
Boundary Value Caching for Walk on Spheres
BAILEY MILLER∗, Carnegie Mellon University, USA
ROHAN SAWHNEY∗, Carnegie Mellon University, USA and NVIDIA, USA
KEENAN CRANE†, Carnegie Mellon University, USA
IOANNIS GKIOULEKAS†, Carnegie Mellon University, USA

Fig. 1. Our caching scheme dramatically reduces the total number of random walks needed to solve partial differential equations relative to classic pointwise
Monte Carlo estimators. Here we show streamlines of a flow in a simulated wind tunnel, computed directly from a low-quality surface mesh originally
intended for visualization rather than simulation.

Grid-free Monte Carlo methods such as walk on spheres can be used to solve

elliptic partial differential equations without mesh generation or global

solves. However, such methods independently estimate the solution at every

point, and hence do not take advantage of the high spatial regularity of

solutions to elliptic problems. We propose a fast caching strategy which

first estimates solution values and derivatives at randomly sampled points

along the boundary of the domain (or a local region of interest). These

cached values then provide cheap, output-sensitive evaluation of the solu-

tion (or its gradient) at interior points, via a boundary integral formulation.

Unlike classic boundary integral methods, our caching scheme introduces

zero statistical bias and does not require a dense global solve. Moreover we

can handle imperfect geometry (e.g., with self-intersections) and detailed

boundary/source terms without repairing or resampling the boundary rep-

resentation. Overall, our scheme is similar in spirit to virtual point light
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methods from photorealistic rendering: it suppresses the typical salt-and-

pepper noise characteristic of independent Monte Carlo estimates, while

still retaining the many advantages of Monte Carlo solvers: progressive

evaluation, trivial parallelization, geometric robustness, etc. We validate our

approach using test problems from visual and geometric computing.
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1 INTRODUCTION
The walk on spheres (WoS) method solves problems like the Laplace

or Poisson equation by aggregating information from repeated ran-

dom walks [Muller 1956; Sawhney and Crane 2020]. Like Monte

Carlo ray tracing—and unlike conventional partial differential equa-

tion (PDE) solvers—it does not require amesh of the problem domain,

nor even a high-quality mesh of its boundary. This fact makes WoS

valuable for problems in visual and geometric computing, as one can

directly use imperfect assets from design or visualization to perform

simulation and analysis (Figure 1). However, classic WoS methods

estimate the PDE solution pointwise and do not share information

between sample points, resulting in highly redundant computation.

ACM Trans. Graph., Vol. 42, No. 4, Article 82. Publication date: August 2023.

This work is licensed under a Creative Commons Attribution International 4.0 License.

HTTPS://ORCID.ORG/0009-0009-0881-0351
HTTPS://ORCID.ORG/0000-0002-3661-1554
HTTPS://ORCID.ORG/0000-0003-2772-7034
HTTPS://ORCID.ORG/0000-0001-6932-4642
https://orcid.org/0009-0009-0881-0351
https://orcid.org/0000-0002-3661-1554
https://orcid.org/0000-0003-2772-7034
https://orcid.org/0000-0001-6932-4642
https://doi.org/10.1145/3592400
https://doi.org/10.1145/3592400
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592400&domain=pdf&date_stamp=2023-07-26


82:2 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

We propose a simple boundary value caching (BVC) scheme, well-

suited for problems like visualization, where the solution must be

evaluated densely in space. This scheme is enabled by the recent

walk on stars (WoSt) method [Sawhney et al. 2023], which extends

WoS to problems with mixed Neumann and Dirichlet boundary

conditions. In particular, we consider PDEs of the form

Δ𝑢 − 𝜎𝑢 = 𝑓 on Ω
𝑢 = 𝑔 on 𝜕Ω𝐷
𝜕𝑢
𝜕𝑛 = ℎ on 𝜕Ω𝑁

(1)

where the boundary of the domain Ω ⊂ R𝑛 is split into a Dirichlet

part 𝜕Ω𝐷 and Neumann part 𝜕Ω𝑁 with prescribed values 𝑔 and

derivatives ℎ respectively. Here Δ is the negative-semidefinite Lapla-

cian, 𝜎 ∈ R≥0 is a constant, and 𝑓 is a given source term. At interior

points 𝑥 , the solution to Equation (1) is given by the boundary inte-
gral equation (BIE) [Costabel 1987; Hunter and Pullan 2001]

𝑢 (𝑥)=
∫
𝜕Ω

𝜕𝐺
𝜕𝑛 (𝑥, 𝑧)𝑢 (𝑧)−𝐺 (𝑥, 𝑧)

𝜕𝑢
𝜕𝑛 (𝑧) d𝑧︸                                        ︷︷                                        ︸

C𝑢𝜕Ω (𝑥 )

+
∫
Ω
𝐺 (𝑥,𝑦) 𝑓 (𝑦) d𝑦︸                 ︷︷                 ︸
C𝑢Ω (𝑥 )

, (2)

where 𝐺 is the free-space Green’s function for Equation (1), and 𝑛

is the unit outward normal at the boundary.

To make use of the BIE, one must somehow determine the un-

known boundary data: Dirichlet values𝑢 on the Neumann boundary

𝜕Ω𝑁 , and Neumann values 𝜕𝑢/𝜕𝑛 on the Dirichlet boundary 𝜕Ω𝐷 .
Schemes such as the boundary element method (BEM) use a finite-
dimensional space of functions on the boundary (e.g., basis functions
associated with mesh nodes), and solve a dense, globally-coupled

linear system for the best approximation to the true solution.

We take a completely different approach, and instead use random

walks to compute the unknown boundary values. In particular, we

useWoS(t) to obtain𝑢 along 𝜕Ω𝑁 and 𝜕𝑢/𝜕𝑛 along 𝜕Ω𝐷 (Section 3.1).

This approach avoids global solves, boundary remeshing, and ap-

proximation of the function space; unlike BEM, it also handles the

source term 𝑓 . Moreover, as random walks can be expensive (espe-

cially in problems with predominantly Neumann boundaries), we

cache these boundary values at a collection of random sample points

along 𝜕Ω. We can then use a Monte Carlo estimate of Equation (2) to

cheaply evaluate the solution at any interior point 𝑥 , without taking

any further random walks (Algorithm 1). This scheme is easy to

parallelize, and can be computed progressively (e.g., for interactive
preview). We can also focus computation on a region of interest by

caching points only on the boundary of a small subdomain 𝑅 ⊂ Ω
(Section 3.2)—unlike BEMwhich must always perform a global solve

involving the entire boundary 𝜕Ω.
In practice, we obtain far smoother results across the domain with

our method compared to directly using pointwise estimators like

WoS or WoSt (Figures 1, 5 and 7). This behavior can be attributed to

correlations in the solution estimates at interior evaluation points

that use the same boundary and source samples. On the flip side,

error is now more global akin to traditional PDE solvers such as

FEM and BEM (Figure 12). Unlike pointwise estimators, we also

observe boundary artifacts (Figure 11) as samples are no longer

generated in proportion to the singular functions 𝐺 and 𝜕𝐺/𝜕𝑛. We

show how to mitigate such artifacts in Section 3.3.
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Fig. 2. Even for problems with relatively simple boundary conditions and
no source term (left), finite element technology like BEM suffers from large
global errors in the PDE solution without significant mesh refinement due
to local aliasing of boundary data, and can fail completely on domains with
irregular elements (middle row). In contrast, ourmethod solves PDEswithout
any aliasing artifacts irrespective of tesselation quality as it decouples
problem inputs from the boundary representation (bottom row).

