
Interactive Hair Simulation on the GPU using ADMM
Gilles Daviet

NVIDIA
Annecy, France

gdaviet@nvidia.com

Figure 1: Real-time physically-based editing session of a 86, 000 curves groom at 10% simulated guides, using the Discrete Elastic
Rods model with Coulomb friction. From left to right: input groom; sagged pose; hair selection and manipulation; trimming
the selection; same actions on the screen-left side; end result.

ABSTRACT
We devise a local–global solver dedicated to the simulation of Dis-
crete Elastic Rods (DER) with Coulomb friction that can fully lever-
age the massively parallel compute capabilities of moderns GPUs.
We verify that our simulator can reproduce analytical results on re-
cently published cantilever, bend–twist, and stick–slip experiments,
while drastically decreasing iteration times for high-resolution hair
simulations. Being able to handle contacting assemblies of several
thousand elastic rods in real-time, our fast solver paves the ways for
new workflows such as interactive physics-based editing of digital
grooms.

CCS CONCEPTS
• Computing methodologies → Physical simulation; Mas-
sively parallel algorithms.

KEYWORDS
hair simulation
ACM Reference Format:
Gilles Daviet. 2023. Interactive Hair Simulation on the GPU using ADMM. In
Special Interest Group on Computer Graphics and Interactive Techniques Con-
ference Conference Proceedings (SIGGRAPH ’23 Conference Proceedings), Au-
gust 06–10, 2023, Los Angeles, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3588432.3591551

1 INTRODUCTION
Hair is a complex medium; while the elastic nature of individual
strands can in itself exhibit interesting shapes and dynamics, the
overall behavior is also largely driven by the numerous frictional

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0159-7/23/08.
https://doi.org/10.1145/3588432.3591551

interactions between them, resulting in considerable difficulties for
numerical simulators.

Another challenge is digital grooming, the art of designing high-
quality hair strands for virtual characters. The overwhelming ma-
jority or digital grooms are created through purely geometric ma-
nipulation of curves, at the high-end trying to match photographic
references over several view angles. However, since the resulting
grooms contain no embedded physical information, their dynam-
ical behavior may end-up differing significantly from the artist’s
intent; in particular, the addition of gravity in the simulation may
result in an undesired sagging effect. Several works have tried to
address this issue by attempting to recover rest pose and/or phys-
ical parameters from the geometry [Derouet-Jourdan et al. 2013;
Hsu et al. 2022; Iben et al. 2019; Lesser et al. 2022]. However, this
problem is both under- and over- constrained; under-constrained,
because for any given geometry there are several mathematically
viable ways to achieve equilibrium, balancing the relative effect of
elasticity and contact forces; and over-constrained, because this
technique typically assumes that the artist-provided geometry is
correct; however, the layering and density of strands in the input
groom may not actually allow for a physically sensible solution.

Rather than trying to infer physical quantities a posteriori, we can
instead ensure the grooming process respect physical constraints by
manipulating rods inside a fully-fledged simulation. This way, the
grooming output contains not only geometrical but also rest pose
information, leading to predictable dynamic behavior. However,
such a workflow was until now limited by the computational times
required for high-fidelity hair simulations. In the following, we
describe a solver that can take advantage of the computing power
of modern GPUs and take first steps towards an actually interactive
physics-based groom editing process.

2 RELATEDWORK
Many efforts have been dedicated to the animation of hair, and sev-
eral real-time techniques have emerged [Kmoch et al. 2010; Oshita
2007; Wu and Yuksel 2016]. While our goal is also to design an
efficient solver, here we relax the real-time constraint, and instead

https://orcid.org/0000-0003-3154-7423
https://doi.org/10.1145/3588432.3591551
https://doi.org/10.1145/3588432.3591551
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588432.3591551&domain=pdf&date_stamp=2023-07-23

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Gilles Daviet

target physical realism by focusing on rod and contact models rich
enough to reproduce the experiments of Romero et al. [2021].

Cosserat and Kirchhoff rods. As hair strands typically feature a
length 𝐿 much larger than their mean radius 𝑅, slender rod theo-
ries such as the Kirchhoff (which accounts for only bending and
twisting) and Cosserat (which adds stretching and shearing) models
have emerged as popular ways of describing their behavior. Both
models equip the curve with a material frame encoding its local
orientation.

Pai [2002] first introduced the Cosserat model to Computer
Graphics, using the relative material frame transform at vertices as
degrees of freedom. Bertails et al. [2006] then Casati and Bertails-
Descoubes [2013] proposed the "Super" curvature-based discretiza-
tions of the Kirchhoffmodel, using piecewise-constant and piecewise-
linear elements, respectively. Spillmann and Teschner [2007] pro-
posed a maximal–coordinates discretization of Cosserat rods, with
degrees of freedom for both the vertex positions of piecewise-linear
centerline and per-edge material frame orientation. Bergou et al.
[2010, 2008] kept the piecewise-linear centerline representation, but
focused on the shear-free Kirchhoff model by limiting the material
frame degrees of freedom to a single per-edge scalar twist angle.
This yields the DER model that we will use in our solver, though
we will opt for the deformation measure proposed by Korner et al.
[2021], based on the re-scaling of the rotation vector between the
material frames of adjacent edges, rather than the original defor-
mation measure from Bergou et al. [2008], based on the projection
of the curvature binormal onto an "average" material frame.

Recently, Romero et al. [2021] validated that both the "Super"
and DER discretizations of the Kirchhoff model are not only able to
reproduce analytical results, but also match physical experiments.

Local and hybrid integrators. Due to the high stiffness of hair
strands, implicit time integration is generally necessary to achieve
stable results, historically using a global Newton-like algorithm.
Reduced-coordinates models benefit from the linearity of the elas-
tic responses in their degrees of freedom but suffer from a dense
stiffness matrix, while maximal-coordinates models require more
iterations with larger and sparser left-hand sides. None perform
well on GPUs due to sub-optimal memory access patterns and poor
conditioning often requiring double precision solves.

In contrast, the XPBD [Macklin et al. 2016] implicit time inte-
grator is purely local, and Kugelstadt and Schömer [2016] adapted
the Cosserat discretization from [Spillmann and Teschner 2007] to
the position-based setting. However, while XPBD be can efficiently
parallelized on GPUs for strand-like topologies using constraint
coloring, it suffers from slower convergence on long chains of con-
straints; strains are only propagated to the direct neighbors at each
iteration, and techniques like follow-the-leader [Müller et al. 2012]
or long–range constraints Müller et al. [2017] do not apply for the
bending and twisting terms. Deul et al. [2018] improved conver-
gence by incorporating direct solve, while Macklin et al. [2019]
argue for aggressive substepping.

The Projective Dynamics [PD; Bouaziz et al. 2014] global–local
integrator aims for a middle ground, with with an embarrassingly
parallel local step, and a global strain-propagating step that can
be solved efficiently. Although the PD framework does not allow
for arbitrary energies, Soler et al. [2018] successfully implemented

the Cosserat model, and [Ly et al. 2020] demonstrated support for
hard contacts with Coulomb friction. Narain et al. [2016] devised
a generalization of PD using the Aternating Direction Method of
Multipliers (ADMM), from which our solver is derived.

