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Figure 1: Conservation of Rainbows: ViCMA can convincingly control the initial and final vertical rainbow coloring of 621
balls falling through a Pachinko-style machine. The overall cost is comparable to a single rigid-body simulation.

ABSTRACT
Motion control of large-scale, multibody physics animations with
contact is difficult. Existing approaches, such as those based on
optimization, are computationally daunting, and, as the number of
interacting objects increases, can fail to find satisfactory solutions.
We present a new, complementary method for the visual control
of multibody animations that exploits object motion and visibility,
and has overall cost comparable to a single simulation. Our method
is highly practical, and is demonstrated on numerous large-scale,
contact-rich examples involving both rigid and deformable bodies.

CCS CONCEPTS
• Computing methodologies → Motion processing; Procedural
animation; Physical simulation.
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1 INTRODUCTION
Dynamic control of large-scale multibody physics animations is a
daunting task. These animations often contain many moving ob-
jects in contact-rich scenarios, and their sensitivity to perturbation
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makesmanually or automatically guiding them to an artist-specified
outcome practically impossible. These inherent challenges have led
to the development of a plethora of experimental control techniques
for estimating plausible motions with varying success.

Optimization-based approaches typically take object end point
positions as constraints and attempt to find as-physical-as-possible
trajectories between these user specified inputs. However, optimiza-
tion schemes are computationally expensive and must be tailored to
particular simulation or animation techniques. Further, complicated
scenes make specifying feasible end-point constraints difficult for
the user. The difficulty of achieving success, along with high compu-
tational burden, means that optimization techniques for multibody
animation control are tedious to apply in practice, especially for
many colliding objects.

Alternatively, with browsing and exploration methods, many
simulations of a given scene are sampled in parallel, and possibly
stored in a compressed, browsable format. A user can execute spa-
tiotemporal queries interactively, in order to locate a particular
simulated animation which meets their chosen criteria. Unfortu-
nately, despite large precomputation and storage costs, there is
no guarantee that what you want will be sampled, and automated
or user-guided search processes can be tedious even for several
objects.

Whether optimization or data-driven methods are employed, the
practicality of fine-grained animation control of passive multibody
systems remains at odds with the sheer difficulty of these problems.
Consider historical highlights for the animation control challenge
of getting passive rigid bodies to spell phrases: making 30 balls spell
“ACM” took 7 days of sampling-based optimization [Chenney and
Forsyth 2000]; optimizing one letter-faced die to bounce 6 times in
a user-specified fashion so as to spell “SKETCH” took a few minutes
[Popović et al. 2003] making 8 letters fall down a Pachinko-style
machine and spell “SIGGRAPH” took over an hour of user-browsed
parallel rigid-body simulation [Twigg and James 2007]; and making
3037 rigid balls bounce and fall into place to spell a text message
took about an hour of compute [Twigg and James 2008]. Given these
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difficulties, we sought a simpler way to provide control over contact-
dominated multibody animations. In contrast, in this work, we spell
a text message with 5376 rigid bodies (see SIGGRAPH Card Trick in
Figure 2) yet the primary cost is a single simulation, run in minutes.
Quantitatively our appearance-based method provides an order
of magnitude improvement in scene complexity and performance
over previous motion-based methods.

Our insight is that, instead of using motion control to estimate
plausible motions for objects with fixed appearances, it can be more ef-
ficient to estimate plausible appearances for objects with fixed motions.
Consequently, our method, ViCMA (Visual Control of Multibody
Animations), is simple and practical. It carries out no complicated
optimization or sampling, and, in fact, it only requires the animation
trajectory to be generated once. The cost of applying the remainder
of the algorithm is negligible.

Our approach exploits the fact that multibody animations are
often visually chaotic and that the human attention system has
difficulty tracking the exact state of objects from frame to frame.
We define a heuristic cost function (based on visibility and motion
measures) that identifies when a change to an object in the scene
is unlikely to be noticed, and executes an appearance transition at
a minimum cost frame. This simple and highly practical approach
proves efficient and effective for generating a number of enjoyable
multibody animations, using significantly less storage and compu-
tational resources than alternative methods. Please see Figures 1
and 2 for a preview of our results. Finally, we strongly encourage
readers to watch the supplemental video first before reading on
and revealing the secrets of ViCMA’s magic trick.