2 RELATED WORK
Though we exclusively employ a grid-free Monte Carlo approach to

solve PDEs such as the Poisson equation, numerous deterministic

and stochastic solvers exist to accomplish this task with varying

tradeoffs. We refer the reader to Sawhney and Crane [2020, Sec-

tion 7] and Sawhney et al. [2022, Section 7] for a comprehensive

overview of the advantages of a Monte Carlo approach like ours

over traditional grid-based methods such as finite differences (FD),

finite elements (FEM) and “meshless” finite elements (MFEM). Here

we instead focus on techniques that directly evaluate BIEs, as well

as sample reuse strategies in rendering our method is inspired by.

Grid-free Monte Carlo methods. Originally developed by Muller

[1956], WoS was recently introduced to graphics by Sawhney and

Crane [2020] who made the link to techniques from Monte Carlo

rendering. It has since been generalized to handle Neumann bound-

ary conditions [Sawhney et al. 2023], solve variable coefficient PDEs

[Sawhney et al. 2022], simulate fluids [Rioux-Lavoie et al. 2022] and

solve inverse problems via a differentiable formulation [Yılmazer

et al. 2022]. However, apart from proof-of-concept demonstrations

[Sawhney and Crane 2020, Figures 12 & 13], a practical scheme for

denoising results has yet to be developed. Qi et al. [2022]’s recent

bidirectional WoS formulation provides substantial variance reduc-

tion in problems with concentrated source terms, but is currently

limited to only Dirichlet conditions and is not output sensitive—in

contrast, our method can handle mixed boundary conditions and

provides explicit control over the location and number of cached

samples assigned to each evaluation point for estimation. As in

rendering [Segovia et al. 2006], it is likely that Qi et al. [2022]’s

bidirectional approach can be used within our caching strategy to

also estimate the solution at boundary samples.

Deterministic Boundary Element Solvers. Much like our grid-free

PDE solver, the boundary elementmethod (BEM) is designed to solve

BIEs and does not discretize the interior of the domain. However,

there are significant differences in capabilities: to evaluate Equa-

tion (2), BEMmust first discretize the boundary geometry, leading to

spatial aliasing in the boundary data (Figure 2). It must then invert

a dense linear system of equations for the unknown solution value 𝑢

ACM Trans. Graph., Vol. 42, No. 4, Article 82. Publication date: August 2023.
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Fig. 3. The free-space Green’s function and its normal derivative in Equa-
tion (2) are singular at the point they are centered on, but decay smoothly
and fall-off quickly away from the singularity.

on 𝜕Ω𝑁 and normal derivative 𝜕𝑢/𝜕𝑛 on 𝜕Ω𝐷 . As the linear system
scales quadratically in size with the number of boundary elements,

BEM does not truly reduce the dimensionality of a PDE solve com-

pared to grid-based solvers that use sparse matrices, and requires

special techniques like hierarchical matrix approximation [Hack-

busch 2015] to achieve reasonable performance. BEM does not allow

for progressive evaluation, nor is output-sensitive as 𝑢 and 𝜕𝑢/𝜕𝑛
must always be determined on the entire boundary. Basic versions

also ignore source terms—in this case, BEM must be coupled with a

second interior solver such as FD, FEM and MFEM, inheriting short-

comings of grid-based solvers in the process [Partridge and Brebbia

2012; Costabel 1987; Coleman et al. 1991]. In contrast, our approach

is progressive and output-sensitive (Section 3.2). It is also scalable to

increasing geometric detail, as the underlying pointwise estimators

only require a spatial hierarchy to perform queries [Sawhney et al.

2023, Section 5] and work with geometric representations beyond

boundary meshes ([Sawhney and Crane 2020, Figure 2] & [Sawhney

et al. 2023, Figure 20]).

The (weakly) singular yet smoothly decaying Green’s function

and its normal derivative (Figure 3) in Equation (2) can be problem-

atic to integrate near the boundary with both BEM and our method

(Figure 11). For BEM, specialized quadrature schemes can mitigate

numerical issues due to singularities [Fairweather and Karageorghis

1998; Chen 2002, 2009]. For us, not importance sampling these func-

tions leads to local artifacts that adversely affect estimation variance.

Section 3.3 provides strategies to address this issue.

After computing 𝑢 and 𝜕𝑢/𝜕𝑛 on the boundary with BEM, Equa-

tion (2) is often evaluated using fastmultipole or Barnes-Hut schemes

[Greengard and Rokhlin 1987; Pfalzner and Gibbon 1997]. These

acceleration strategies are often necessary due to the quadratic com-

plexity of evaluating the BIE. We leave this optimization to future

work as our current bottleneck is not BIE evaluation, but rather

computing pointwise estimates on the boundary.

Sample Reuse in Rendering. Popular sample reuse schemes in

rendering such as virtual point lights [Keller 1997; Dachsbacher

et al. 2014], photon mapping [Jensen 1996; Hachisuka and Jensen

2009] and ReSTIR [Bitterli et al. 2020; Ouyang et al. 2021] share

samples across pixels to amortize the cost of long ray-traced paths

and inject global information into per-pixel radiance estimates. As a

result, they are oftenmore efficient at rendering scenes with complex

geometry and lighting than brute-force path tracers.

ε-shellinterior point boundary point Dirichlet Neumann

Fig. 4. Left: Walk on spheres simulates a Brownian random walk inside a
Dirichlet boundary 𝜕Ω𝐷 to solve elliptic PDEs, repeatedly jumping to a
random point on the largest sphere centered at the current walk location.
The walk is terminated when it enters an epsilon shell 𝜕Ω𝜀

𝐷
around the

boundary. Right:Walk on stars generalizesWoS to domains with a Neumann
boundary 𝜕Ω𝑁 , using a sphere that can contain a subset of 𝜕Ω𝑁 inside it.
The next walk location is determined by intersecting a ray with a uniformly
sampled direction against the sphere and parts of 𝜕Ω𝑁 it contains, picking
the first hit point. Like WoS, the walk terminates inside 𝜕Ω𝜀

𝐷
.

Our approach shares similarities with VPLs and photon mapping,

in that samples generated and deposited on the scene (for us 𝜕Ω)
determine the flux (i.e., the solution 𝑢) over the image plane (which

for us is either the entire domain Ω or a subset thereof). Unlike

photon mapping however, our caching strategy does not require

an additional data structure like a kd-tree to store samples; instead

we opt for a progressive formulation that discards boundary and

source samples after splatting solution and gradient estimates in Ω.
Similarly to VPL methods, Monte Carlo noise is visually suppressed

[Dachsbacher et al. 2014, Figure 1] from a combination of intro-

ducing correlations between estimates in Ω, and the smooth decay

of the functions 𝐺 and 𝜕𝐺/𝜕𝑛 away from the boundary. VPLs are

also prone to singularities, as sharing samples requires sacrificing

perfect importance sampling [Dachsbacher et al. 2014, Section 5

& Figure 9]; our artifact correction schemes take inspiration from

similar techniques for VPLs [Kollig and Keller 2006]. Unlike VPL

methods, we do not require testing for occlusion between deposited

samples and evaluation points as the BIE contains no visibility term.