Frictional contacts. Frictional collisions account for a large part
of hair appearance and motion and have been the subject of many
works, starting from volumetric [Hadap and Magnenat-Thalmann
2001; McAdams et al. 2009; Petrovic et al. 2005] and penalty-based
[Choe et al. 2005; Selle et al. 2008] approaches. Daviet et al. [2011]
argued for the visual importance of handling Coulomb friction
accurately, and devised a complementarity-based solver scaling
up to a few thousand strands. Kaufman et al. [2014] adapted their
solver to handle the nonlinearities of the DER model and were able
to simulate tens of thousands of rods. Daviet [2020] used ADMM to
separate the elasticity from the frictional contact complementarity
problem, leading to reduced computational and memory costs and
allowing for simulation at full human hair density. Our approach for
handling frictional contacts builds on theirs, but adapts their mostly
sequential solver to the massively parallel GPU architectures.

Following Li et al. [2020] barrier-based techniques have recently
gained in popularity for their robustness and strong interpenetration-
free guarantees, and variants focusing on codimensional objects [Li
et al. 2021] and GPU-friendly [Lan et al. 2022] simulation have
emerged. However, the very thin nature of hair strands (≤ 0.1𝑚𝑚)
and rapidly changing contact topology both contribute to the need
for frequent barrier updates, making the performance of these tech-
niques comparatively less attractive for large-scale hair simulations.

3 CONTRIBUTIONS
Our central contribution is a carefully crafted ADMM-based de-
composition of the implicit time integration incremental problem
for DER with frictional contacts, resulting in massively parallel and
single-precision friendly global solve, local elasticity and feasible
projection steps (Section 4). We then verify in Section 5.1 that our
simulator can reproduce the theoretical results on the cantilever,
bend–twist and stick–slip experiments devised by Romero et al.
[2021], while also being able to handle full-scale hair simulations
orders of magnitude faster than traditional CPU-based solvers (Sec-
tion 5.2). Finally, in Section 5.3 we lay down the first steps towards
a physically-augmented groom editing environment.

4 SIMULATOR
We now briefly recall our elastic rod and frictional contact models,
then proceed to describe our ADMM-based implicit time integrator.

4.1 Model
We use the DER [Bergou et al. 2010, 2008] discretization, so that
our degrees of freedom are the𝑚 centerline vertex positions (x𝑖) ∈
R3×𝑚 and scalar per-edge twists (𝜃 𝑗), plus, in the dynamic setting,
the corresponding linear and angular velocities (v𝑖) and (𝜔 𝑗). To
simplify indexing, we extend the number of twist and angular
velocity variables to𝑚 by introducing a ghost twist, kinematically
fixed to zero, at the end of each rod. We denote 𝑒 𝑗 the rest length
of edge 𝑗 , and 𝑣𝑖 the Voronoi length associated to vertex 𝑖 , 𝑣𝑖 :=
1
2 (𝑒𝑖 + 𝑒𝑖−1). The rods cross-section is characterized by a mean
radius 𝑅 and an ellipticity coefficient (flatness) ℓ , defined such that

Interactive Hair Simulation on the GPU using ADMM SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

the major and minor radii are (1 + ℓ)𝑅 and (1 − ℓ)𝑅, respectively.
The cross-section area is then 𝐴 = 𝜋𝑅2 (

1 − ℓ2) , and the moment
of inertia around the tangent 𝐼 = 𝐴

(
1 + ℓ2) /2.

Elasticity. The stretching energy associated to an edge 𝑗 is E𝑠,𝑗 :=
𝐸𝑠
2 𝐴𝑒 𝑗𝜀

2
𝑗 , with 𝐸𝑠 the stretch Young modulus and 𝜀 the stretching

strain. The bending energy associated to an inner vertex 𝑖 is

E𝑏,𝑖 := 𝐸𝑏
2 (𝜅𝑖 − 𝜅𝑖)

𝑇 𝐾

𝑣𝑖
(𝜅𝑖 − 𝜅𝑖) ,

𝐾 := 𝐴𝑅2

4 diag
(
(1 − ℓ)2 , (1 + ℓ)2 , 1 + ℓ2

1 + 𝜈

)
with 𝐸𝑏 the bending Youngmodulus, 𝜈 the Poisson ratio, and𝜅 (resp.
𝜅) the current (resp. rest) bending strain measure in R3. To evaluate
𝜀 and 𝜅 , we can use either the original strain measures from Bergou
et al. [2008] or the alternative ones from [Korner et al. 2021]. The
two bending measures are in agreement for small angles 𝜙 between
edges, but differ at large angles; the former scales with 2 tan(𝜙/2),
the latter with 2 sin(𝜙/2). Moreover, Korner et al. [2021] consider
a hyperelastic stretch behavior, 𝜀 𝑗 := |𝑒 𝑗 |2/𝑒 𝑗 − 𝑒 𝑗 , rather than the
usual linear measure 𝜀 𝑗 := |𝑒 𝑗 | − 𝑒 𝑗 . Romero et al. [2021] validated
the model from Bergou et al. [2008] against analytic results on their
cantilever and bend–twist experiments; we show in Section 5.1
that the model from Korner et al. [2021] also pass these tests. In
practice we observe the non-divergent bending energy from Korner
et al. [2021] to exhibit swifter convergence, and use it for all our
examples.

External forces. Our rods are subjected to an external accelera-
tion field g, and in the dynamic setting, inertia and air drag forces
are also considered. The mass lumped to vertex 𝑖 is𝑚𝑖 = 𝜌𝐴𝑣𝑖 , with
𝜌 the volumetric mass of the material, and the rotational inertia as-
sociated with edge 𝑗 is 𝜌𝐼𝑒 𝑗 . We use a simple linear drag model with
dynamic viscosity 𝜉 , justified by the low Reynolds number for flow
around hair strands, and leave more complex self-shadowing and
coupling effects for future work. Overall, external forces contribute
the following per-vertex and per-edge incremental potentials,

E𝑒,𝑖 := 1
2𝜌𝐴𝑣𝑖

(
∥v𝑖 − v𝑡𝑖 ∥2 + 2g𝑇 x𝑖

)
+ 𝜉2𝑣𝑖 ∥v𝑖 − v𝑎𝑖𝑟 ∥

2,

E𝑒,𝑗 := 1
2𝜌𝐼𝑒 𝑗 ∥𝜔 𝑗 − 𝜔𝑡

𝑗 ∥2,

with v𝑡𝑖 (resp. 𝜔
𝑡
𝑗) the begin-of-step linear (resp angular) velocity,

and v𝑎𝑖𝑟 the ambient air velocity.

Constraints. Rigid attachment constraints, which we express
formally as the inclusion (x, 𝜃) ∈ A, are enforced by kinematically
fixing the two vertices and the twist of the clamped edges. At the
𝑛 contact points, we write the Signorini–Coulomb conditions [e.g,
Jean 1999] with friction coefficient 𝜇 and contact normal n on the
local relative displacement u ∈ 𝑅3×𝑛 and contact force r ∈ R𝑛×3 as
the inclusion (u, r) ∈ C𝜇,n. Given the thin nature of hair strands, we
assume that contact points always lie exactly on the centerline, thus
can be expressed as a combination of the vertex positions x, in line
with Assumption 1 from [Daviet 2020]. This prevents contact forces
from inducing edge torques but leads to significant simplifications
in the contact solve. Formally, there exists an affine relationship
u = 𝐻x + ukin, with ukin gathering kinematic forcing terms.