2 RELATEDWORK
The control of multibody dynamical systems has a long history in
computer graphics and animation. Our work is most related to the
sub-area of control for passive multibody systems (as opposed to
active control of characters, e.g., using muscles or motor actuators
which is beyond the scope of this work). The majority of these
works focus on spacetime control of multibody systems, wherein
specific spatiotemporal constraints or goals are specified, and con-
trol forces or other affordances are optimized to achieve the desired
outcomes. Pioneered by Witkin and Kass [1988], spacetime control
and its successors have gone on to be extended and applied to many
disparate phenomena [Fattal and Lischinski 2004; McNamara et al.
2004; Tang et al. 1995; Thürey et al. 2006; Treuille et al. 2003; Wojtan
et al. 2006].

Direct, unsupervised optimization of such systems has its own
unique challenges, but particularly difficult are aspects of solid
contact, wherein goals may not be physically achievable due to
non-penetration constraints. The optimization of motions subject
to multibody collision constraints is notoriously difficult for many
bodies. As a result, the animation community has focused on vari-
ous techniques for the estimation of “plausible motion” [Barzel et al.
1996]—in this work, we essentially focus on techniques for estimat-
ing plausible appearances for given multibody motions. Strategies
to overcome motion control difficulties has been to incorporate
user feedback either interactively [Cohen 1992; Pan et al. 2013;
Popović et al. 2003; Popović et al. 2000; Schoentgen et al. 2020; Yan
et al. 2020] or as a precomputed guiding input [Bergou et al. 2007;
Forootaninia and Narain 2020; Nielsen and Bridson 2011; Sato et al.

2021; Shi and Yu 2005]. Other control approaches have also been
attempted for gentle motions [Barbič and Popović 2008] and mul-
tiphysics problems [Ma et al. 2018]. Reverse-time integration has
been proposed for end-condition constraints (but then struggles
with contact and initial-condition constraints) [Twigg and James
2008], and methods for multiple keyframes on rigid bodies are
possible by solving multi-point boundary value problems, but are
limited to just a few bodies [Popović et al. 2003]. Solutions for piling
phenomena can exploit static analysis to achieve real-time results
for tens or hundreds of objects [Hsu and Keyser 2010, 2012] but are
not applicable to the dynamic phenomena we study here.

Rather than try to exactly satisfy user constraints, one can instead
sample plausible simulation outcomes in search of an acceptable re-
sult [Barzel et al. 1996]. Design galleries are an early version of this
approach, used to tune simulation parameters [Marks et al. 1997].
Many-Worlds Browsing approaches [Goel and James 2022; Twigg
and James 2007] extend this notion by generating a large number
of simulation samples and allowing a user to find an acceptable
output via interactive spatiotemporal queries and refinement; how-
ever, controlling just 8 letters in a Pachinko-like example required
significant sampling and user-guided search, whereas ViCMA can
visually control hundreds of objects in a Pachinko example with
little effort. Data-driven motion graph approaches transition be-
tween precomputed rigid or deformable object motions to produce
desired control outcomes, which can be challenging given collision
constraints [James et al. 2007; Langlois and James 2014].

Chenney and Forsyth [2000] used MCMC sampling to explore
the space of rigid-body motions. One notable example involved a
die released from a known configuration such that it would fall onto
a table, then land in a specifically numbered target circle that also
matched the number of pips appearing on the final die orientation
(see inset). They optimized both location and final orientation of
the die. An alternative approachwould be to
change the final appearance (or orientation)
such that the desired textured number ap-
peared and only sample the location, which
would be easier, but it would violate the ori-
entation constraint on the initial drop con-
dition. Our work was partly motivated by this alternate approach.

Another option for avoiding the infeasiblity problem is to plau-
sibly relax the physical model such as by including additional noise
or perturbations [Barzel et al. 1996]. Amongst other observations
(but most pertinent to this work) O’Sullivan and Dingliana [2001]
showed that adding distractors to a simulated scene significantly
effected observers’ ability to detect gaps between colliding objects,
and to track collisions in general. O’Sullivan et al. [2003] derived
perceptual metrics for evaluating the visual fidelity of physics mo-
tion in small scenes, and assessed the important effect that mo-
mentum has on collision attention. Reitsma and O’Sullivan [2009]
showed that, for scenes involving single digits of rigid bodies that
neither variation in appearance, nor audio cues effected a users
ability to perceive the realism of a physics simulation. Further work
showed that the scenario in which a simulated result is presented
effects a users ability to distinguish errors in realism [Reitsma and
O’Sullivan 2008]. Based on these perceptual observations, statisti-
cal forward simulation has been proposed [Hsu and Keyser 2009],
which replaces collision response calculations with precomputed
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Figure 2: SIGGRAPH Card Trick: ViCMA controls the landing orientation of 5376 textured cards using 2045 texture flips to
spell “2023” on the ground. The major runtime cost is a single forward simulation of the falling cards (approx. two minutes in
Houdini) and rasterized visibility computations. Since the timing of the texture transitions is computed once, the card message
can be changed at a later time (see video for a “Happy Birthday” example).

statistical models along with adjusting simulation tolerances based
on perceptual metrics [Yeh et al. 2009].