Techniques based on lightcuts [Walter et al. 2005; Yuksel 2019;

Lin and Yuksel 2020] can render scenes containing thousands of

VPLs in real time. These methods cluster VPLs spatially in a tree,

and then probabilistically select a subset of the VPLs that make the

largest contribution at a given point. Akin to fast multipole and

Barnes-Hut schemes, lightcuts would likely accelerate our method

in domains with many evaluation points.

3 METHOD
Our method estimates the solution 𝑢 = 𝑢𝜕Ω +𝑢Ω in Equation (2) at a

set of evaluation points evalPts B {𝑥𝑘 ∈ Ω}𝐾𝑘=1 in a closed domain

Ω ⊂ R𝑁 for, e.g., dense visualization of the solution. To this end, we

create two caches, boundarySamples B {𝑧𝑛, 𝑢 (𝑧𝑛), �𝜕𝑢/𝜕𝑛(𝑧𝑖 )}𝑁𝑖=1
and sourceSamples B {𝑦 𝑗 , 𝑓 (𝑦 𝑗 )}𝑀𝑗=1, where 𝑁 and 𝑀 are user-

specified cache sizes. The points 𝑧𝑖 and𝑦 𝑗 are sampled on the bound-

ary 𝜕Ω and inside the domain Ω using probability densities 𝑝𝜕Ω and

𝑝Ω respectively. The pointwise estimates 𝑢 (𝑧𝑖 ) and �𝜕𝑢/𝜕𝑛(𝑧𝑖 ) are
ACM Trans. Graph., Vol. 42, No. 4, Article 82. Publication date: August 2023.
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Fig. 5. We obtain far smoother results across the domain compared to
directly using pointwise estimators like WoSt at equal time. Evaluating the
BIE at more points inside the domain has little impact on performance, as
the same boundary samples are used to determine the PDE solution.

computed using WoS(t) (Section 3.1), while 𝑓 (𝑦 𝑗 ) are evaluations of
the known source term.

Our method then uses the two caches to form correlated Monte

Carlo estimates of Equation (2) at all evaluation points in evalPts:

𝑢𝜕Ω (𝑥𝑘 ) B
1

𝑁

∑︁𝑁

𝑖=1

𝜕𝐺
𝜕𝑛 (𝑥𝑘 , 𝑧𝑖 ) 𝑢 (𝑧𝑖 ) −𝐺 (𝑥𝑘 , 𝑧𝑖 )

�̂�𝑢
𝜕𝑛 (𝑧𝑖 )

𝑝𝜕Ω (𝑧𝑖 )
, (3)

𝑢Ω (𝑥𝑘 ) B
1

𝑀

∑︁𝑀

𝑗=1

𝐺 (𝑥𝑘 , 𝑦 𝑗 ) 𝑓 (𝑦 𝑗 )
𝑝Ω (𝑦 𝑗 )

. (4)

In Appendix A, we provide expressions for 𝐺 and 𝜕𝐺/𝜕𝑛 for the

Poisson and screened Poisson equations; Algorithm 1 provides pseu-

docode, and Appendix B discusses the extension to open domains

and double-sided boundary conditions. In the rest of this section,

we detail key aspects of our approach.

Progressive Evaluation. Our method is progressive in two ways:

First, we can improve estimation quality at a set of evaluation points,

by generating new caches and using them to update existing esti-

mates (UpdateSolution). Second, we can compute solution esti-

mates at new evaluation points by iterating over existing caches.

Bias. Assuming the pointwise estimates 𝑢 (𝑧𝑖 ) and �𝜕𝑢/𝜕𝑛(𝑧𝑖 ) are
unbiased, our estimator (Equations (3) and (4)) is also unbiased via

the linearity of expectation. In reality, most pointwise estimators

have a small amount of controllable bias, as is well established in the

WoS literature (Section 3.1). Our caching scheme does not introduce

any additional bias, while greatly improving efficiency (Figure 5).

Gradient Estimation. Our method can reuse the same cached

boundary and source samples to also form Monte Carlo estimates

of the solution gradient at each evaluation point (Figure 7):

�𝜕𝑢𝜕Ω
𝜕𝑥
(𝑥𝑘 )B

1

𝑁

∑︁𝑁

𝑖=1

𝜕2𝐺
𝜕𝑥𝜕𝑛 (𝑥𝑘 , 𝑧𝑖 ) 𝑢 (𝑧𝑖 ) −

𝜕𝐺
𝜕𝑥 (𝑥𝑘 , 𝑧𝑖 )

�̂�𝑢
𝜕𝑛 (𝑧𝑖 )

𝑝𝜕Ω (𝑧𝑖 )
, (5)

�𝜕𝑢Ω
𝜕𝑥
(𝑥𝑘 )B

1

𝑀

∑︁𝑀

𝑗=1

𝜕𝐺
𝜕𝑥 (𝑥𝑘 , 𝑦 𝑗 ) 𝑓 (𝑦 𝑗 )

𝑝Ω (𝑦 𝑗 )
. (6)

We provide expressions for the derivatives of 𝐺 in Appendix A.

ALGORITHM1: A cache-based strategy to evaluate the BIE at points

inside a closed user-defined boundary 𝜕𝑅 (Section 3.2)

1: struct BoundarySample
2: 𝑧,𝑛𝑧 ← null ⊲Sample location & unit outward normal on 𝜕𝑅

3: 𝑢, �̂�𝑢
𝜕𝑛
← 0 ⊲Estimates for solution & normal derivative

4: struct EvaluationPoint
5: 𝑥 ← null ⊲Location for evaluating BIE (Equation (2))
6: 𝑢sum

𝜕Ω ,𝑢
sum
Ω ← 0 ⊲Running sums for solution evaluation

7: 𝑁,𝑀 ← 0 ⊲boundary & source sample count
8: function GetSolution

9: return 𝑢sum
𝜕Ω

/
𝑁 + 𝑢sumΩ

/
𝑀

10: end function
Input: A set of evaluation points evalPts, cache sizes 𝑁 &𝑀 for

boundary and source samples, number of walks nWalks to take for

pointwise estimation, and densities 𝑝𝜕𝑅 & 𝑝𝑅 for sample generation.

Output: An updated solution estimate for each evaluation point.