4.2 Time integration
We use backwards Euler integration, such that the (unknown) end-
of-step positions, velocities and displacements over a timestep Δ𝑡
are related as Δx = x𝑡+1 − x𝑡 = Δ𝑡v𝑡+1, Δ𝜃 = 𝜃𝑡+1 − 𝜃𝑡 = Δ𝑡𝜔

𝑡+1.
In the following we write equations in terms of positions and dis-
placements only as they remain well-defined in the quasistatic
setting.

Incremental problem. We express our incremental problem as 1

min
(x,𝜃) ∈A,(𝐻x+ukin,r)∈C𝜇,n

E𝑠 (x) + E𝑏 (x, 𝜃) + E𝑒 (x, 𝜃). (1)

A classical way to tackle this problem [e.g, Daviet 2020; Jean
1999; Kaufman et al. 2014] is to perform Newton iterations to re-
duce Problem (1) to a series of linear systems with frictional contact
constraints, then solve each instance with any of the many dedi-
cated solvers. However, for DER the left-hand-side is a band matrix
with 10 sub- and super-diagonals, often poorly conditioned, lead-
ing to inefficient GPU memory accesses and potentially requiring
double-precision solves. Alternatively, Problem (1) can be dealt
with using purely local solvers such as XPBD [Macklin et al. 2016].
Constraint-coloring techniques can lead to a highly-parallel im-
plementation, but propagate strains to the direct neighbors only
at each iteration. While competitive for short rods, this approach
results in many iterations being necessary to achieve convergence
for large number of elements. We are therefore looking for a com-
promise between purely global (like Newton) and purely local (like
XPBD) methods, i.e, with a left-hand-side that can be efficiently
solved on the GPU but that can still propagate strains globally. A
tridiagonal left-hand-side would fit the bill, and is what we now
aim to construct.

Objective splitting. Following Daviet [2020]; Narain et al. [2016],
we apply ADMM to decompose Problem (1) into easier subproblems.
However, as ADMM trades convergence speed for a simpler global
system,we do not blindly give theADMM treatment to every energy
term, instead making sure to keep the introduction of auxiliary
variables to the minimum necessary to achieve our desired system
shape. We introduce two primal variables, y and z, and two dual
variables, 𝜆𝑦 and 𝜆𝑧 , to reformulate Problem (1) equivalently as the
optimization of an Augmented Lagrangian,

min
(x, 𝜃) ∈ A,
y ∈ R6×𝑚,(

𝐻z + ukin, r
)
∈ C𝜇,n

max
𝜆𝑦 ∈ R6×𝑚,
𝜆𝑥 ∈ R3×𝑚

L(x, 𝜃, y, z, 𝜆𝑦, 𝜆𝑧), (2)

L(x, 𝜃, y, z, 𝜆𝑦, 𝜆𝑧) :=E𝑠 (y) + E𝑏 (y, 𝜃) + E𝑒 (x, 𝜃)
+ 𝜆𝑇𝑦𝑊𝑦 (y − 𝐵x) + 𝜆𝑇𝑧𝑊𝑧 (z − x)

+ 1
2 ∥y − 𝐵x∥

2
𝑊𝑦
+ 1

2 ∥z − x∥
2
𝑊𝑧
.

In Problem (2), the matrix 𝐵 maps the positions x ∈ 𝑅3×𝑚 to
pairs of consecutive edges y ∈ 𝑅6×𝑚 ; for any interior vertex 𝑖 ,
(𝐵x)𝑖 := (x𝑖 − x𝑖−1; x𝑖+1 − x𝑖). The linear relationship 𝐵x = y is

1As remarked by Daviet [2020], this is actually an abuse of notation, due to the non-
convexity of the Coulomb law with 𝜇 > 0. However, this notation yields intuition
about the objective splitting reformulations, and as we validate in Section 5.1 we do end
up solving the correct problem, though without theoretical convergence guarantees.

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Gilles Daviet

ALGORITHM 1: Outline of our timestep integration algorithm
Input: Begin-of-step step positions (x𝑡 , 𝜃𝑡) and velocities (v, 𝜔)
// Steps involving Δ𝑡 are for the dynamic setting only

Perform proximity-based collision detection ;
Advect initial guess x← x𝑡 + Δ𝑡v, 𝜃 ← 𝜃𝑡 + Δ𝑡𝜔 ;
Update DER reference and material frames ;
for each ADMM iteration do

(Optionally) Perform continuous-time collision detection ;
Perform local elasticity solve to get updated y (Section 4.4) ;
Perform feasible projection to get updated z (Section 4.5) ;
Update Lagrange multipliers 𝜆𝑦 ← 𝜆𝑦 + y − 𝐵x,
𝜆𝑧 ← 𝜆𝑧 + z − x;

Assemble and solve tridiagonal system �̂�Δx = f̂ (Section 4.3) ;
Update x← x + Δx, v← v + Δx/Δ𝑡 ;
Update DER reference and material frames ;
Assemble and solve tridiagonal system
𝜕2E𝑏+E𝑠

𝜕𝜃2 Δ𝜃 = − 𝜕𝐸𝑏+𝐸𝑠
𝜕𝜃 ;

Update 𝜃 ← 𝜃 + Δ𝜃 , 𝜔 ← 𝜔 + Δ𝜃/Δ𝑡 ;
Update DER reference and material frames ;

end
(Optionally) Geometric contact correction: Repeat
continuous-collision detection and feasible projection on x ;

enforced through the Lagrange multiplier 𝜆𝑦 ∈ R6×𝑚 associated
to a constraint with diagonal weights𝑊𝑦 ∈ diag(R𝑚). The elastic
energies E𝑏 and E𝑠 are now expressed on the twists 𝜃 and those
edge pairs y. Like in [Daviet 2020], the collision constraint is now
expressed on an auxiliary variable z which tracks the original po-
sitions x through a constraint with weights𝑊𝑧 ∈ diag(R𝑚) and
Lagrange multiplier 𝜆𝑧 ∈ R3×𝑚 . External energies E𝑒 and attach-
ment constraints remain expressed on the original position and
twist variables x and 𝜃 .

Each ADMM iteration then optimizes over each variable in turn:
• Over y: we evaluate the embarrassingly parallel local elas-
ticity proximal operator, as described in Section 4.4.
• Over z: we project the tentative positions onto the feasible
set of collisions constraints. This roughly follows [Daviet
2020], we detail the relevant modifications in Section 4.5.
• Over 𝑎𝜆𝑦 and 𝜆𝑧 : we do an explicit gradient step in the
current residual direction, i.e, 𝜆𝑦 ←= 𝜆𝑦 +𝑊𝑦 (y − 𝐵x),
𝜆𝑧 ← 𝜆𝑧 +𝑊𝑧 (z − x).
• Over x: we solve three independent SPD tridiagonal systems
of size𝑚, one for each euclidean axis. See Section 4.3.
• Over 𝜃 : we do a single Newton step, solving for 𝜕2E𝑏+E𝑠

𝜕𝜃 2 Δ𝜃 =

− 𝜕𝐸𝑏+𝐸𝑠
𝜕𝜃 . This yields another SPD tridiagonal system of size

𝑚, which we solve in a similar manner.
Each time we update x or 𝜃 , we also update the reference and
material DER frames using time-parallel transport. The full timestep
integration scheme is outlined in Algorithm 1.

