
NanoVDB: A GPU-Friendly and Portable VDB Data
Structure For Real-Time Rendering And Simulation

Ken Museth
NVIDIA

Santa Clara, CA, USA
kmuseth@nvidia.com

Figure 1: Rendering and simulation on GPUs with NanoVDB: The first two images from the left show Physics-Based Ray-Tracing (in PBRT
v4) of NanoVDB volumes on a RTX 3090. The third image from the left demonstrates how NanoVDB can be used for real-time simulation
of cloth in Houdini 18.5. Specifically, NanoVDB represents a sparse signed distance field (SDF) used for real-time collision detection on the
GPU. The image on the far right shows NanoVDB applied to a real-time fluid simulation on the GPU. An armadillo model, represented as
a NanoVDB, is used for sourcing of density in NVIDIA’s Flow fluid solver at interactive frame-rates on a GPU. Credits are included in the
accompanying video.

ABSTRACT
We introduce a sparse volumetric data structure, dubbed NanoVDB,
which is portable to both C++11 and C99 as well as most graphics
APIs, e.g. CUDA, OpenCL, OpenGL, WebGL, DirectX 12, OptiX,
HLSL, and GLSL. As indicated by its name, NanoVDB is a mini-
version of the much bigger OpenVDB library, both in terms of
functionality and scope. However, NanoVDB offers one major ad-
vantage over OpenVDB, namely support for GPUs. As such it is
applicable to both CPU and GPU accelerated simulation and render-
ing of high-resolution sparse volumes. In fact, it has already been
adopted for real-time applications by several commercial renders
and digital content creation tools, e.g. Autodesk’s Arnold, Blender,
SideFX’s Houdini, and NVIDIA’s Omniverse just to mention a few.

KEYWORDS
Sparse volumes, gpu data structures, rendering, simulation
ACM Reference Format:
KenMuseth. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data Struc-
ture For Real-Time Rendering And Simulation. In Special Interest Group
on Computer Graphics and Interactive Techniques Conference Talks (SIG-
GRAPH ’21 Talks), August 09-13, 2021. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3450623.3464653

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8373-8/21/08.
https://doi.org/10.1145/3450623.3464653

MOTIVATION
Efficient data structures are characterized by at least two attributes;
computational efficiency and memory efficiency. While it is rela-
tively easy to develop a fast or a compact volumetric data structure,
e.g. a dense grid or an octree, it is surprisingly challenging to come
up with one that is both fast and compact. This has lead to several
advances in the pursuit of efficient sparse volumetric data struc-
tures, like DT-Grid [Nielsen and Museth 2006], VDB [Museth 2013],
SPGrid [Setaluri et al. 2014], and TaiChi [Hu et al. 2019]. VDB was
open sourced in 2012, as OpenVDB1, and has since become a stan-
dard for sparse volumes in the movie industry. However, unlike
the more recent TaiChi, which also builds on VDB, OpenVDB is
limited to the CPU, andmore to the point does not work on the GPU.
Given the fact that GPUs have long offered superior computational
acceleration over CPUs, this seems like an obvious avenue for im-
proving the efficiency of an industry standard. This is precisely the
motivation behind the development of NanoVDB presented here.

HOW IS NANOVDB SIMILAR TO OPENVDB?
NanoVDB shares several attributes with OpenVDB, most notably
thememory efficiency of the underlying VDB tree structure detailed
in [Museth 2013]. Similarly, it also makes use of bottom-up traversal
of the hierarchical tree structure to achieve on average constant-
time complexity for random access. The same is true for sequential
access as well as the truly unbounded index domain, only limited
by the bit-precision of signed 32bit coordinates. Finally, NanoVDB
supports voxels of the same types as OpenVDB, e.g. int, float, Vec3f,
and bits masks, as well as points with arbitrary attributes.
1http://www.openvdb.org

https://doi.org/10.1145/3450623.3464653
https://doi.org/10.1145/3450623.3464653
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3450623.3464653&domain=pdf&date_stamp=2021-08-06


SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA K. Museth

WHAT IS NOVEL ABOUT NANOVDB?
What sets NanoVDB apart from other sparse volumetric data struc-
tures that we are aware of, and in particular OpenVDB, is the fact
that by design NanoVDB is portable to a long list of hardware, com-
pilers and APIs. It works on CPUs (e.g. Intel and ARM) and GPUs
(e.g. NVIDIA and AMD), compiles with C++11 and C99, and is com-
patible with most graphics APIs used for games, high-performance
computing and real-time applications. More specifically, we have
tested NanoVDB with CUDA, OpenCL, OpenGL, WebGL, DirectX
12, OptiX, HLSL, and GLSL. This is achieved by a complete rewrite
of the foundational VDB tree structure that strips away all external
dependencies found in OpenVDB, eliminating pointers, adding a
vanilla-C implementation, and introducing explicit 32 byte memory
alignment of all tree nodes. Consequently, NanoVDB is by design
portable and nimble (a single header-file in either C++ or C99) and
more importantly does not depend on OpenVDB.