Relevant to ViCMA, O’Sullivan [2005] showed that in scenes
involving single digit numbers of colliding rigid bodies, that there
is a strong attentional effect in collision processing, and Han et al.
[2013] showed that humans have difficulty judging simulation accu-
racy in large-scale simulations. These observations are supported
by further work on perception of aggregates [Ramanarayanan et al.
2008]. Taken together these works inspire a different approach al-
together: to manipulate object appearance rather than trajectory
to give the illusion of keyframe control. We believe our method is
the first to exploit visual perception and attention for exclusively
appearance-based control of multibody animations.

In particular, our ViCMA optimization is inspired by results
of Multiple Object Tracking (MOT) experiments from cognitive
science which show that (1) onset of [Abrams and Christ 2003],
as well as unexpected [Howard and Holcombe 2010] object mo-
tion draws human attention, (2) motion distractors disrupt visual
search [Crowe et al. 2021], (3) that motion silences awareness of
visual change [Suchow and Alvarez 2011] and that (4) humans have
an upper limit on objects they can track simultaneously [Harris
et al. 2020b] (shown to be around 4-5). The ViCMA cost heuristic
is composed of separate terms that penalize changes for objects at
rest (penalizing 1 and exploiting 3), encourages moving distractors
and penalizes lone objects (exploiting 2 and 4), coupled with a final
visibility term to exploit the well-known phenomena of change
blindness [Attwood et al. 2018]. We show, through numerous exam-
ples, that this cognitively motivated approach produces compelling
illusions of multibody control wherein changing the appearance
of more than half the objects in a given scene, in plain sight, goes
unnoticed.

3 MULTIBODY APPEARANCE CONTROL
Our approach, Visual Control of Multibody Animations (ViCMA),
exploits human inability to reliably attend to large ensembles of ob-
jects undergoing complicated interactions [Crowe et al. 2021]. The
input to our algorithm is a set of keyframes containing prescribed
appearance properties (e.g., color, texture, etc.) for all (or some)
objects in the animation. Rather than globally (or even locally) op-
timize object trajectories, we instead transition object appearance
attributes to create the appearance of a key-framed, trajectory-
controlled optimization.

To do this, our algorithm computes a transition cost (on [0, 1])
for each object in a scene, at each time frame. Crucially, this cost
computation is local, depending only on the instantaneous state
(position and velocity) of a given object and a small number of spa-
tial neighbors. This local dependence enables fast cost computation
on even large examples. Eschewing more involved optimization
procedures, we transition an object’s appearance attributes at its
individual minimum cost time, which can be computed quickly by
scanning over all per-object, per-frame transition costs.

3.1 Visibility Cost
When possible we exploit visibility changes to transition objects
when they are out of sight, or have low projected area in the frame.
We measure per-frame visibility as the projected area of an ob-
ject on the scene which we compute from rasterized object ID
images (Figure 5). For an object, 𝑖 , we compute

𝜙𝑣𝑖𝑧𝑖 =
1

𝑁𝑝𝑖𝑥𝑒𝑙𝑠

𝑁𝑝𝑖𝑥𝑒𝑙𝑠∑︁
𝑗,𝑘=1

(ID𝑖 == ID ( 𝑗, 𝑘)) , (1)

where 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 is the number of pixels in the ID image, ID𝑖 is the
assigned identification value for the 𝑖𝑡ℎ object and ID ( 𝑗, 𝑘) is the
identification value stores at pixel ( 𝑗, 𝑘). The logical operator ==
evaluates to 1 if IDs are equal, and 0 otherwise.

3.2 Transition Cost for Many-body Motion
While visibility can be exploited to determine when to change ap-
pearances, challenging scenarios exist where the objects are always
visible, e.g., rainbow-colored balls falling through a pachinko-like
machine (see Figure 1). In such cases, we must exploit the chaotic
nature of the motion and mixing to hide appearance changes. In this
section, wewill describe some cost measures that we experimentally
found useful for modeling appearance transitions in practice.