4.3 Global tridiagonal solve
The global step consists in performing the minimization over x
in Problem (2). Denoting by ΠA the linear orthogonal projection
operator associated to the kinematic attachment constraint A, and

ΠA⊥ its orthogonal complement, we need to solve the system[
ΠA⊥𝑀Π𝑇

A⊥ + ΠAΠ𝑇
A
]

︸ ︷︷ ︸
�̂�

Δx = Π𝑇
A⊥ f︸︷︷︸
f̂

, (3)

with 𝑀 := 𝜕2E𝑒
𝜕x2 +𝑊𝑧 + 𝐵𝑇𝑊𝑦𝐵,

f := − 𝜕E𝑒
𝜕𝑑x
+𝑊𝑧 (𝜆𝑧 + z − x) + 𝐵𝑇𝑊𝑦

(
𝜆𝑦 + y − x

)
.

Here 𝜕2E𝑒
𝜕x2 +𝑊𝑧 is a diagonal matrix with positive coefficients

(strictly positive in the dynamic setting), and 𝐵𝑇𝑊𝑦𝐵 can be re-
ordered into three independent tridiagonal matrices, one for each
euclidean coordinate axis or R3, and is positive semi-definite with
three null modes corresponding to constant translations in R3. In
the dynamic setting or assuming at least one kinematically fixed
vertex, Eq. (3) thus boils down to solving three separate SPD tridi-
agonal systems of dimension𝑚, �̂� |𝑘Δx |𝑘 = f̂ |𝑘 for 𝑘 = 1 . . . 3.

Parallel tridiagonal solves. Tridiagonal systems can be solved
sequentially in linear time with the well-known Thomas algorithm.
While parallelization over independent rods would be possible,
uncoalesced memory accesses lead to poor practical performance
unless all rods have the same number of vertices so that strided
storage can be used [Valero-Lara et al. 2018]. Instead, we use Parallel
Cyclic Reduction [PCR; e.g, Zhang et al. 2010], which needs only
log𝑚∞ sequential steps, with𝑚∞ the maximum number of vertices
per rod. While boasting much nicer memory access patterns, for
maximum performance PCR needs to fit its working buffers into
the GPU shared memory. Concretely, for a per-thread-block shared
memory limit of at least 64kb 2, this means that we can solve
systems of size𝑚∞ ≤ 1024 without inter-block synchronization,
which was enough for all of our hair simulation tasks. In practice,
we group rods together within CUDA thread blocks until this limit
is reached. One remarkable feature is that PCR does not feature
separate factorization and solve steps; as such, there is no benefit
from pre-factoring the matrix. Conversely, this means that there
is no downside for adaptively changing the ADMM constraint
weights between iterations; we exploit this fact to dynamically
update collision weights in Section 4.5.

4.4 Local elasticity solve
Combined bending and stretching. While a common strategy for

PD- and ADMM-based solvers is to solve each energy term sepa-
rately, here we choose to combine bending E𝑏 and stretching E𝑠
together. Consider a pair of edges (e𝑖−1, e𝑖) ∈ 𝑅6; the stretching
energy will oppose modes of deformation following the edge direc-
tions, while the bending energy will mostly resist deformation in
planes orthogonal to the edges. Intuitively, the combined energy is
therefore coercive over all of R6, leading to reasonably-conditioned
local problems, while the split energies suffer from null modes. In
the DER model from Section 4.1, while the bending energy E𝑏,𝑖 is
defined per-vertex and thus maps one-to-one with edge pairs y𝑖 ,
the stretching energy is defined per-edge; to avoid double-counting,
we halve its stiffness for both pairs containing the edge.

2this condition is satisfied by all GPUs with CUDA Compute Capability ≥ 7.5

Interactive Hair Simulation on the GPU using ADMM SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

Proximal operator. Minimizing the Augmented Lagrangian in
Problem (2) over y involves solving for each edge pair y𝑖 ,

min
y𝑖 ∈𝑅6

E𝑏,𝑖 (y𝑖) + E𝑠,𝑖 (y𝑖) +
𝑊𝑦,𝑖

2 ∥(𝐵x)𝑖 − 𝜆𝑦,𝑖 − y𝑖 ∥
2 . (4)

We evaluate this operator approximately by doing a single step
of Gauss–Newton. Thanks to their reasonable condition numbers,
we can solve the resulting 6 × 6 linear systems efficiently using
single-precision LDLT factorization without numerical pivoting.

Local frame. As remarked by Brown and Narain [2021], rotations
can lead to slow ADMM convergence. Indeed, the operator 𝐵𝑇𝑊𝑦𝐵
contains null modes corresponding to global translations, but not
to global rotations, as the global energy hessian 𝜕2E𝑠+E𝑏

𝜕x2 would. To
compensate, we can attempt to perform the local solve in a rotation-
invariant frame, then inject directly the rotated quantities into the
global solve. Formally, we replace the matrix 𝐵 with 𝐵𝑄𝑡 , with𝑄𝑡 =
diag(𝑄𝑡

𝑖) and and (𝑄𝑡
𝑖)𝑖=1..𝑚 per-constraint 3 × 3 rotation matrices.

We experimented with defined𝑄𝑡
𝑖 from the current averagematerial

frame at each vertex, however we found this frame to be too noisy
in the presence of collisions. Instead, we settle with defining as 𝑄𝑡

𝑖
on a per-rod basis as the current root attachment frame.

Dynamic damping. We can incorporate strain-rate proportional
damping in this framework by simply adding two supplemental
terms to the proximal operator minimization (4) [Brown et al. 2018],

D𝑠,𝑖 (y𝑖) := 𝜏𝐴𝐸𝑠
4Δ𝑡
(𝑒𝑖−1

(
𝜀 (e𝑖−1) − 𝜀𝑡𝑖−1

)2 + 𝑒𝑖 (𝜀 (e𝑖) − 𝜀𝑡𝑖)2),
D𝑏,𝑖 (y𝑖) := 𝜏𝐸𝑏

2Δ𝑡
(
𝜅𝑖 (e𝑖−1, e𝑖) − 𝜅𝑡𝑖

)𝑇 𝐾

𝑣𝑖

(
𝜅𝑖 (e𝑖−1, e𝑖) − 𝜅𝑡𝑖

)
,

with 𝜏 the typical relaxation time and 𝜀𝑡𝑖 (resp. 𝜅
𝑡
𝑖) the stretching

(resp. bending) strain values at the beginning of the timestep.

Elasticity constraint weights. As discussed by Overby et al. [2017],
a sensible choice for the constraint weights𝑊𝑦 is to pick them close
to the effective stiffness of the constraint, i.e, have the proximal
penalization term in Eq. (4) be of a magnitude similar to that of the
elastic energy E𝑠 + E𝑏 . To this end we choose𝑊𝑦,𝑖 := 𝑤0 𝐸𝑏𝐴𝑅

2

4𝑣𝑖 3 ,
where𝑤0 is a constant factor that accounts for the anisotropy and
nonlinearities of 𝐸𝑠 + 𝐸𝑏 . In practice we pick𝑤0 = 25.

4.5 Feasible contact projection
The local solve associated to the collision constraint, i.e, the feasible
contact projection, follows the procedure from Daviet [2020] but
with emphasis on parallelization. We need to solve the Discrete
Frictional Contact Problem (5) for z ∈ R3×𝑚 and u, r in R3×𝑛 ,

𝑊𝑧z =𝑊𝑧 (x − 𝜆𝑧) + 𝐻r𝑇

u = 𝐻z + ukin
(u, r) ∈ C𝜇,n,

(5)

where we recall that𝑊𝑧 is diagonal with positive coefficients, and
𝐻 is such that for each contact 𝑐 , (𝐻𝑧)𝑐 :=

∑
𝑖∈I𝑐 ℎ𝑐,𝑖z𝑖 is a linear

combination of some subset I𝑐 of vertex positions (z𝑖).