11: function UpdateSolution(evalPts, 𝑁 , 𝑀, nWalks, 𝑝𝜕𝑅, 𝑝𝑅 )
12: ⊲Generate 𝑁 boundary samples and estimate 𝑢 & 𝜕𝑢/𝜕𝑛 for each
13: boundarySamples ← BoundarySample[𝑁 ]
14: parallel for 𝑏 in boundarySamples do
15: 𝑏.𝑧,𝑏.𝑛𝑧 ∼ 𝑝𝜕𝑅

16: 𝑏.𝑢,𝑏. �̂�𝑢
𝜕𝑛
←WalkOnStars(𝑏.𝑧,𝑏.𝑛𝑧 , nWalks) ⊲Sec. 3.1

17: ⊲Splat contributions from boundary samples to evalPts
18: for 𝑏 in boundarySamples do
19: 𝑧,𝑛𝑧 ← 𝑏.𝑧,𝑏.𝑛𝑧

20: parallel for 𝑒 in evalPts do
21: 𝑒.𝑢sum

𝜕Ω +=
(
𝜕𝐺
𝜕𝑛
(𝑒.𝑥, 𝑧 )𝑏.𝑢 −𝐺 (𝑒.𝑥, 𝑧 )𝑏. �̂�𝑢

𝜕𝑛

) /
𝑝𝜕𝑅 (𝑧 )

22: 𝑒.𝑁 += 1

23: ⊲Generate𝑀 source samples & splat their contributions to evalPts
24: for 𝑗 in Range(𝑀 ) do
25: 𝑦 ∼ 𝑝𝑅
26: parallel for 𝑒 in evalPts do
27: 𝑒.𝑢sumΩ += 𝐺 (𝑒.𝑥, 𝑦) 𝑓 (𝑦)

/
𝑝𝑅 (𝑦)

28: 𝑒.𝑀 += 1

29: end function

3.1 The WoS & WoSt Estimators
We use the WoS and WoSt algorithms to compute pointwise esti-

mates at each boundary sample 𝑧𝑖 . WoS [Muller 1956] is a Monte

Carlo algorithm that recursively evaluates the mean-value property
of harmonic functions to solve elliptic PDEs in a bounded domain Ω
with Dirichlet boundary conditions. It does so by repeatedly jumping

Fig. 6. Inside 𝜕Ω𝜀
𝐷
, WoS(t)

uses the known Dirichlet
data 𝑔 from the closest pro-
jected point on 𝜕Ω𝐷 .

to a random point on the largest sphere
centered at the current random walk lo-

cation (Figure 4, left). WoSt [Sawhney

et al. 2023] generalizes WoS to solve

problems with mixed Dirichlet and Neu-

mann boundary conditions: instead of

spheres wholly-contained in Ω, WoSt

uses star-shaped regions formed by in-

tersecting spheres with parts of the Neu-

mann boundary 𝜕Ω𝑁 (Figure 4, right).
Both algorithms terminate walks when

they enter the epsilon shell 𝜕Ω𝜀
𝐷
around

the Dirichlet boundary (inset), where

ACM Trans. Graph., Vol. 42, No. 4, Article 82. Publication date: August 2023.



Boundary Value Caching for Walk on Spheres • 82:5

reference solution boundary caching WoSt

Dirichlet

gradient

equal time

Neumann

Fig. 7. Our gradients have considerably less noise compared to pointwise
estimates as they use known values for 𝜕𝑢/𝜕𝑛 on the Neumann boundary
to evaluate Equation (5). In contrast, WoSt gradients become noisier away
from the Dirichlet boundary as estimation requires longer random walks.

they use the known boundary value 𝑔 at the nearest boundary point.

This introduces a small bias into the solution estimate 𝑢, which

diminishes at the rate 𝑂 (1/log 𝜀) [Binder and Braverman 2012]; we

set 𝜀 to be 0.001× the diagonal length of the scene.

Both WoS and WoSt replace the free-space Green’s function 𝐺 in

Equation (2)with the Green’s function𝐺𝐵 for a ball 𝐵(𝑥) centered at
𝑥—this choice simplifies the BIE and facilitates recursive estimation

as discussed in Sawhney et al. [2023, Sections 3 & 4]. Importantly

for our method, the use of 𝐺𝐵 makes it possible to also estimate

the normal derivative 𝜕𝑢/𝜕𝑛 in Equation (2). This is done through

recursive estimation of the following integral expression at any

𝑥 ∈ Ω [Sawhney and Crane 2020, Section 3]:

𝜕𝑢

𝜕𝑥
(𝑥)=

∫
𝜕𝐵 (𝑥 )

𝜕2𝐺𝐵

𝜕𝑥 𝜕𝑛
(𝑥, 𝑧) 𝑢 (𝑧) d𝑧 +

∫
𝐵 (𝑥 )

𝜕𝐺𝐵

𝜕𝑥
(𝑥,𝑦) 𝑓 (𝑦) d𝑦, (7)

where the ball 𝐵(𝑥) is selected as in WoS, and the unknown value

𝑢 (𝑧) inside 𝜕𝐵(𝑥) is recursively estimated usingWoS for pure Dirich-

let problems, and WoSt for mixed boundary-value problems. Given

a unit normal 𝑛𝑥 at 𝑥 , the normal derivative is then estimated using

𝑛𝑥 ·�𝜕𝑢/𝜕𝑥 (𝑥). As with 𝑢, this estimate is slightly biased due to the

epsilon shell used for termination. We refer to Sawhney and Crane

[2020, Equation 13 & Appendix B.1] for derivatives of 𝐺𝐵 , and to

Sawhney and Crane [2020, Section 4.1.1] and Rioux-Lavoie et al.

[2022, Section 4.1] for variance reduction strategies.

3.2 Boundary Specification
When the solution needs to be evaluated within a localized region 𝑅

inside the domain Ω (Figure 8), we specialize the BIE to this region

by generating source samples in 𝑅 and boundary samples on 𝜕𝑅

(Algorithm 1, lines 15 & 25). We use uniform densities 𝑝𝑅 = 1/|𝑅 | and
𝑝𝜕𝑅 = 1/|𝜕𝑅 | for sample generation, though we could use densities

specialized to specific PDEs and their inputs to reduce variance. The

solution integrates to 0 by construction outside 𝑅.

When the solution needs to be evaluated within the entire domain

Ω (i.e., 𝑅 B Ω), we incorporate the known boundary data 𝜕𝑢/𝜕𝑛 = ℎ

reference solution

source 
samples

-1 +1 Neumann Dirichlet virtual boundary

boundary
samples

Fig. 8. Unlike BEM which must always perform a global solve involving
the entire boundary, we can focus computation on a region of interest by
caching points only on the boundary of smaller subdomains.

Dirichlet Dirichlet o�set boundaryNeumann

o�set regionsample reuse region ε-shell

Fig. 9. To solve the BIE inside Ω, we generate samples on the Neumann
boundary 𝜕Ω𝑁 and an offset Dirichlet boundary 𝜕Ω𝑙

𝐷
where 𝑙 > 𝜀 .

on 𝜕Ω𝑁 directly into our sample estimates, rather than estimating

it from scratch. Unfortunately, estimating 𝜕𝑢/𝜕𝑛 on the Dirichlet

boundary 𝜕Ω𝐷 is challenging, as WoS uses a ball with a non-zero

radius to estimate the solution gradient (Equation (7)). Instead of

dealing with 𝜕Ω𝐷 directly, we define a closed region bounded by

the Neumann boundary 𝜕Ω𝑁 and an offset Dirichlet boundary 𝜕Ω𝑙
𝐷

where 𝑙 > 𝜀 (Figure 9). We then generate boundary samples on 𝜕Ω𝑙
𝐷
,

and estimate both 𝑢 and 𝜕𝑢/𝜕𝑛. Moreover, for any evaluation point

that is within a distance 𝑙 to 𝜕Ω𝐷 , we use WoS(t) to compute the

solution there, as random walks typically terminate quickly when

started close to the Dirichlet boundary.