Change during movement. Our first velocity-level cost measure
penalizes changes for objects at rest. Let the velocity of parti-
cle/body 𝑖 be v𝑖 , with speed 𝑣𝑖 = ∥v𝑖 ∥. A simple cost function
based on single-body velocity is

𝜙𝑣𝑖 = exp
[
−
( 𝑣𝑖
𝛿𝑣

)2
]

(2)

where 𝛿𝑣 is a user-defined scalar parameter. This measure allows a
single fast-moving body transition, but the transition would be less
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Figure 3: “Bunchinko!” We applied ViCMA to deformable
bodies as demonstrated by this rainbow-to-rainbowpachinko
machine using 621 Stanford gummy bunnies (simulated in
Houdini Vellum (256 tri, 130 vtx)). This example is challeng-
ing not only because objects are always visible, but also be-
cause the deformable motions cause bunnies to squish upon
peg impact, then get piled-up upon and passed by, which
changes color ordering noticeably. The motion cost function,
𝜙𝑚𝑜𝑡𝑖𝑜𝑛 , is computed using center-of-mass velocity and posi-
tion attributes. (ViCMA Score of 0.570)

apparent if surrounding objects were also moving in an incoher-
ent way. To measure the latter, we measure the velocity standard
deviation, 𝜎𝑖 , of the surrounding objects:

𝜎2
𝑖 =

1
|N𝑖 |

∑︁
𝑗∈N𝑖

∥v̄𝑖 − v𝑗 ∥2 with v̄𝑖 =
1

|N𝑖 |
∑︁
𝑗∈N𝑖

v𝑗 , (3)

where N𝑖 is a list of local neighbors (excluding 𝑖) with centroids
within a user-defined threshold, 𝑅; in our examples, we use 𝑅 = 4𝑟

where 𝑟 is the object bounding radius, unless mentioned otherwise.
If N𝑖 is empty, we set 𝜎𝑖 = 0. Note that 𝜎𝑖 also requires at least two
neighbors to be nonzero.

Our velocity-level cost term for object 𝑖 at the current frame is

𝜙𝑣𝑒𝑙𝑖 = exp

[
−
(

min(𝑣𝑖 , 𝜎𝑖 )
𝛿𝑣

)2
]
∈ [0, 1], (4)

where the min operation ensures the cost is high if the object is
not moving sufficiently, or the neighbors are not moving incoher-
ently enough. In practice, 𝜙𝑣𝑒𝑙

𝑖
does a good job of finding locations

where the object is moving, and at least two neighbors are moving
disparately. Figure 6 (top row) shows its temporal evolution.

Encouraging moving diversions. An object’s velocity-level cost
is low if it is moving, and has disparately moving neighbors (Fig-
ure 6:top row). However, a lone fast-moving object can impact
another non-moving object or objects, imparting velocity to the
latter. Consequently, this velocity-level cost alone can create tran-
sitions where a single fast-moving object hits stationary objects
and then changes its color in an obvious manner. To avoid objects
changing their color when they stand out, we add an additional
cost term that encourages more moving neighbors by explicitly
counting them. We count the number of neighbors in N𝑖 with suf-
ficient speed, 𝑣 𝑗 > 𝛿𝑣 . Also, we avoid pure translational motion
cases (which aren’t good diversions) by requiring the neighbors’
velocities v𝑗 to be different from v𝑖 . Let the number of moving local
neighbors be

𝑛𝑚𝑜𝑣
𝑖 =

∑︁
𝑗∈N𝑖

(
min(𝑣𝑖 , ∥v𝑖 − v𝑗 ∥) > 𝛿𝑣

)
(5)

where the boolean true/false comparison (>) evaluates to 1/0. Fi-
nally, the diversion cost uses a cubic smoothstep to encourage more
than 𝑛𝑚𝑖𝑛 moving neighbors:

𝜙𝑚𝑜𝑣
𝑖 = 1 − smooth(𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥 , 𝑛

𝑚𝑜𝑣
𝑖 ). (6)

In our examples we request more than three moving neighbors
(𝑛𝑚𝑖𝑛 = 3, 𝑛𝑚𝑎𝑥 = 5) to encourage appearance-change diversions
when possible. The second row of Figure 6 shows the temporal
evolution of 𝜙𝑚𝑜𝑣 .

Wait for mixing. Early impacts and shock waves can create multi-
body velocity disturbances that have both low velocity-level and
moving diversion costs, 𝜙𝑣𝑒𝑙 and 𝜙𝑚𝑜𝑣 , respectively (Figure 6: sec-
ond row). These noisy velocity-level measures alone are therefore
not robust to collision disturbances, and can cause a closely packed
arrangement of objects, e.g., a grid of pachinko balls, to suddenly
and obviously change their colors before much movement has even
occurred. We therefore also discourage transitions from occurring
before sufficient spatial mixing has occurred, which is more robust
than just using velocity-level measures of change. Historically, us-
ing spatial rearrangement can confuse a viewer, such as during a
“shell game” [Wikipedia 2004]. In our case, the sleight-of-hand color
switch occurs in plain sight, which is particularly brazen.