Collision detection. We perform proximity-based collision detec-
tion at the beginning of each timestep and optionally continuous-
time at a subset of the ADMM iterations. We use a shallow accel-
eration structure consisting of one sparse hash grid will cell sizes
equal to the longest rod edge, with a single uniform dense subdivi-
sion level inside each sparse cell. Broad-phase collision culling is
performed using 18-dops [Klosowski et al. 1998], yielding a good
compromise between bounding tightness and memory bandwidth
usage. Note that edge dops are symmetric about each axis and can be
stored using only 12 floats. To reduce the number of redundant con-
tacts and simplify preallocating buffers, in the proximity phase we
discard any contact which is not among the 6 closest ones for any of
the colliding edges. For continuous-time collision detection we keep
only the two earliest impact times for each edge, estimated using
ACCD [Li et al. 2021]. Collision against kinematic meshes are com-
puted by bisecting signed-distance functions [Macklin et al. 2020],
either from a voxelized representation for static meshes [Museth
2021] or direct closest-point queries for animated meshes.

Hybrid contact solve. Daviet [2020] resolves contacts in a Gauss–
Seidel fashion, using contact-coloring heuristics to find subsets
of contacts that can be solved in parallel. However, Gauss–Seidel
will always require a number of sequential steps greater than the
maximum number of contacts per vertex, max𝑖≤𝑚 𝑛 |𝑖 , which can
be in the hundreds in our case (e.g, for a stray hair orthogonal to a
dense wisp). This is adequate for latency-optimized processors with
relatively low core count, but results in sub-optimal and unbalanced
workloads on GPUs. Instead we propose an hybrid strategy to
maximize throughput: we heuristically split contacts into a small
number (8 in our implementation) of batches, processed one after
the other in a Gauss–Seidel fashion; then solve contacts within each
batch in a fully parallel Jacobi fashion. To ensure determinism, we
proceed for each batch in two steps:

(1) For each contact 𝑐 in parallel, compute u∗𝑐 := (𝐻z)𝑐 + ukin𝑐 ,
solve for Δu𝑐 such that (Δu𝑐 + u∗𝑐 ,Δu𝑐 + r̃𝑐) ∈ C𝜇𝑐 ,n𝑐 [see
Daviet 2020, Sec. 5.2], then update r̃𝑐 ← r̃𝑐 + Δu𝑐 . Here r̃𝑐
keeps track of the total applied correction by the contact 𝑐
and is initialized to zero when 𝑐 is first solved. 3.

(2) Update vertex positions in parallel as z← z+𝑊 −1
𝑧 𝐻𝑇𝐷−1Δu

with 𝐷 the diagonal of the Delassus operator,

𝐷 := diag
(∑

𝑖∈I𝑐 ℎ
2
𝑐,𝑖/𝑊𝑧,𝑖

)
𝑐=1...𝑛.

(6)

Note that the sparse matrix𝑊 −1
𝑧 𝐻𝑇𝐷−1 is constant and can

be preassembled after the collision detection step.
Now, Jacobi has weaker convergence guarantees than Gauss–

Seidel. Imagine a single contact duplicated as 𝑐1 and 𝑐2; solving
them in parallel with Jacobi will lead to an update Δu𝑐1 + Δu𝑐2
equal to twice the necessary correction, overshooting the expected
result and failing to decrease the residual. One strategy to ensure
convergence is under-relaxation, dividing the update from contact
𝑐 Δu𝑐 by the maximum number of contacts across all nodes in-
volved in 𝑐 , max𝑖∈I𝑐 𝑛 |𝑖 . This does address robustness issues, but is
over-conservative and leads to a sub-optimal rate of convergence.
Instead, we borrow ideas from Li et al. [2018]; Tonge et al. [2012]
3The accumulated displacement r̃ is related to the contact force r as r̃ = 𝐷r, with 𝐷
the Delassus operator diagonal from Eq. (6).

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Gilles Daviet

and conceptually split each vertex 𝑖 into 𝑛 |𝑖 virtual vertices, each
being assigned 1/𝑛 |𝑖 of the original vertex weight𝑊𝑧,𝑖 , then update
z𝑖 with the average correction from all duplicates. Each contact
being now effectively independent, we get back the theoretical ro-
bustness guarantees of Gauss–Seidel. Concretely, we simply need
to replace the Delassus operator diagonal 𝐷 from Eq. (6) with �̂� ,

�̂� := diag
(∑

𝑖∈I𝑐 𝑛 |𝑖ℎ
2
𝑐,𝑖/𝑊𝑧,𝑖

)
𝑐=1...𝑛

.

Not that our algorithm using the modified �̂� still converges to the
solution of Problem 5.

Collision constraint weights. Daviet [2020] scales the collision
constraint weight with inertia, i.e,𝑊𝑧,𝑖 ∼𝑚𝑖/Δ2

𝑡 . However in the
quasistatic setting Δ𝑡 is not finite; we replace it with Δ̃𝑡 , a typical
time that we compute from dimensional analysis on the external
acceleration g, bending stiffness 𝑘𝑏 and typical edge length �̃� as

Δ̃𝑡 := min
(
Δ𝑡 , Δ̃𝑡

𝑔
, Δ̃𝑡

𝑏
)
, Δ̃𝑡

𝑔 :=
√︃
�̃�/∥g∥,

Δ̃𝑡
𝑏 :=

√︄
�̃�/

(
𝑘𝑏

𝜌�̃�

)
=

√︄
𝜌�̃�2/

(
𝐸𝑏𝑅2

4�̃�2

)
= 2 �̃�

2

𝑅

√︂
𝜌

𝐸𝑏
.

Vertices not involved in any collision are assigned a zero weight.

5 RESULTS
All simulations were performed on a workstation equipped with an
Intel Core i9-10980XE CPU and two NVIDIA GeForce 3080 Ti GPUs
with 12 GB of memory each (unless otherwise mentioned, only one
GPU was used for the simulations presented below). Renderings
were done using NVIDIA Omniverse.

5.1 Validation
Romero et al. [2021] presented multiple experiments designed to
test the consistency of predictions coming from numerical sim-
ulators, analytic derivations and physical experiments. Three of
these experiments — cantilever, bend–twist and stick-slip — are rele-
vant for elastic rods, and we therefore verify that our simulator is
in agreement with their results. In order to benefit from the mas-
sive parallelism of our solver, for each experiment we solve for all
configurations at once. Results are shown in Fig. 2 (see also our
supplemental video) and discussed below.

