
NeuralVDB: High-resolution Sparse Volume Representation using
Hierarchical Neural Networks
DOYUB KIM, MINJAE LEE, and KEN MUSETH, NVIDIA, Santa Clara, USA

Fig. 1. Application of NeuralVDB to the Disney Cloud dataset [Walt Disney Animation Studios 2017] (left) and a time-series of narrow-band level sets of an

animated water surface generated from a high-resolution simulation of a space ship breaching rough sea (right). The file size of the Disney Cloud, represented

by the industry standard OpenVDB encoded with 16-bit quantization and Blosc compression, is 1.5GB . However, the corresponding NeuralVDB file only

has a footprint of 25MB , resulting in a reduction by a factor of 60. For the space ship breaching simulation, the accumulated file sizes for the entire sequence

of the water surface, using OpenVDB with the same compression (16-bit and Blosc), is 22.7GB , whereas the NeuralVDB representations only have a total

footprint of 1.2GB , corresponding to a reduction by a factor of 18.

We introduce NeuralVDB, which improves on an existing industry stan-

dard for efficient storage of sparse volumetric data, denoted VDB [Museth

2013], by leveraging recent advancements in machine learning. Our novel

hybrid data structure can reduce the memory footprints of VDB volumes

by orders of magnitude, while maintaining its flexibility and only incurring

small (user-controlled) compression errors. Specifically, NeuralVDB re-

places the lower nodes of a shallow and wide VDB tree structure with multi-

ple hierarchical neural networks that separately encode topology and value

information by means of neural classifiers and regressors respectively. This

approach is proven to maximize the compression ratio while maintaining

the spatial adaptivity offered by the higher-level VDB data structure. For

sparse signed distance fields and density volumes, we have observed

compression ratios on the order of 10× to more than 100× from already

compressed VDB inputs, with little to no visual artifacts. Furthermore,

NeuralVDB is shown to offer more effective compression performance

compared to other neural representations such as Neural Geometric Level

of Detail [Takikawa et al. 2021], Variable Bitrate Neural Fields [Takikawa

et al. 2022a], and Instant Neural Graphics Primitives [Müller et al. 2022].

Finally, we demonstrate how warm-starting from previous frames can

accelerate training, i.e., compression, of animated volumes as well as

improve temporal coherency of model inference, i.e., decompression.

Authors’ address: D. Kim, M. Lee, and K. Museth, NVIDIA, 2788 San Tomas Express-
way Santa Clara, CA 95051; e-mails: doyubkim@nvidia.com, minjael@nvidia.com,
kmuseth@nvidia.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2024/02-ART20
https://doi.org/10.1145/3641817

CCS Concepts: • Computing methodologies → Volumetric models;

Additional Key Words and Phrases: Sparse volumes, neural networks, im-

plicit surface, volumetric models, compression

ACM Reference Format:

Doyub Kim, Minjae Lee, and Ken Museth. 2024. NeuralVDB: High-

resolution Sparse Volume Representation using Hierarchical Neural Net-

works. ACM Trans. Graph. 43, 2, Article 20 (February 2024), 21 pages.

https://doi.org/10.1145/3641817

1 INTRODUCTION

Sparse volumetric data are ubiquitous in many fields including sci-

entific computing and visualization, medical imaging, industrial

design, rocket science, computer graphics, visual effects, robotics,

and more recently machine learning applications. As such it should

come as no surprise that several compact data structures have been

proposed over the years for efficient representations of sparse vol-

umes. One of these sparse data structures has gained widespread

adoption in especially the entertainment industry, namely Open-

VDB, and is showing signs of increased adoption in several other

fields [Achilles et al. 2016; Boddeti et al. 2020; Vizzo et al. 2022].

OpenVDB is based on the unique hierarchical tree data struc-

ture introduced by Museth [2013]. At the core it is a shallow

(typically four-level) tree with high but varying fanout factors

(e.g., 323 → 163 → 83—number of nodes per level from top

to bottom), and the ability to efficiently look up values through

fast bottom-up, vs. slower top-down, node access patterns. While

its initial open source implementation, OpenVDB, was limited to

CPUs, a read-only GPU variant, dubbed NanoVDB, was recently

developed [Museth 2021] and added to the open source library.