We now discuss how to measure the similarity of an object’s
local neighborhood at the current frame (𝑡 ) to, e.g., the beginning
frame (𝑡 = 0). Given the radius-𝑅 neighbors of object 𝑖 at the start,
N0
𝑖
, and at a later time, N𝑡

𝑖
, when are these objects sufficiently

different so that we can allow transitions? We considered discrete



ViCMA: Visual Control of Multibody Animations SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Figure 4: Prior methods do not conserve rainbows: Initial vs final color constraints applied to the same Pachinko simulation
from Figure 1. Specifying ball colors with (Top) an initial rainbow color condition produces an animation which runs forward
and gets mixed up, whereas (Bottom) a final rainbow color condition sets colors which start out mixed up, but then run forward
in time to satisfy the final rainbow constraint (e.g., see popular work by Konstantin Otrembsky [Dean 2018]). In contrast,
ViCMA can support both initial and final color constraints, and estimate plausible color transitions for the many balls which
will have infeasible (non-matching) two-point color conditions.

Figure 5: Rasterization-based Visibility Calculations: RGBA
ID images from (Left) the Yahtzee, and (Right) the Faulty
Card Towers animations.

set-similarity measures [Vijaymeena and Kavitha 2016]: for ex-
ample, given two neighborhood sets, A and B, the Jaccard index
is the ratio of the intersection to union sizes, |A

⋂ B|/|A⋃ B| ∈
[0, 1], whereas the overlap (or Szymkiewicz–Simpson) coefficient
is |A⋂ B|/min( |A |, | B | ) ∈ [0, 1]. We found the latter most useful
for ruling out early transitions, but too conservative, and it would
sometimes indicate that the neighborhoods were similar well into
the simulation when neighbors were still nearby but had rearranged
spatially.

Therefore, we devised a directional overlap coefficient normalized
by the reference (start or end) neighborhood set size. Instead of just
adding one for each member 𝑗 of the intersecting neighborhood
sets, e.g., 𝑗 ∈ N0

𝑖

⋂N𝑡
𝑖
, we accumulate the dot product of the

normalized displacement vectors from object location 𝑖 to neighbor
𝑗 between the two time frames (clamped to [0, 1]). Specifically, we
define the directional overlap coefficient between the starting (0) and
current (t) frame as

𝐷0𝑡
𝑖 =

1
|N0

𝑖
|

∑︁
𝑗∈N0

𝑖

⋂N𝑡
𝑖

(
d̂0
𝑗𝑖 · d̂

𝑡
𝑗𝑖

)
+
, |N0

𝑖 | > 0, (7)

and zero for isolated objects with N0
𝑖
= ∅; here d̂𝑗𝑖 are the normal-

ized displacement vectors from 𝑖 to 𝑗

d̂𝑗𝑖 =
x𝑗 − x𝑖
∥x𝑗 − x𝑖 ∥

(8)

evaluated at the appropriate time (here 0 or 𝑡 ). We also apply this
to end-frame matching by replacing "0" by the end frame index, 𝐹 ,
to get end-current directional overlap coefficient, 𝐷𝐹𝑡

𝑖
.

Finally, our overall neighborhood mixing cost at frame 𝑡 is the
max of both costs:

𝜙𝑚𝑖𝑥
𝑖 = max(𝐷0𝑡

𝑖 , 𝐷𝐹𝑡
𝑖 ). (9)

This cost is always 1 at beginning (0) and end frames (F), and zero
for particles that are isolated at 𝑡 or their reference frame (0 or 𝐹 )
(Figure 6: third row).

3.3 Combined Cost Model for Multibody
Animation

It is possible to sum all cost functions together, however to strongly
discourage unmixed transitions, we use the following motion cost
model for body 𝑖:

𝜙𝑚𝑜𝑡𝑖𝑜𝑛
𝑖 = max

(
𝜙𝑚𝑖𝑥
𝑖 ,

1
2

(
𝜙𝑣𝑒𝑙𝑖 + 𝜙𝑚𝑜𝑣

𝑖

))
. (10)

In other words, we use the average of the two velocity-level cost
functions unless the neighborhood is insufficiently mixed. Note
that the multibody motion cost is one for an isolated body.