Cantilever. The cantilever experiment computes the equilibrium
of naturally straight rods of varying length under gravity, and
compares the resulting aspect-ratio 𝐻/𝑊 to theoretical predictions.
We ran our simulator in a quasistatic setting for a total of 5, 000
iterations, which completed in less than one second for the 100
configurations. We noticed that our original results (dashed blue
line in Fig. 2 left) slightly underestimated the theoretical aspect ratio.
We explain this discrepancy from the fact that the bending energy is
integrated only over the Voronoi length 𝑣𝑖 associated to the interior
vertices 𝑖; the first half of the root edge and the last half of the
tip edge are thus excluded from bending computations. Changing
the definition of the Voronoi length associated to the second and
penultimate vertices to include the full length of boundary edges,
𝑣1∗ := 𝑒0 + 𝑒1/2 and 𝑣𝑚−2∗ := 𝑒𝑚−1 + 𝑒𝑚−2/2, we get a much better
match to the analytical results (red crossed line). Note that this

Table 1: Performance statistics

Scene #vertices #contacts 𝑡frame (s)𝑎 Peak GB
Hairball 16k 480k 1.41M 0.18 1.1
Hairball 16k, CT 480k 2.10M 0.29 1.3
Hairball 128k 3.8M 27M 5.6 9.8
Hairball 128k, CT 3.8M 34M 6.78 2×9.4𝑏
Long 10k, CT 339k 1.7M 0.28 0.9
Long 47k, CT 1.4M 10M 3.5 5.4
Curly 24k, CT 617k 1.5k 0.25 1.4
𝑎𝑡frame indicates the average computation time for a full 24fps frame,
using 4 timesteps per frame and 10 ADMM iterations per timestep
for all the examples in this table.

𝑏The scene “128k, CT” was run on 2 GPUs

effect is inversely proportional to the resolution, so the simulator
should still converge to the ground truth without Voronoi length
rescaling.

Bend–twist. The bend–twist test consists in setting up rods with
various length and natural curvatures, and determining whether
their equilibrium under gravity is planar — which we do in practice
by performing a PCA on the equilibrium shape and comparing the
minimum and average eigenvalues. Romero et al. [2021] mentions
that long, hook-shaped planar configurations can take a long time to
converge; this is also true for our simulator, andwe observed that we
reached equilibrium faster in a damped dynamic setting than in pure
quasistatic setting. This could likely be remedied to by introducing
numerical momentum in the quasistatic ADMM optimization, but
we leave this investigation for future work. Letting the simulation
run for 2500 timesteps — the gravity being tilted for the first 100
timesteps to induce a transverse perturbation — and using 100
ADMM iterations per timestep — a few seconds of total runtime —
we retrieve a good agreement between our results and the analytical
curve.

Stick–slip. For the stick–slip test we progressively push a ver-
tically clamped, naturally straight rod against a fixed plane, and
record the vertical displacement at which the buckling of the rod
leads it to overcome frictional forces. This critical displacement in-
creases with the friction coefficient, until a critical value 𝜇𝑐 ∼ 0.36
is reached above which sliding is no longer possible [Romero et al.
2021]. The results from our simulator, using a total of 800 substeps
to progressively attain the maximum displacement of 0.6𝐿, are once
again in good agreement with the theory.

5.2 Performance
While the previous section focused on eventual convergence of the
solver, we now try to evaluate its computational performance.

Hairy balls. We first reproduce the "hairy ball" experiment from
Daviet [2020]; Kaufman et al. [2014]; see Fig. 3 and the accompany-
ing video. While our timings cannot be directly compared to that
of previous works, as the solvers were run on different generations
of hardware, and with small variations in the strands geometry
and physical properties, we believe this test can still yield useful
insights about the scalability of the different techniques.

Interactive Hair Simulation on the GPU using ADMM SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

FollowingDaviet [2020], we implant strands of radius𝑅 = 0.037𝑚𝑚,
length 𝐿 = 30𝑐𝑚, and friction coefficient 𝜇 = 0.2 over the top half
of a ball with radius 9cm, and subject them to the sequence of rota-
tions described by Kaufman et al. [2014] at 24 frames per second
and 4 substeps per frame. We add slight natural curvature and twist
defined by an helical radius of 0.5cm and a pitch of 5cm. Like all
other simulations in this work, we use 𝜌 = 1300kg.m−3, ∥g∥ = 9.81
m.s−1, 𝐸𝑏 = 3GPa and 𝜈 = 0.45. We use 10 ADMM iterations per
timestep, and run 2 Gauss–Seidel/Jacobi feasible projection iter-
ations at each ADMM iteration, plus 10 more for the “geometric
correction” step at the end of the timestep.

We ran simulations for balls with 16k and 128k strands, each
with and without continuous-time collisions. In the former case,
detection is performed 3 times per timestep at regular intervals.
Due to exceeding the memory budget of a single GPU, the “Hairball
128k, CT” scene was run over 2 GPUs, using the samemass-splitting
technique described in Section 4.5 to handle contacts involving
vertices residing on different GPUs. Table 1 summarize out timings;
the 16k configuration can run at interactive frame rates, while the
full-resolution 128k balls require about 40 minutes to finish — to
be compared to half-a-week with the CPU-based implementation
of Daviet [2020], and untractable memory requirements for the
solver from [Kaufman et al. 2014].

Realistic grooms. To verify the performance of our solver on
more realistic assets, we also simulate two grooms consisting of
9, 600 (resp. 47, 100) long, mostly straight strands, and a third one
with 23, 700 highly curly strands (Fig. 4). Physical and numerical
parameters are kept identical to that of the hairy ball simulations,
and the grooms are subjected to a series fast head turns. Timings
are reported in Table 1 and broken down in Fig. 4, bottom.

5.3 Applications
The computational efficiency of our simulator enables applications
beyond classical offline simulations; we discuss some of them below.

Physics-based grooming. We imagine a primitive physics-based
editing tool that can be used to make adjustments to an existing
groom, while respecting elasticity and self-collision constraints,
ensuring preservation of the layering and volume of the hair, and
providing an accurate preview of what the groom will look at simu-
lation time. For demonstration purposes our tool allows: uniformly
scaling the hair length and/or curvature; trimming the rods along a
cutting plane; and direct manipulation of strands within a selection
radius through spring-like forces.

The usability of such a tool highly depends on its response time
— which also includes rendering, further limiting the simulation
budget. On the other hand, since this application is quasistatic,
we do not need to wait for the optimization to converge before
displaying intermediate results, and can therefore afford a low
number of ADMM iterations per rendered frame. Furthermore, as
the relative strand motion between rendered frames is small, we can
afford to rely solely on proximity-based collisions. The resulting
computational budget being still too tight to allow simulation of
every single groom strand, we take inspiration from geometric
grooming tools and resort to a guide-based approach where only
10% of the strands are actually simulated, and the rest is deformed

according to the guides motion. Here we use linear–blend–skinning,
but more advanced real-time deformation techniques, such as the
neural interpolation from Lyu et al. [2022], could be employed.

This framework allows us to edit a groom with about 86, 000
rendered curves (8600 curves being simulated, amounting to 120k
vertices; see also Fig. 1 and the full editing session in the accompa-
nying video) with real-time feedback. Each simulation frame runs
10 ADMM iterations, for an average wall time of 17ms.

Procedural edits. We also attempted to use this tooling in a pro-
cedural manner to efficiently explore creating variations from a
single base groom. We can provide the simulator with a series of
basic actions (apply animated external forces, growing/trimming
hair, . . .) that can be combined in many different ways to quickly
generate a large amount of candidate variants, some of which are
presented on Figure 5. While most generated variants not may not
be of interest, the fast iteration time of the overall process allows
to quickly identify and focus over the ones that are.

6 DISCUSSION
6.1 Limitations and future work
While being significantly cheaper than Newton per-iteration 4 the
convergence of ADMM is not as well understood. We have pro-
posed heuristics to scale the constraint weights with the simulated
scene, and did not need to tune hyperparameters for the examples
presented in this article; however the performance of our ADMM
optimizer on physical systems other than typical human hairs re-
mains unclear. Overall the solver will perform best for homoge-
neous and isotropic materials, and grooms with high variance in
edge lengths or elastic moduli, or very different stretching and
bending stiffnesses, will negatively impact convergence.