There are two considerations involved in choosing an offset 𝑙 : the

minimal feature size of the domain Ω, and the amount of bias in the

estimate for 𝜕𝑢/𝜕𝑛 on 𝜕Ω𝑙
𝐷
based on its proximity to the epsilon shell

𝜕Ω𝜀
𝐷
. We do not need to define sample reuse regions in the vicinity of

thin features—instead, we can create multiple disconnected regions

inside Ω where boundary and source samples are cached, while

using WoSt to estimate the solution pointwise elsewhere. We set 𝑙

to 5 × 𝜀 in our results (Figure 17, top shows an ablation) to mitigate
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reference solution boundary caching WoSt

clamped unclamped
gradient NeumannDirichlet

Fig. 10. Naïvely clamping singular functions in our gradient estimates sup-
presses noise near the boundary, but produces biased results.

bias in the estimates for 𝜕𝑢/𝜕𝑛 on 𝜕Ω𝑙
𝐷
, and leave principled and

unbiased estimation of this quantity directly on 𝜕Ω𝐷 to future work.

3.3 Singularities
Though the free-space Green’s function and its derivatives decay

smoothly, they are singular at the point they are centered on (Fig-

ure 3). Therefore, just as in BEM, our basic method can suffer from

local artifacts—especially near the boundary (Figure 11)—as it uses

uniformly distributed source and boundary samples to evaluate

Equations (3)-(6). In contrast, such artifacts do not arise in WoS(t)

as the corresponding functions for a ball are importance sampled,

i.e., 𝑝𝐵 ∝ 𝐺𝐵 and 𝑝𝜕𝐵 ∝ 𝜕𝐺𝐵/𝜕𝑛 [Sawhney et al. 2023, Section 4].

Similar artifacts are often suppressed in virtual point light meth-

ods by clamping the singular geometry term in the rendering equa-

tion [Dachsbacher et al. 2014, Section 5 & Figure 9]. However, clamp-

ing can introduce noticeable bias in the solution estimate with both

VPLs and our method (Figure 11). Likewise, clamping derivative

norms in Equations (5)-(6) leads to smoothly-varying but biased

gradients near the boundary (Figure 10). Below, we extend Kollig

and Keller [2006]’s bias correction strategy for VPLs to the function

𝜕𝐺/𝜕𝑛; in Appendix C we do the same for𝐺 , and leave the extension

to gradient estimators to future work.

Removing Bias from Clamping. The function 𝜕𝐺/𝜕𝑛(𝑥, 𝑧) is large
when the points 𝑥 and 𝑧 are close. To mitigate artifacts that arise

from not importance sampling 𝜕𝐺/𝜕𝑛 for 𝑧, we rewrite the first term
in Equation (2) over a user-defined region 𝑅 as follows:∫

𝜕𝑅

𝜕𝐺

𝜕𝑛

����
𝑐

(𝑥, 𝑧)𝑢 (𝑧) d𝑧 +
∫
𝜕𝑅

[
𝜕𝐺

𝜕𝑛
(𝑥, 𝑧) − 𝜕𝐺

𝜕𝑛

����
𝑐

(𝑥, 𝑧)
]
𝑢 (𝑧) d𝑧,

(8)

where 𝑐 is a positive user-specified bound, and

𝜕𝐺/𝜕𝑛 |𝑐 ≡ max(−𝑐, min(𝑐, 𝜕𝐺/𝜕𝑛)) . (9)

As before, we use uniformly distributed boundary samples on 𝜕𝑅

to estimate the first integral in Equation (8) at any evaluation point

𝑥 ∈ 𝑅. The bound 𝑐 is set based on the scale of the scene (Figure 17,

bottom shows an ablation), though strategies for automatically set-

ting this parameter can likely be adapted from the VPL literature

[Kollig and Keller 2006, Section 2.3].

To estimate the second integral, we importance-sample new

boundary samples on 𝜕𝑅 using the probability density 𝑝𝜕𝑅 = 𝜕𝐺/𝜕𝑛.
For Poisson-like equations, this density defines the signed solid angle

Neumann

Dirichlet

reference solution

clamped (biased)

unclamped

clamped w/correction

-0.5 0.3

Fig. 11. Our clamping strategy (bottom right) effectively suppresses local
artifacts from singular functions near the boundary without bias (top right).

over the boundary (Equation (12)), and can be sampled exactly by

intersecting a ray (with a uniformly sampled direction on the unit

sphere) with 𝜕𝑅 [Pharr et al. 2016, Section 5.5.3]. We use WoSt to

estimate the unknown solution value 𝑢 (𝑧) at intersection points

(which might be more than one if 𝜕𝑅 is nonconvex; see Sawhney

et al. [2023, Section 4.3]). However, we only need to estimate 𝑢

when 𝜕𝐺/𝜕𝑛 |𝑐 (𝑥, 𝑧) ≠ 𝜕𝐺/𝜕𝑛(𝑥, 𝑧), i.e., when the evaluation point

𝑥 is in close proximity to an intersection point 𝑧. This is typically

not the case for most evaluation points inside 𝑅, as 𝜕𝐺/𝜕𝑛 falls off
quickly (Figure 3). As a result, we can estimate Equation (8) in both

an artifact- and bias-free manner by running a small number of ran-

dom walks for the second integral; Figure 11 shows improvements

provided by this approach.

4 IMPLEMENTATION AND EVALUATION
Setup. We encode a problem instance by a description of the

domain boundary 𝜕Ω and the functions 𝑓 , 𝑔 and ℎ in Equation (1).

Unlike grid-based solvers such as FEM and BEM, these functions

are not discretized or approximated in a finite basis, and are instead

provided via arbitrary callback routines that return a value for any

query point 𝑥 ∈ Ω. We use boundaries represented as polygonal

meshes in our experiments, and a CPU-based axis aligned bounding
volume hierarchy (BVH) to perform ray intersection and closest point

queries needed by WoS(t) [Sawhney et al. 2023, Section 5]. Relative

to finite element mesh generation, a BVH uses little memory and

is typically a lot faster to build even for detailed models [Sawhney

and Crane 2020; Sawhney et al. 2022, 2023].

Sampling. We use a discrete cumulative density function (CDF)
table [Pharr et al. 2016, Section 13.3] with stratified random numbers

to generate boundary samples over elements (e.g., triangles) of a
polygonal mesh. Samples are drawn uniformly on elements selected

in proportion to their surface area. Faster sample generation is

possible with an alias table [Walker 1974, 1977]. Source samples are

likewise generated uniformly inside Ω or a user-defined region 𝑅

with stratified sampling [Pharr et al. 2016, Section 13.8]. We use this

sampling setup for all figures in the paper except Figure 1, where

we find that results improve significantly if the boundary samples

in Equations (3) and (5) are weighted by the area of their associated

Voronoi cell. Similar area weighting strategies have proven effective

in surface reconstruction applications [Barill et al. 2018, Figure 5],

and yield a consistent Monte Carlo estimator that provides provably

better convergence [Guo and Eisemann 2021].
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Fig. 12. Akin to traditional PDE solvers, our method demonstrates a global
error in the solution profile that vanishes with more boundary samples.

Convergence. In Figures 5 and 16, we show that even in 2D our

method provides up to an order of magnitude error reduction at

equal time compared to WoSt for mixed boundary value problems.

The reason is twofold: first, run-time efficiency improves as we

do not perform independent random walks for interior evaluation

points. Second, boundary samples inject global information about

the solution into interior estimates. The overall result is that our

solver reduces the dimensionality of a PDE solve—in contrast, BEM

trades off discretizing the domain with having to solve a much

denser linear system.