In practice, a simulation might have a lone visible object for
which 𝜙𝑚𝑜𝑡𝑖𝑜𝑛 = 1 throughout the animation. In cases where we
must rely on velocity to determine a transition (and not visibility
or other factors), we can regularize the motion cost by adding a
tiny single-body velocity cost (2),

𝜙𝑚𝑜𝑡𝑖𝑜𝑛
𝑖 = max

(
𝜙𝑚𝑖𝑥
𝑖 ,

1
2

(
𝜙𝑣𝑒𝑙𝑖 + 𝜙𝑚𝑜𝑣

𝑖

))
+ 𝜀𝑣 𝜙

𝑣
𝑖 , (11)

where we use 𝜀𝑣 = 0.001 in our examples (Figure 6: fourth row).
Lastly, we multiply motion and visibility costs to arrive at the

final per-frame ViCMA cost for body 𝑖:

𝜙𝑣𝑖𝑐𝑚𝑎
𝑖 = 𝜙𝑚𝑜𝑡𝑖𝑜𝑛

𝑖 𝜙𝑣𝑖𝑧𝑖 . (12)
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Valid transition times are minimizers of 𝜙𝑣𝑖𝑐𝑚𝑎
𝑖

, and are computed
once and cached. Figure 6 shows all costs evaluated at multiple
frames for a single animation.

3.4 Scoring Animations
Some animations and constraints are better suited to ViCMA than
others. We can report a per-body transition cost based on the min-
cost achieved (Figure 6: bottom), weighted by other factors, such
as whether or not a transition was needed (0 or 1), color change
amount, etc. We define the ViCMA Score as the maximum per-body
transition cost observed (lower is better). In practice, the animator
can try a few animations and pick the one with the lowest ViCMA
Score. Most of our examples were run through ViCMA “as is” with
the majority of time spent tuning physics simulation parameters.

4 RESULTS
ViCMA has been used to control numerous large multibody ani-
mations. We strongly encourage readers to enjoy the supplemental
ViCMA animation results before continuing. ViCMA parameters
were the same for all examples (mentioned previously), but, because
ViCMA is fast, it is possible to tune parameters as desired.

Implementation and Performance: ViCMA is easy to implement.
The solver is local in object and time, iterating over each object in
parallel and selecting the transition time as the first, minimum cost
frame. We used two implementations to generate the results for
this paper, one for Houdini [SideFX 2023] and another for the open
source tool Blender [2023]. The Blender implementation is writ-
ten in Python using scikit-learn [Pedregosa et al. 2011] for nearest
neighbour queries and numpy [Harris et al. 2020a] for algebraic
operations. By far the slowest component of ViCMA is creating an
initial multibody animation (in this paper done using rigid and de-
formable physics simulation). Rasterizing object ID images, which
we use for visibility computation, is embarrassingly parallel and
performed on CPU (Houdini) or GPU (Blender). In practice, com-
puting the ViCMA cost and finding minimum transition frames
takes less than 5 seconds on an Intel Core i9 workstation with 32GB
of RAM. No effort was made to optimize the code beyond what is
provided automatically by the underlying tools. Even so, we were
able to generate controlled multibody animations on scenes with
thousands of colliding objects.

Facial Expressions (rigid, colors): Figure 7 shows the result of
keyframing object color to alter the facial expression mapped onto
an animation of 2500 falling rigid cubes. Despite being a very short
animation with a single main impact period, ViCMA identifies times
when objects are occluded or undergo sufficient motion and mixing
to transition colors on 591 cubes in a plausible manner.

Pachinko (rigid, colors): Shown in Figure 1, this example is chal-
lenging because objects are visible at all times during the animation.
The 623 balls in this scene initially form a rainbow, and ViCMA
find 406 transitions to hit a rainbow-structured keyframe at the
end of the animation in a believable manner. Initial velocity noise
is introduced for plausibility.

Unchinko (rigid, colors): By removing all Pachinko pegs, we can
produce a visually much simpler falling motion. This scenario is

similar to the falling-cubes “Facial Expression” example, but more
difficult because it is 2D and lacks visibility-change affordances.
Surprisingly, ViCMA is able to find visually appropriate times at
which to perform color transitions (Figure 8) during the rapid and
visually chaotic impact phase.