It is also unclear how the validation of our solver on the model
problems from Romero et al. [2021] translates to large scenes for
which we cannot afford to run as many iterations of the ADMM
optimizer. Imagining validation experiments involving larger con-
tacting rod assemblies would be a first step toward understanding
this behavior. Our complementarity-based contact solver does not
feature the same intersection-free guarantees as recent barrier meth-
ods derived from Li et al. [2020]; while missing a few collisions
for hair is much less dramatic than for cloth, it can still result in
undesired entanglement as evidenced for the proximity-only “Hair-
ball 128k” scene in Fig. 3. Combining our highly-scalable solver
with timestep clamping ideas from [Li et al. 2020] is a promising
direction.

Multiple phenomena are still unaccounted for by our solver, such
as the effect of hair products, interactions with the surrounding
air, or two-way coupling with soft bodies. Simulating those in an
efficient manner within our framework remains to be investigated.

Finally, for physics-based grooming to become viable, several UX
challenges remain to be solved. Haptic feedback and smart selection
tools allowing to manipulate, comb and trim sections of the hair at
desired angles could help make the experience closer to that of a
real-life barbershop, but would still require highly trained artists.

4Ignoring collisions, on our “realistic grooms” we observe one ADMM iteration to be
∼ 30× cheaper than a Newton iteration solved using the cuSPARSE sbric02 routine.

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Gilles Daviet

6.2 Conclusion
Through a carefully chosen splitting of the timestep incremental
problem objective, we have devised a simulation algorithm for
Kirchhoff rods under dry frictional contacts that maps efficiently to
the massively parallel architectures of modern GPUs, and verified
that it is able to reproduce analytical results on multiple experi-
ments. Our simulator brings a leap in performance compared to
state-of-the-art CPU-based global solvers, reducing multiple-day
computation times to merely hours, and finally allowing to envision
interactive physics–based hair simulation and grooming at high
strand counts.

ACKNOWLEDGMENTS
The author would like to thank the anonymous referees, the High–
Fidelity Physics group led by Ken Museth at NVIDIA, as well as
the Omniverse Digital Human and RTX teams for their support.

REFERENCES
Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.

2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4, Article 116 (jul 2010),
10 pages.

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun.
2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3 (aug 2008), 1–12.

Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy,
and Jean-Luc Lévêque. 2006. Super-Helices for Predicting the Dynamics of Natural
Hair. ACM Trans. Graph. 25, 3 (jul 2006), 1180–1187.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM
Trans. Graph. 33, 4, Article 154 (jul 2014), 11 pages.

George E. Brown and Rahul Narain. 2021. WRAPD: Weighted Rotation-Aware ADMM
for Parameterization and Deformation. ACM Trans. Graph. 40, 4, Article 82 (jul
2021), 14 pages.

George E. Brown, Matthew Overby, Zahra Forootaninia, and Rahul Narain. 2018.
Accurate Dissipative Forces in Optimization Integrators. ACM Trans. Graph. 37, 6,
Article 282 (dec 2018), 14 pages.

Romain Casati and Florence Bertails-Descoubes. 2013. Super Space Clothoids. ACM
Trans. Graph. 32, 4, Article 48 (jul 2013), 12 pages.

Byoungwon Choe, Min Gyu Choi, and Hyeongseok Ko. 2005. Simulating complex hair
with robust collision handling. In Symposium on Computer Animation.

Gilles Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects.
ACM Trans. Graph. 39, 4, Article 61 (aug 2020), 16 pages.

Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A Hybrid
Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM
Trans. Graph. 30, 6 (dec 2011), 1–12.

Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, Gilles Daviet, and Joëlle
Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans.
Graph. 32, 6, Article 159 (nov 2013), 10 pages.

Crispin Deul, Tassilo Kugelstadt, Marcel Weiler, and Jan Bender. 2018. Direct Position-
Based Solver for Stiff Rods. Computer Graphics Forum 37 (2018).

Sunil Hadap and Nadia Magnenat-Thalmann. 2001. Modeling Dynamic Hair as a
Continuum. Computer Graphics Forum 20 (2001).

Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu. 2022. A General Two-Stage
Initialization for Sag-Free Deformable Simulations. ACM Trans. Graph. 41, 4, Article
64 (jul 2022), 13 pages.

Hayley Iben, Jacob Brooks, and Christopher Bolwyn. 2019. Holding the Shape in Hair
Simulation. In ACM SIGGRAPH 2019 Talks (Los Angeles, California) (SIGGRAPH ’19).
Association for Computing Machinery, New York, NY, USA, Article 59, 2 pages.

M. Jean. 1999. The non-smooth contact dynamics method. Computer Methods in
Applied Mechanics and Engineering 177, 3 (1999), 235–257.

Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan
Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies.
ACM Trans. Graph. 33, 4, Article 123 (jul 2014), 12 pages.

J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. 1998. Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions
on Visualization and Computer Graphics 4, 1 (1998), 21–36.

Petr Kmoch, Ugo Bonanni, and Josef Pelikán. 2010. Towards a GPU-Only Rod-Based
Hair Animation System. In ACM SIGGRAPH ASIA 2010 Posters (Seoul, Republic of
Korea) (SA ’10). Association for Computing Machinery, New York, NY, USA, Article
7, 1 pages.

K. Korner, B. Audoly, and K. Bhattacharya. 2021. Simple deformation measures for
discrete elastic rods and ribbons. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 477, 2256 (2021), 20210561.

Tassilo Kugelstadt and Elmar Schömer. 2016. Position and Orientation Based Cosserat
Rods. In Eurographics/ ACM SIGGRAPH Symposium on Computer Animation,
Ladislav Kavan and Chris Wojtan (Eds.). The Eurographics Association.

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022. Penetration-Free Projective Dynamics on the GPU. ACM Trans. Graph. 41, 4,
Article 69 (jul 2022), 16 pages.

Steve Lesser, Alexey Stomakhin, Gilles Daviet, Joel Wretborn, John Edholm, Noh-Hoon
Lee, Eston Schweickart, Xiao Zhai, Sean Flynn, and Andrew Moffat. 2022. Loki: A
Unified Multiphysics Simulation Framework for Production. ACM Trans. Graph.
41, 4, Article 50 (jul 2022), 20 pages.

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby,
George E. Brown, and Laurence Boissieux. 2018. An Implicit Frictional Contact
Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (jul 2018),
15 pages.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental
Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics.
ACM Trans. Graph. (SIGGRAPH) 39, 4, Article 49 (2020).

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incre-
mental Potential Contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages.

Mickaël Ly, Jean Jouve, Laurence Boissieux, and Florence Bertails-Descoubes. 2020.
Projective Dynamics with Dry Frictional Contact. ACM Trans. Graph. 39, 4, Article
57 (aug 2020), 8 pages.

Q. Lyu, M. Chai, X. Chen, and K. Zhou. 2022. Real-Time Hair Simulation With Neural
Interpolation. IEEE Transactions on Visualization and Computer Graphics 28, 04 (apr
2022), 1894–1905.

Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke,
and Zach Corse. 2020. Local Optimization for Robust Signed Distance Field Collision.
Proc. ACM Comput. Graph. Interact. Tech. 3, 1, Article 8 (may 2020), 17 pages.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-
Based Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th
International Conference on Motion in Games (Burlingame, California) (MIG ’16).
Association for Computing Machinery, New York, NY, USA, 49–54.