Similarly to traditional PDE solvers requiring global solves, er-

ror in the interior now depends on the number of boundary and

source samples used. Figures 12 and 16 show that error vanishes

with more samples, though we note that Equations (3)-(6) provide

unbiased estimates even with just a single sample. We also observe

lower interior error with more accurate estimates for 𝑢 and 𝜕𝑢/𝜕𝑛
on the boundary. As derivative estimates are typically noisier than

estimates of the solution [Sawhney and Crane 2020, Figure 15], we

perform more random walks for the estimate
�𝜕𝑢/𝜕𝑛 on an offset

Dirichlet boundary 𝜕Ω𝑙
𝐷
(Section 3.2) compared to 𝑢 on 𝜕Ω𝑁 . As

a default, we take 10× more walks for boundary samples on 𝜕Ω𝑙
𝐷

than on 𝜕Ω𝑁 . In general, the overhead is small as walks starting

close to the Dirichlet boundary are usually much shorter.

For pure Dirichlet problems, we found empirically that the bidi-

rectional WoS approach by Qi et al. [2022] can be more effective at

equal time than our more general caching strategy (Figure 14)—by

specializing to Dirichlet conditions, this approach avoids the need

to estimate 𝜕𝑢/𝜕𝑛 on the boundary or evaluate 𝜕𝐺/𝜕𝑛 during BIE

estimation, which leads to lower variance.

Test Problems. Given the spatial smoothness of solutions to el-

liptic problems, a key strength of our method is its ability to sup-

press the salt-and-pepper noise characteristic of independent Monte

Carlo estimates. In Figure 13, we solve a Laplace equation with pure

Dirichlet boundary conditions to interpolate texture coordinates in

a deformed cage. Our correlated sample estimates provide notice-

ably smoother results, suitable for visualization. We observe similar

behavior with our gradient estimates in Figure 1, where we solve for

original

original boundary caching WoSdeformed

Fig. 13. Compared to WoS, our caching strategy provides a noticeably
smoother harmonic interpolation of texture coordinates in a deformed cage.

reference 
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fe
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m
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es

equal time

Fig. 14. For Dirichlet problems, our method often has higher variance than
Qi et al. [2022]’s specialized approach for these boundary conditions.

streamlines of a potential flow with Dirichlet boundary conditions

of -1 and 1 at the front and back of the tunnel respectively, and 0 Neu-

mann conditions elsewhere. Similarly to Sawhney and Crane [2020,

Section 5.2.6], we draw streamlines along the estimated gradient di-

rection by numerically integrating an ordinary differential equation

using Huen’s method. Steamlines start at a collection of random

seed points in the domain, and can be regenerated cheaply once

estimates for𝑢 and 𝜕𝑢/𝜕𝑛 have been computed on the boundary—we

do not require a high-quality simulation mesh for this task.

In Figure 15, we demonstrate the ability of our solver to resolve

detailed boundary conditions and source terms without the need

for any volumetric mesh generation. In particular, we model how

effectively a spacesuit regulates an astronaut’s body temperature.

We use a ray-traced solar radiation simulation for Dirichlet condi-

tions; Neumann conditions model outflow; the source term provides

the ambient body temperature. Compared to pointwise estimators,

our solver provides low-variance results on a high-resolution slice

plane at equal time. Moreover, efficiency improves drastically when

evaluating inside a dense 3D grid since we can reuse cached samples.

In this case however, evaluating the BIE at all grid points is more

expensive than estimating 𝑢 and 𝜕𝑢/𝜕𝑛 on the boundary.
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Fig. 15. Regulating the body temperature of astronauts during extra-vehicular activities is a crucial function of spacesuits. Inspired by this application, we
build a simplified physical model involving heat exchange (via Dirichlet conditions) and outflow (via Neumann conditions) on a spacesuit with an interior
source term to model an astronaut’s ambient body temperature.

5 CONCLUSION AND FUTURE WORK
We presented a simple caching strategy for an emerging class of

PDE solvers based on grid-free Monte Carlo methods. Our method

greatly improves the efficiency of densely evaluating a PDE solution

and its gradient inside a domain (or a subset thereof), by performing

random walks only on the boundary. It also significantly suppresses

Monte Carlo noise without adversely affecting scalability, progres-

sivity, and output sensitivity of the underlying pointwise estimators.

Looking ahead, the ability of our solver to locally evaluate solu-

tions inside arbitrary bounding regions opens up the possibility of

developing domain decomposition strategies [Chan and Mathew

1994] in the Monte Carlo framework that more effectively handle do-

mains with, e.g., thin features where pointwise estimators struggle

due to long random walk lengths (see Sawhney et al. [2023, Section

7]). Likewise, our method offers opportunities for improving perfor-

mance of the pointwise estimators it uses by terminating walks in

regions where boundary values have previously been cached.

Our method can be improved in a number of ways. In particular,

faster and less noisy WoS(t) estimators will not just improve the

run-time performance of our approach, they will also reduce the

global error in the estimated solution inside the domain. Error will

likely reduce noticeably with a principled and unbiased technique

for pointwise estimation of the normal derivative of the solution

on the Dirichlet boundary. Variance can be improved by adaptively

generating source and boundary samples from probability densities

specialized to specific PDEs and their inputs. Moreover, though

sharing samples necessitates a lack of importance sampling, taking

further inspiration from VPL methods [Dachsbacher et al. 2014,

Section 5] for removing singular artifacts will improve the quality

of our results near the boundary, especially for gradient estimates.

The quadratic complexity of evaluating the BIE can also be greatly

accelerated in situations where estimation is needed at numerous

points in the domain, by adapting and incorporating clustering

techniques such as Barnes-Hut and lightcuts into our method.

Finally, though our method dramatically reduces the total number

of random walks needed to solve PDEs relative to WoS(t), further in-

vestigation is needed to also reduce the large amounts of redundant

computation performed across walks starting from the boundary—it

is indeed wasteful to use each sphere in a walk to only estimate the

solution at a single sample point at the very beginning of a walk.

ACKNOWLEDGMENTS
This work was generously supported by nTopology and Disney Re-

search, NSF awards 1943123, 2212290 and 2008123, Alfred P. Sloan

Research Fellowship FG202013153, a Packard Fellowship, NSF Grad-

uate Research Fellowship DGE2140739, and an NVIDIA Graduate

Fellowship.

REFERENCES
Gavin Barill, Neil G Dickson, Ryan Schmidt, David I W Levin, and Alec Jacobson. 2018.

Fast Winding Numbers for Soups and Clouds. ACM Trans. Graph. 37, 4, Article 43
(jul 2018), 12 pages. https://doi.org/10.1145/3197517.3201337

Ilia Binder and Mark Braverman. 2012. The rate of convergence of the walk on spheres

algorithm. Geometric and Functional Analysis 22, 3 (2012), 558–587.
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech

Jarosz. 2020. Spatiotemporal Reservoir Resampling for Real-Time Ray Tracing with

Dynamic Direct Lighting. ACM Trans. Graph. 39, 4, Article 148 (aug 2020), 17 pages.

https://doi.org/10.1145/3386569.3392481

ACM Trans. Graph., Vol. 42, No. 4, Article 82. Publication date: August 2023.

https://doi.org/10.1145/3197517.3201337
https://doi.org/10.1145/3386569.3392481


Boundary Value Caching for Walk on Spheres • 82:9

Neumann Dirichlet -1.1 1.1

100 samples  reference solution10k samples 1k samples 20k samples 2k samples

time (sec)

time (sec)

R
M

SE
R

M
SE

time (sec)

R
M

SE

Fig. 16. Our caching strategy amortizes the cost of long walks in Neumann dominated problems (top two rows) and hence improves efficiency over point
estimators like WoSt. However, in more Dirichlet dominated problems with higher frequency boundary conditions (bottom row), efficiency drops due to shorter
walk lengths, not importance sampling the singular functions in the BIE (Equation (2)), and noise from estimates of 𝜕𝑢/𝜕𝑛 on the boundary.