Padrinko (rigid, colors): Because ViCMA is a post-process, ap-
plied to an existing multibody animation, it is readily compatible
with complex, fast-moving scenes. In Figure 9, ViCMA finds 543
transitions to distribute 621 rapidly moving multi-colored balls into
9 independent bins (“drink cups”) which raise from the ground.
Interestingly, each cup is filled with a vertical rainbow even though
the original ball rainbow was horizontal. While motion control
would be essentially impossible using previous techniques, yet
ViCMA takes only seconds to compute, and achieves our lowest
ViCMA Score of 0.0372 due to the fast-moving chaotic motion.

Bunchinko (deformable, colors): ViCMA is simulator agnostic
and so creating animations with deformable objects is trivial. This
example replaces the 621 rigid Pachinko balls with deformable
Stanford Bunnies (see Figure 3). ViCMA preserves the starting and
ending rainbow structure using 445 transitions.

Cost Function Analysis and Ablation Study: The video visualizes
the cost functions from Figure 6 for the Pachinko example (Figure 1).
It also includes an ablation study that demonstrates the animations
resulting from the progressively better sequence of cost models: (1)
first just the single-body velocity cost, 𝜙𝑣 , which transitions when
the body moves the fastest and produces unconvincing results; (2)
then the multibody velocity cost, (𝜙𝑣𝑒𝑙 +𝜙𝑚𝑜𝑣)/2, which transitions
when neighbors are moving more chaotically, but can also have
spurious and sometimes obvious transitions in unmixed early/late
states; and, finally, (3) the full ViCMA motion cost 𝜙𝑚𝑜𝑡𝑖𝑜𝑛 which
incorporates the mixing cost 𝜙𝑚𝑖𝑥 to transition during more con-
fusing motions and avoid unmixed early/late transitions. We also
plot transition times as obvious red-to-green color transitions for
clarity. These results parallel discussions in the cost section.

B#ggle Dice (rigid, textures): ViCMA can be used to transition
other appearance properties such as textures. Figure 10 appears
to show an example of pose control, however for examples such
as dice rolls, we can imitate pose control via dynamic texturing.
Here ViCMA transitions textures 23 out of 25 dice in order to give
the appearance of an impossible dice roll: from all fours showing
to, all sixes showing (a one in 625 ≈ 3 × 1019 chance). This ani-
mation is challenging because the dice are in full view for most
of the sequence. ViCMA locates transition times during which ob-
jects are undergoing sufficient movement and mixing to transition
seamlessly.

Dice Pyramid Explosion (rigid, textures): Texture transition ef-
fects can be applied to large-scale simulations. In Figure 11, a dice
pyramid consisting of 5456 rigid bodies is exploded. All the dice
move from an initial structured arrangement with sixes up, to land-
ing sixes-up at the end of the animation. ViCMA is able to exploit
visibility and motion to find unnoticeable texture transitions for all
objects in the scene (526 transitions, ignoring initial hidden-inside-
pile dice). The mixing cost function was key to avoiding spurious
settling dice from switching textures close to the camera.
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𝜙𝑣

𝜙𝑣𝑒𝑙+𝜙𝑚𝑜𝑣

2

𝜙𝑚𝑖𝑥

𝜙𝑚𝑜𝑡𝑖𝑜𝑛

𝜙𝑚𝑖𝑛

Frame: 1 7 25 50 115
Figure 6: Motion Cost Analysis: (Top to Bottom) The single-body velocity cost, 𝜙𝑣 , is very noisy, and even wants to transition

during the shockwave on frame 7; the neighbor-based multibody velocity costs, 𝜙
𝑣𝑒𝑙+𝜙𝑚𝑜𝑣

2 , identify nearby bodies with disparate
velocities; the direction overlap coefficients in 𝜙𝑚𝑖𝑥 = max(𝐷0𝑡 , 𝐷𝐹𝑡 ) have high costs near start/end neighborhood configurations;
the overall multibody motion cost, 𝜙𝑚𝑜𝑡𝑖𝑜𝑛 ; and the min-cost over all frames. The original animation consists of 180 frames.
Normalized costs plotted using a black-body color map: 0 1.

Faulty Card Towers (rigid, colors, visibility only): We built bi-
colored card towerswith regular color patterns and blew them down
onto the ground to create a bold stripe pattern (Figure 12). In this
example, we only used the visibility costs to make the 16190 falling
cards undergo 8076 transitions when they were (approximately)
hidden. The card simulation was done using Bullet in Houdini, and
was the dominant cost.