Conceptually, NanoVDB is a linearized snapshot of an OpenVDB
data structure, where nodes are 32B aligned in a continuous block
of memory, typically with a breadth-first layout of tree nodes, i.e.
nodes at the same level are packed tightly together. Since NanoVDB,
unlike OpenVDB, explicitly avoids the use of memory pointers in its
data structures, NanoVDB is efficient and fast to copy between de-
vices, e.g. CPU and GPU. In fact, NanoVDB uses this novel memory
layout as its independent file format, which implies that client code
of NanoVDB volumes, e.g. a proprietary ray-tracer, only needs to
include a few header files with no additional dependencies. Bench-
mark tests have even shown that on CPUs NanoVDB is faster at
random access than OpenVDB, likely because of its more cache
friendly memory layout that is not fragmented as in OpenVDB.

Unique to NanoVDB is also the addition of statistical metadata
that is encoded into all the nodes of the hierarchical VDB tree
structure. This includes minimum and maximum values as well
as averages and standard deviations. This has proven useful for
several applications, most notably acceleration of volume rendering
and early termination during ray-tracing. Similarity all tree nodes
in NanoVDB include bounding boxes of all the active values in
their sub-branches, which allows for tighter ray-clipping and more
accurate construction of BVH acceleration structures when making
used of hardware-accelerated ray-tracing, e.g. leveraging NVIDIA’s
RTX cores.

Finally, NanoVDB offers both out-of-core and in-core compres-
sion, whereas OpenVDB only supports the former. In other words,
NanoVDB can be configured to perform run-time decompression
on random access to voxel values. Currently we support blocked
floating-point bit quantizations with either a fixed bit-rate (e.g. 2,
4, 8, and 16 bits) or an adaptive per-block bit-rate. Both compres-
sion codecs utilize the per node statistics mentioned above, and
the adaptive bit-rate codec also uses a custom refinement-oracle,
e.g. based on a global tolerance or a distance-to-camera error met-
ric. We have found these compression techniques to significantly
reduce the memory footprints (typically by 4 to 6 times) with little
to no visible artifacts. Furthermore, these relatively simple codecs
are sufficiently fast that we observe small performance improve-
ments (typically 10 to 30 %) when compared to the uncompressed
data, suggesting that our benchmark tests are memory (vs compute)
bound, which is not uncommon for volumetric rendering on GPUs.

TOOLS AND FUNCTIONALITIES OF NANOVDB
Whereas OpenVDB offers a large toolbox of accompanying algo-
rithms to support dynamic simulations, NanoVDB ships with a rel-
atively small set of tools specifically included to support real-time
rendering and simulation applications with static sparse volumes.
Figure 1 illustrates several such examples. As such, NanoVDB in-
cludes GPU friendly numerical schemes for 0th-3rd order accurate
interpolation, 1st-5th order accurate gradients, 2nd order accurate
mean, gaussian and principal curvatures, as well as Hierarchical
Digital Differential Analyzers [Museth 2014] for efficient empty
space skipping of volume and SDF rendering. Included are also fast
multi-threaded converters to and from OpenVDB, which allows for
round-trips between the two data structures.

Additionally, NanoVDB includes efficient tools to hierarchically
re-compute the statistics metadata, e.g. after values have been modi-
fied, as well as fast tools to compute and validate Cyclic Redundancy
Code checksums of NanoVDB files and in-memory buffers. This
adds a level of safety when NanoVDB is used in complex production
pipelines as an exchange format between digital creation tools and
renderers. We even include tools to create NanoVDB grids from
scratch, which allows the authoring of NanoVDB volumes without
any dependency of OpenVDB whatsoever. Finally, NanoVDB in-
cludes a stand-alone interactive ray-tracer that demonstrates how
NanoVDB can be used with most graphics APIs.

LIMITATIONS AND FUTUREWORK
By far, the biggest limitation of NanoVDB is the fact that as of today
it does not include tools to modify the topology of the tree. While
modification of values is trivial, the same cannot be said about
adding or removing nodes to a tree that is serialized in memory.
This is not to say that it is impossible, in fact the data structure
is deliberately designed to allow for nodes to reside anywhere in
memory, i.e the use of dynamic memory pools is possible. Never-
theless, for now we have decided to focus on static trees since it
plays such an important role for especially real-time rendering and
even many simulation applications.

We expect NanoVDB to be a first-class member of the OpenVDB
library in the near future, and we look forward to expanding its
toolset and applying it to more real-time applications.

ACKNOWLEDGMENTS
We thank NVIDIA for supporting and open sourcing this project.
Major thanks goes to especially Wil Braithwaite, in particular for
the interactive viewer, as well as Andrew Reidmeyer and Jeff Lait for
their help with the port of NanoVDB to OpenCL and HLSL/GLSL.

REFERENCES
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019. Taichi: A Language for High-Performance Computation on Spatially Sparse
Data Structures. 38, 6 (2019).

Ken Museth. 2013. VDB: High-resolution Sparse Volumes with Dynamic Topology.
ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. https://doi.org/10.1145/
2487228.2487235

KenMuseth. 2014. Hierarchical Digital Differential Analyzer for Efficient Ray-Marching
in OpenVDB. Association for Computing Machinery.

Michael B. Nielsen and Ken Museth. 2006. Dynamic Tubular Grid: An Efficient Data
Structure and Algorithms for High Resolution Level Sets. 26, 3 (2006).

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. 33, 6 (2014).

https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235

	Abstract
	Acknowledgments
	References