Tony F Chan and Tarek P Mathew. 1994. Domain decomposition algorithms. Acta
numerica 3 (1994), 61–143.

Wen Chen. 2002. Symmetric boundary knot method. Engineering Analysis with Bound-
ary Elements 26, 6 (2002), 489–494.

Wen Chen. 2009. Singular boundary method: a novel, simple, meshfree, boundary

collocation numerical method. Chinese Journal of Solid Mechanics 30, 6 (2009),

592–599.

Chris J Coleman, David L Tullock, and Nhan Phan-Thien. 1991. An effective boundary

element method for inhomogeneous PDEs. J. App. Math. Phys. (ZAMP) 42, 5 (1991).
Martin Costabel. 1987. Principles of boundary element methods. Computer Physics

Reports 6, 1-6 (1987), 243–274.
Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and

Jan Novák. 2014. Scalable realistic rendering with many-light methods. In Computer
Graphics Forum, Vol. 33. Wiley Online Library, 88–104.

Graeme Fairweather and Andreas Karageorghis. 1998. The method of fundamental solu-

tions for elliptic boundary value problems. Advances in Computational Mathematics
9, 1 (1998), 69–95.

Leslie Greengard and Vladimir Rokhlin. 1987. A fast algorithm for particle simulations.

Journal of computational physics 73, 2 (1987), 325–348.
Jerry Jinfeng Guo and Elmar Eisemann. 2021. Geometric Sample Reweighting for

Monte Carlo Integration. In Computer Graphics Forum, Vol. 40. Wiley Online Library,

109–119.

Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic Progressive Photon

Mapping. ACM Trans. Graph. 28, 5 (dec 2009), 1–8. https://doi.org/10.1145/1618452.

1618487

Wolfgang Hackbusch. 2015. Hierarchical matrices: algorithms and analysis. Vol. 49.
Springer.

Peter Hunter and Andrew Pullan. 2001. Fem/bem notes. Department of Engineering
Science, The University of Auckland, New Zeland (2001).

Henrik Wann Jensen. 1996. Global illumination using photon maps. In Rendering
Techniques’ 96: Proceedings of the Eurographics Workshop in Porto, Portugal, June
17–19, 1996 7. Springer, 21–30.

Alexander Keller. 1997. Instant Radiosity. In Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’97). USA, 49–56.
https://doi.org/10.1145/258734.258769

Thomas Kollig and Alexander Keller. 2006. Illumination in the Presence of Weak

Singularities. In Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer Berlin

Heidelberg, Berlin, Heidelberg, 245–257.

Daqi Lin and Cem Yuksel. 2020. Real-Time Stochastic Lightcuts. Proc. ACM Comput.
Graph. Interact. Tech. 3, 1, Article 5 (may 2020), 18 pages. https://doi.org/10.1145/

3384543

Mervin E Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet

Problem. Annals of Mathematical Statistics 27, 3 (Sept. 1956), 569–589.
Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni. 2021.

ReSTIR GI: Path Resampling for Real-Time Path Tracing. In Computer Graphics
Forum, Vol. 40. Wiley Online Library, 17–29.

Paul William Partridge and Carlos Alberto Brebbia. 2012. Dual reciprocity boundary
element method. Springer Science & Business Media.

Susanne Pfalzner and Paul Gibbon. 1997. Many-body tree methods in physics. Cambridge

University Press.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional

formulation for Walk on Spheres. Computer Graphics Forum 41, 4 (2022), 51–62.

https://doi.org/10.1111/cgf.14586

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H Shimada,

Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte

Carlo Method for Fluid Simulation. ACM Trans. Graph. 41, 6, Article 240 (nov 2022),

16 pages. https://doi.org/10.1145/3550454.3555450

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-

Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph.
39, 4, Article 123 (aug 2020), 18 pages. https://doi.org/10.1145/3386569.3392374

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk

on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary

Conditions. ACM Trans. Graph. 42, 4 (aug 2023), 22 pages. https://doi.org/10.1145/

3592398

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-Free

Monte Carlo for PDEs with Spatially Varying Coefficients. ACM Trans. Graph. 41, 4,
Article 53 (jul 2022), 17 pages. https://doi.org/10.1145/3528223.3530134

Benjamin Segovia, Jean-Claude Iehl, Richard Mitanchey, and Bernard Péroche. 2006.

Bidirectional instant radiosity.. In Rendering Techniques. 389–397.
Alastair J Walker. 1974. New fast method for generating discrete random numbers with

arbitrary frequency distributions. Electronics Letters 8, 10 (1974), 127–128.

ACM Trans. Graph., Vol. 42, No. 4, Article 82. Publication date: August 2023.

https://doi.org/10.1145/1618452.1618487
https://doi.org/10.1145/1618452.1618487
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/3384543
https://doi.org/10.1145/3384543
https://doi.org/10.1111/cgf.14586
https://doi.org/10.1145/3550454.3555450
https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3528223.3530134


82:10 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

reference solution

Neumann Dirichlet -1 1

reference solutionshellshell shell

Fig. 17. Top: Setting the 𝑙 offset parameter to 0.1 × 𝜀 effectively sets each Dirichlet boundary sample’s 𝜕𝑢/𝜕𝑛 estimate to zero, as balls centered at each sample
point are contained entirely inside the epislon shell—this biases the solution estimate inside the domain. Bias diminishes with increasing offset values. Bottom:
Smaller values of the bound 𝑐 for 𝜕𝐺/𝜕𝑛 in Equation (8) suppress singular artifacts near the boundary but biases interior estimates without our correction
strategy, shown here on a model scaled to fit inside a unit sphere.
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A GREEN’S FUNCTIONS AND THEIR DERIVATIVES
Here we provide the free-space Green’s functions and their deriva-

tives our caching strategy uses to solve Poisson and screened Poisson

equations.