ACM SIGGRAPH Card Trick (rigid, textured): In this large exam-
ple involving 5376 double-sided textured cards (see Figure 2) cards
initially spelling “ACM SIGGRAPH” then fall down to reveal “2023”
on the ground. The light fluttering motion of the cards was achieved
using a nonlinear aerodynamic lift model for falling paper inspired
by [Pesavento and Wang 2004]. The falling and tumbling motion
provides many opportunities for low-cost appearance change since
the planar cards can have many low cross-sectional-area moments
with small visibility costs. The highest card costs tend to arise for
cards that somehowmanage to fall without tumbling, remain facing
the camera, and avoid significant occlusion. See the supplemental
video for a visual analysis of costs, transitions, and view-dependent
nature of simulated card transitions (shown as yellow flashes).

5 CONCLUSION
We explored a number of techniques, based on exploiting visi-
bility and motion measures, for the visual control of multibody
animations (ViCMA). We have shown that ViCMA can produce
compelling visual effects when applied to rigid and deformable
animations, animations which involve copious amounts of contact,

and animations that require dynamic texture mapping. We have
been able to demonstrate ViCMA on very large examples because
of our focus on simple and efficient appearance-based techniques:
ViCMA requires no complicated spacetime optimization, it runs in
seconds even for our largest examples, and precomputed cost maps
can be reused, e.g., to change colors. We believe these techniques
are eminently practical and complementary to prior techniques
for spacetime motion control—we are not aware of prior motion
control techniques that can achieve comparable results. Perhaps
the most exciting part of ViCMA is that it introduces the notion
of exploiting human attention for animation control to computer
graphics, and that we have only scratched the surface of how to
apply “visual control” to computer animation.

Limitations and Discussion. ViCMA cost functions ignore rota-
tional motion which can be important when perceiving textures,
e.g., spinning dice. Visibility-based costs are view dependent, and
the resulting illusion can degrade by looking at the animation from
a different viewpoint or via material reflections (see video for an
illustration). There is no guarantee that a visible transition will
go unnoticed by an attentive viewer. Color changes may be less
noticeable in peripheral vision, but overall brightness changes less
so. ViCMA can produce compelling results in some cases, but it
is not well-suited for all animation tasks. Animations with few or
isolated objects, or coherent motions, often don’t admit low-cost
transitions. Keyframes need to have similar color distributions or
appearances otherwise no subtle transitions can be found. Some
animation effects inherently require trajectory modification, which
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ViCMA cannot perform by construction, and traditional motion
control techniques may produce more pleasing results with less
visible artifacts. Future work should find ways to use ViCMA in a
complementary role, along side space-time optimization, sampling
and browsing techniques. Finally, we leave generalizing to objects
with different physical sizes and textures for future work. Color
and texture were not considered by construction in order to allow
prerendering of visibility frames and so choosing wildly disparate
start and end colors or texture will produce noticeable transitions.

ViCMA’s efficiency comes from the fact that the cost at each
time step is independent of object state at other time steps, and
that bodies can be optimized in parallel. This design choice allows
ViCMA to be applied to large-scale simulations, and allows tran-
sitions to be reused with different appearance data. However, it
means passing up on further opportunities to optimize color and
texture transitions (such as taking into account neighboring color
information, or reasoning about when a lone color might stand out).
The exploration of coupled-body optimization procedures remains
future work.
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Figure 7: Keyframed Expression: We constrain the start and end facial expressions of this simulation of 2500 cubes falling on
the ground (591 transitions).

Figure 8: Dropping the Balls (Unchinko): These balls have randomized initial velocities and fall through an empty box, and
land in a rainbow arrangement. Despite ViCMA transitioning the colors of 425 out of 621 balls, and mostly when the objects hit
the ground, the changes are surprisingly plausible (ViCMA Score of 0.758).

Figure 9: Re-sorting Colors (Padrinko): Horizontally sorted colors are rapidly mixed using noise-based forces, and magically
fall into a vertically sorted rainbow color pattern, which are lowered into bins. The violent mixing process provides many
extremely low-cost opportunities for ViCMA to color-transition 543 out of 621 balls (ViCMA Score of 0.0372).

Figure 10: B#ggle: After vigorous shaking, all 25 of these dice land 6 side up (23 transitions).
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Figure 11: Dice Pyramid: After exploding, the 5456 dice constituting this pyramid all start and stop 6-side up. (“It could happen,”
they said.)

Figure 12: Faulty Card Towers: Card colors are transitioned at the first moment they are not visible from the camera viewpoint.
(Top) Initial color constraint. (Middle) Final color constraint. (Bottom) Visibility-shy color transition. (More-bottom-still)
Transition visualization changing from red to green. In this conservative run, only cards that were completely hidden were
transitioned (Houdini Bullet simulation of 16,190 rigid cards).
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