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez,
Stefan Jeschke, and Matthias Müller. 2019. Small Steps in Physics Simulation.
In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Los Angeles, California) (SCA ’19). Association for Computing
Machinery, New York, NY, USA, Article 2, 7 pages.

Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios Sifakis, and Joseph Teran. 2009.
Detail Preserving Continuum Simulation of Straight Hair. ACM Trans. Graph. 28, 3,
Article 62 (jul 2009), 6 pages.

Matthias Müller, Nuttapong Chentanez, Miles Macklin, and Stefan Jeschke. 2017. Long
Range Constraints for Rigid Body Simulations. In Proceedings of the ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California)
(SCA ’17). Association for Computing Machinery, New York, NY, USA, Article 14,
10 pages.

Matthias Müller, Tae-Yong Kim, and Nuttapong Chentanez. 2012. Fast Simulation of
Inextensible Hair and Fur. In Workshop on Virtual Reality Interactions and Physical
Simulations.

Ken Museth. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data Structure For
Real-Time Rendering And Simulation. In ACM SIGGRAPH 2021 Talks (Virtual Event,
USA) (SIGGRAPH ’21). Association for Computing Machinery, New York, NY, USA,
Article 1, 2 pages.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective Dy-
namics: Fast Simulation of General Constitutive Models. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Zurich, Switzerland)
(SCA ’16). Eurographics Association, Goslar, DEU, 21–28.

Masaki Oshita. 2007. Real-time hair simulation on GPU with a dynamic wisp model.
Computer Animation and Virtual Worlds 18, 4-5 (2007), 583–593.

Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective
Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE
Transactions on Visualization and Computer Graphics 23, 10 (Oct 2017), 2222–2234.

Dinesh K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat
Models. Computer Graphics Forum 21, 3 (2002), 347–352.

Lena Petrovic, Marc Henne, and John Anderson. 2005. Volumetric Methods for Simula-
tion and Rendering of Hair. Technical Report. Pixar Animation Studios.

Victor Romero, Mickaël Ly, Abdullah Haroon Rasheed, Raphaël Charrondière, Arnaud
Lazarus, Sébastien Neukirch, and Florence Bertails-Descoubes. 2021. Physical
Validation of Simulators in Computer Graphics: A New Framework Dedicated to
Slender Elastic Structures and Frictional Contact. ACM Trans. Graph. 40, 4, Article
66, 19 pages.

Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A Mass Spring Model for
Hair Simulation. ACM Trans. Graph. 27, 3 (aug 2008), 1–11.

Carlota Soler, Tobias Martin, and Olga Sorkine-Hornung. 2018. Cosserat Rods with
Projective Dynamics. Computer Graphics Forum 37, 8 (2018), 137–147.

Interactive Hair Simulation on the GPU using ADMM SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

Jonas Spillmann and Matthias Teschner. 2007. CoRdE: Cosserat rod elements for the
dynamic simulation of one-dimensional elastic objects. In Symposium on Computer
Animation.

Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass Splitting for
Jitter-Free Parallel Rigid Body Simulation. ACM Trans. Graph. 31, 4, Article 105 (jul
2012), 8 pages.

Pedro Valero-Lara, Ivan Martínez-Pérez, Raül Sirvent, Xavier Martorell, and Antonio J.
Peña. 2018. cuThomasBatch and cuThomasVBatch, CUDA Routines to compute
batch of tridiagonal systems on NVIDIA GPUs. Concurrency and Computation:
Practice and Experience 30, 24 (2018), e4909. e4909 cpe.4909.

Kui Wu and Cem Yuksel. 2016. Real-Time Hair Mesh Simulation. In Proceedings of the
20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Redmond,
Washington) (I3D ’16). Association for Computing Machinery, New York, NY, USA,
59–64.

Yao Zhang, Jonathan Cohen, and John D. Owens. 2010. Fast Tridiagonal Solvers on the
GPU. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (Bangalore, India) (PPoPP ’10). Association for Computing
Machinery, New York, NY, USA, 127–136.

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Gilles Daviet

10−3 10−2 10−1 100 101 102 103 104
10−4

10−2

100

102

Gravito-bending parameter Γ = 4 𝜌𝑔𝐿3

𝐸𝑏𝑅2

Eq
ui
lib

riu
m

as
pe
ct
ra
tio

𝐻
/𝑊

Master curve
from Romero et al. [2021]
Our simulations,
with tip 𝑣𝑖 rescaling
Our simulations,
without tip 𝑣𝑖 rescaling

10−1 100
10−1

100

101

Curvature parameter 3√Γ/𝜑

N
um

be
ro

ft
ur
ns
𝜑
/(
2𝜋
)

Master curve from Romero et al. [2021]
Planar configurations
Non-planar configurations

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

Relative vertical displacement 𝜀𝑦

Fr
ic
tio

n
co
effi

ci
en
t𝜇

Master curve from Romero et al. [2021]
Stick configurations
Slip configurations

Figure 2: Results for the numerical verification of our simulator on the cantilever (left), bend–twist (middle) and stick–slip
(right) experiments from Romero et al. [2021]. Physical parameters in these tests are representative of human hair: 𝑅 = 0.05mm,
𝜌 = 1300 kg.m−3, ∥g∥ = 9.81 m.s−1, 𝐸𝑏 = 3GPa, 𝜈 = 0.45. All results are shown for a resolution of 2.5mm per edge, with a minimum
of 16 edges per rod. For the cantilever test, we varied the length from 0.5cm to 128cm to span 7 orders of magnitude of Γ. For
the bend-twist test, we varied the natural curvature from 0.175 to 2 cm−1 and 𝜑 from 0.25𝜋 to 25𝜋 , leading to curve lengths
ranging from 0.4 to 444cm. For the slip-stick experiment, we used rods of length 10cm.

(a) 𝑡 = 0.83𝑠 (b) 𝑡 = 5.41𝑠 (c) 𝑡 = 6.21𝑠 (d) 𝑡 = 9.79𝑠 (e) 𝑡 = 10.41𝑠 (f) 𝑡 = 15𝑠 (g) 𝑡 = 15𝑠, close-up

Figure 3: Captures from our hair ball simulations, from top to bottom: 16k, no continuous-time; 16k, continuous-time; 128k, no
continuous-time; 128k, continuous-time. Skipping continuous-time collision detection leads to a more clumped final state,
as strands that get entangled due to missed collisions during the high-speed impact phases maintain proximity and cannot
separate again at the later stages.

Interactive Hair Simulation on the GPU using ADMM SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

Collision Detection

Global solve

Collision Response

Elasticity

Misc.

Collision Detection

Global solve

Collision Response

Elasticity
Misc.

Collision Detection

Global solve

Collision Response

Elasticity

Misc.

Figure 4: Captures from the “Long 10k”, “Long 47k” and “Curly 24k” simulations, and repartition of computation time for the
first 20 frames of each simulation.

Figure 5: Procedurally generating variants from a single input groom (“Long”) by growing, curling, trimming rods and
animating external acceleration.

	Abstract
	1 Introduction
	2 Related Work
	3 Contributions
	4 Simulator
	4.1 Model
	4.2 Time integration
	4.3 Global tridiagonal solve
	4.4 Local elasticity solve
	4.5 Feasible contact projection

	5 Results
	5.1 Validation
	5.2 Performance
	5.3 Applications

	6 Discussion
	6.1 Limitations and future work
	6.2 Conclusion

	Acknowledgments
	References