A.1 Poisson Equation
The free-space Green’s functions in 2D and 3D for two points 𝑥 and

𝑦 are given by

𝐺2𝐷 (𝑥,𝑦) =
log(𝑟 )
2𝜋

, 𝐺3𝐷 (𝑥,𝑦) =
1

4𝜋𝑟
, (10)

where 𝑟 ≡ |𝑦 − 𝑥 |. Their gradients with respect to 𝑥 are

𝜕𝐺2𝐷 (𝑥,𝑦)
𝜕𝑥

=
𝑥 − 𝑦
2𝜋𝑟2

,
𝜕𝐺3𝐷 (𝑥,𝑦)

𝜕𝑥
=
𝑥 − 𝑦
4𝜋𝑟3

. (11)

The normal derivatives with respect to 𝑦 are

𝜕𝐺2𝐷 (𝑥,𝑦)
𝜕𝑛𝑦

=
𝑛𝑦 · (𝑦 − 𝑥)

2𝜋𝑟2
,

𝜕𝐺3𝐷 (𝑥,𝑦)
𝜕𝑛𝑦

=
𝑛𝑦 · (𝑦 − 𝑥)

4𝜋𝑟3
, (12)

where 𝑛𝑦 is a unit normal direction associated with 𝑦. Expressions

for 𝜕
2𝐺/𝜕𝑥𝜕𝑛𝑦 are given by

𝜕2𝐺2𝐷 (𝑥,𝑦)
𝜕𝑥 𝜕𝑛𝑦

= 2

𝑛𝑦 · (𝑦 − 𝑥)
2𝜋𝑟4

(𝑦 − 𝑥) −
𝑛𝑦

2𝜋𝑟2
, (13)

𝜕2𝐺3𝐷 (𝑥,𝑦)
𝜕𝑥 𝜕𝑛𝑦

= 3

𝑛𝑦 · (𝑦 − 𝑥)
4𝜋𝑟5

(𝑦 − 𝑥) −
𝑛𝑦

4𝜋𝑟3
. (14)

A.2 Screened Poisson Equation
We denote by 𝐾𝑛 (for 𝑛 = 0, 1, . . .) the modified Bessel functions of

the second kind. For a screened Poisson equation with a screening

coefficient 𝜎 ∈ R≥0, the 2D and 3D free-space Green’s functions are

given by

𝐺𝜎
2𝐷
(𝑥,𝑦) = 𝐾0 (𝑟

√
𝜎)

2𝜋
, 𝐺𝜎

3𝐷
(𝑥,𝑦) = 𝑒−𝑟

√
𝜎

4𝜋𝑟
. (15)
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Their gradients with respect to 𝑥 are

𝜕𝐺𝜎
2𝐷
(𝑥,𝑦)
𝜕𝑥

= 𝑄𝜎
2𝐷
(𝑥,𝑦) 𝜕𝐺2𝐷 (𝑥,𝑦)

𝜕𝑥
, (16)

𝜕𝐺𝜎
3𝐷
(𝑥,𝑦)
𝜕𝑥

= 𝑄𝜎
3𝐷
(𝑥,𝑦) 𝜕𝐺3𝐷 (𝑥,𝑦)

𝜕𝑥
, (17)

where 𝜕𝐺/𝜕𝑥 are the corresponding free-space gradients for the

Poisson equation, and

𝑄𝜎
2𝐷
(𝑥,𝑦) ≡ 𝐾1 (𝑟

√
𝜎) 𝑟
√
𝜎, (18)

𝑄𝜎
3𝐷
(𝑥,𝑦) ≡ 𝑒−𝑟

√
𝜎 (
𝑟
√
𝜎 + 1

)
. (19)

The normal derivatives with respect to 𝑦 are

𝜕𝐺𝜎
2𝐷
(𝑥,𝑦)

𝜕𝑛𝑦
= 𝑄𝜎

2𝐷
(𝑥,𝑦) 𝜕𝐺2𝐷 (𝑥,𝑦)

𝜕𝑛𝑦
, (20)

𝜕𝐺𝜎
3𝐷
(𝑥,𝑦)

𝜕𝑛𝑦
= 𝑄𝜎

3𝐷
(𝑥,𝑦) 𝜕𝐺3𝐷 (𝑥,𝑦)

𝜕𝑛𝑦
. (21)

Applying the product rule to the expressions above yields 𝜕
2𝐺𝜎/𝜕𝑥𝜕𝑛𝑦 .

B OPEN DOMAINS AND DOUBLE-SIDED BOUNDARY
CONDITIONS

For a domain Ω ⊂ R𝑁 with open boundaries and double-sided

boundary conditions, the BIE in Equation (2) for can be generalized

to [Costabel 1987]

𝑢 (𝑥) =
∫
𝜕Ω

𝜕𝐺

𝜕𝑛+
(𝑥, 𝑧)

[
𝑢+ (𝑧) − 𝑢− (𝑧)

]
−𝐺 (𝑥, 𝑧)

[
𝜕𝑢+

𝜕𝑛+
(𝑧) − 𝜕𝑢

−

𝜕𝑛−
(𝑧)

]
𝑑𝑧

+
∫
Ω
𝐺 (𝑥,𝑦) 𝑓 (𝑦) 𝑑𝑦, (22)

for any point 𝑥 ∈ Ω, where 𝑛+ and 𝑛− denote unit outward and

inward facing normals on 𝜕Ω respectively, and 𝑢+ and 𝑢− represent

corresponding solution values on either side of 𝜕Ω. From a sample

reuse perspective, we generate uniformly distributed source sam-

ples inside Ω as usual (if Ω is unbounded, we create a bounding box

around it), but now use two separate sets of boundary samples asso-

ciated with the two normal directions 𝑛+ and 𝑛− on 𝜕Ω respectively.

As discussed in Sawhney et al. [2023, Appendix B], we can use WoSt

to estimate 𝑢+ and 𝑢− by launching random walks on either side of

the Neumann boundary 𝜕Ω𝑁 . Similar to Section 3.2, we generate

boundary samples on two offset Dirichlet boundaries 𝜕Ω𝑙
𝐷
and 𝜕Ω−𝑙

𝐷
to estimate 𝜕𝑢+/𝜕𝑛+ and 𝜕𝑢−/𝜕𝑛− with WoS respectively. With this

setup, we can then compute a solution estimate for any evaluation

point 𝑥 ∈ Ω by using all source and boundary samples, except for

points that are within a distance 𝑙 to 𝜕Ω𝐷 where we use WoSt to

compute pointwise solution estimates.

C MITIGATING SINGULAR ARTIFACTS FROM THE
GREEN’S FUNCTION

We follow a similar recipe to Equation (8) to mitigate localized arti-

facts that arise from not importance sampling the Green’s function

in the BIE’s source integral. In particular, if 𝑐 is a positive user-

specified bound and𝐺𝑐 ≡ min(−𝑐,max(𝑐,𝐺)), then we can rewrite

the source integral over a region 𝑅 as follows:∫
𝑅

𝐺𝐵𝑐 (𝑥,𝑦) 𝑓 (𝑦) 𝑑𝑦 +
∫
𝑅

[
𝐺𝐵 (𝑥,𝑦) −𝐺𝐵𝑐 (𝑥,𝑦)

]
𝑓 (𝑦) 𝑑𝑦, (23)

where rather than the free-space Green’s function 𝐺 , we now use

the Green’s function of a ball 𝐺𝐵 (see Sawhney et al. [2023, Appen-

dix A]). The reason we use 𝐺𝐵 instead of 𝐺 is because it can be

importance-sampled for 𝑦 [Sawhney et al. 2022, Section 1.4, Supple-

mental]. It also shares the same normal derivative as its free-space

counterpart, which allows𝐺𝐵 to be used in the BIE’s boundary in-

tegral as well. We choose the ball 𝐵 to be centered at the evaluation

point 𝑥 such that it contains the region 𝑅 inside it. The first integral

in Equation (23) is then estimated as usual by using uniformly dis-

tributed source samples in 𝑅. The second integral is estimated by

sampling 𝐺𝐵 for 𝑦 and setting 𝑓 = 0 if 𝑦 ∉ 𝑅.
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