (—O.5||x* _ xiOOtHZ) , (12)
where x* is the goal location and x[°°" is the location of the charac-
ter’s root. This reward urges the high-level controller to produce
motions that reach the goal location as fast as possible. As seen

in Figure 8c, the controller learns to select latent variables z; that
result in running.

E.3.4 Strike. The ‘Strike’ task tests the ability of the high-level
controller to transition between motions within a complex multi-
step task. Here, the agent is required to strike down a target. To do

so, the high-level policy receives a reward

rtStrike =1-u"P-uj, (13)
where u"P is the global up vector, and uj is the local up vector of the
target object, expressed in the global coordinate frame. In addition,
to prevent the character from just crashing into the target, Peng et al.
[2022] provides a termination condition in which the environment
terminates if the character touches the target with any element that
isn’t the sword.

The reward urges to character to quickly reach the target and
the termination makes sure it only does so by using the sword. As
seen in Figure 8d, the character runs towards the target and then
performs a sword strike to hit it.

E.3.5 Tasks conclusions. Despite the low-level policy being trained
on generating long-term behaviors, through iterative latent control,
the high-level policy is capable of producing new motions to solve
the task. For instance, to block the projectile it learns to control
where the shield is aimed, and in the reach task, it learns to control
the location of the sword and maintain a relatively static position
around the goal location. These specific behaviors showcase the
benefit of adversarial training schemes in their ability to generalize
beyond what was observed in the reference dataset. Finally, when
tasked with complex long horizon tasks, the character learns to uti-
lize human-like motions while also transitioning naturally between
them.

E.3.6 FSM versus Reward design. In the paper we presented a way
for solving tasks, such as location and strike, without performing
task-specific training. This was done by leveraging an FSM design
and the fact that the low-level policy can generate specified motions
on demand. The benefit compared to reward design is clear. Learn-
ing to crouch-walk towards the target and then kick it, followed
by a celebrative roaring motion — requires a delicate reward and
termination design. On the other hand, by utilizing the FSM ap-
proach, the character can be directed to perform specific motions in
a specified direction, resulting in diverse solutions to tasks without
reward design and without any task-specific training.

F LATENT SPACE ANALYSIS

To gain further insight into the learned representations, we analyze
the structure of the latent space. We split the motions, roughly, into
5 categories:

Walking motions
Sword attacks
Shield attacks
Turning motions
and Idle motions

CALM: Conditional Adversarial Latent Models for Directable Virtual Characters « 13

(m) Roar, hands up (n) Crouch, idle (o) Crouch, walk

Fig. 7. Skills generated by a low-level controller conditioned on the encoding of a demonstrated motion. Every 3 seconds, a new motion is sampled and the
low-level policy is conditioned on the corresponding latent representation. These figures are generated from a single, long, episode during which the motions
were performed sequentially.

(c) Location (d) Strike

Fig. 8. Standard hierarchical task solving. A high-level policy directly controls the low-level policy and optimizes a task-specific objective.

14+ Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng

For each motion in the reference dataset, we encode it using each
method’s respective encoder. We then calculate the average pair-
wise distance between groups. As seen, in Figure 9, CALM clusters
motion groups closer in the latent space. This is observed by a lower
distance along the diagonal. The meaning is that CALM learned a
representation with stronger semantic meaning — similar motions
are clustered closely within the latent space.

Moreover, analyzing the distances within the ASE encodings
shows that it does not maintain semantic relations between motion

classes. Specifically, motions corresponding to walking are dispersed
over the latent space.

In addition, we present a TSNE plot [Van der Maaten and Hinton
2008] of the learned representation for CALM. While all the data is
plotted, due to the vast number of motions (approximately 180), for
clarity, we only label a subset.

While TSNE does not preserve the global structure, as seen in
Figure 10, it does suggest that sub-sequences from the same motion
clip do indeed receive a similar representation, in the sense that
they reside in proximity in the latent space.

CALM: Conditional Adversarial Latent Models for Directable Virtual Characters « 15

- 140
Walk 125 Walk
120 135
Sword Attack Sword Attack
115 130
Shield Attack Shield Attack
110
125
Turn 105 Tumn
120
1.00
idle Idle
115
x 5 ks 3 @ = 5 k] E o
@ = = @ E] k=]
= £z 7 S B B
B =] 2 =]
S [=} [
& & & &
(a) CALM (b) ASE

Fig. 9. Distance between motion classes within the latent space. Darker colors represent higher pairwise-latent-space proximity between the two motion
classes.

Motion Latents t-SNE map

N 2R

\ v + Run standing
S e Turnleft
= P, . e Turn right
S . « Crouchidle

o « Crouch walk fast
« Crouch walk slow

30 20 -10 0 10 2 £l)

Fig. 10. CALM TSNE analysis

	Abstract
	1 Introduction
	2 Related Work
	2.1 Physics-constrained motion generation
	2.2 Representation Learning
	2.3 Hierarchical Reinforcement Learning

	3 Reinforcement Learning Background
	4 Overview
	5 Conditional Adversarial Latent Models
	5.1 Practical Considerations

	6 High-level control
	6.1 Precision training
	6.2 Exemplar guidance

	7 Experiments
	8 Results
	8.1 Controllable motion generation
	8.2 Solving downstream tasks

	9 Limitations
	10 Discussion and Future Work
	References
	A State and action space
	A.1 Low-level policy
	A.2 Encoder
	A.3 Discriminator
	A.4 High-level policy

	B Architecture details
	C Comparison of CALM to other physics-constrained motion generation frameworks
	C.1 Motion matching
	C.2 Adversarial techniques

	D Qualitative analysis of the low-level controller
	E Additional experiments
	E.1 Ablation analysis
	E.2 Skill transitions
	E.3 Downstream tasks

	F Latent space analysis