However, VDB is obviously not a silver bullet, and fundamentally

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

https://orcid.org/0000-0002-8932-5519
https://orcid.org/0009-0003-6387-1081
https://orcid.org/0000-0002-9926-780x
mailto:permissions@acm.org
https://doi.org/10.1145/3641817
https://doi.org/10.1145/3641817
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641817&domain=pdf&date_stamp=2024-02-28

20:2 • D. Kim et al.

suffers from the same limitations as other lossless volumetric data

structures: the memory footprint is never smaller than that in-

curred by the sparse non-constant voxel values, e.g., signed dis-

tance or density values. To a lesser extent, the same is true for the

topology-information of the sparse voxels, which are compactly

encoded into bitmasks of the tree nodes in VDB. To provide some

context, the Disney Cloud is 1.5 GB with conventional data com-

pression techniques and 16-bit quantization (shown in Figure 1).

This size can easily explode into terabytes of data per simulation

sequence or high-resolution volumetric scenes. These data sets

are frequently shared between data consumers and/or cloud stor-

age, where both data storage and transactions are typically costly.

While many scenarios require raw, lossless data, other workflows

can tolerate some degree of lossy compression in exchange for a

lighter data footprint, akin to using JPEG images in place of raw

images. This raises the question, are there more compact, possibly

lossy, representations for the topology and value information en-

coded into a VDB structure, that maintain many of the advantages

of the proven VDB tree structure?

We will spend the remainder of this article demonstrating, that

under the same assumptions as NanoVDB, i.e., static topology and

values, this is indeed the case, resulting in a new hybrid data struc-

ture, which we have dubbed NeuralVDB.

The key to unlocking the promise of NeuralVDB is, as the name

indicates, neural networks. Recently neural scene representations

have gained a lot of attention from the research community, es-

pecially around implicit geometry [Liu et al. 2020; Mescheder

et al. 2019a; Michalkiewicz et al. 2019; Park et al. 2019] or radi-

ance fields [Mildenhall et al. 2020; Yu et al. 2021]. Essentially, the

neural representation encodes the field function that maps multi-

dimensional input (such as positional coordinates or directions) to

a field value (such as SDF, occupancy, density, or radiance) using

neural networks. Thanks to the flexibility and differentiability of

neural networks, this new approach opened up a variety of ap-

plications, including novel view reconstruction [Mildenhall et al.

2020], compression [Davies et al. 2020; Li et al. 2022; Takikawa

et al. 2022a], adaptive resolution [Takikawa et al. 2021], and so

on. Nonetheless, as we will illustrate in Section 4.6 through addi-

tional comparisons with established neural scene representation

techniques, relying solely on a neural approach falls short in de-

livering a model that balances both high quality and compact size.

By hybridizing a state-of-the-art data structure with a neural repre-

sentation, NeuralVDB surpasses other methods in both qualitative

and quantitative measures.

We propose a new approach to memory efficient representations

of static sparse volumes that combines the best of two worlds: neu-

ral scene representations have demonstrated that neural networks

can achieve impressive compression of 3D data, and VDB offers

an efficient hierarchical partitioning of sparse 3D data. This com-

bination allows a VDB tree to focus on coarse upper node level

topology information, while multiple neural networks compactly

encode fine-grain topology and value information at the voxel and

lower tree levels. This also applies to animated volumes, even main-

taining temporal coherency and improving performance with our

novel temporal encoding feature.

We outline the goals, non-goals, and constraints of NeuralVDB

as follows:

— The overarching goal of NeuralVDB is to significantly re-

duce both the off-line, e.g., file, and on-line, e.g., memory,

footprints of sparse volumetric data represented with the

VDB data structure. We achieve this goal by means of com-

pact neural representations of both the spatial occupancy,

i.e., topology, and the values of the sparse volumes.

— A non-goal of NeuralVDB is to improve the speed of vol-

ume rendering. That is, we are willing to sacrifice rendering

speeds for the sake of reducing the file or memory footprints.

While we make efforts to minimize this performance trade-

off, and even offer two versions of NeuralVDB with different

ratios of compression to access-performance, we emphasize

that the objective of this article is not to propose a faster

data structure for volume rendering.

— An important design constraint of NeuralVDB is to pre-

serve information represented in the input VDB volumes as

much as possible, as well as to maintain compatibility with

existing VDB pipelines. That is, we reuse the VDB tree struc-

ture and its API as such as possible, use lossless compression

of spatial occupancy, i.e., topology information, and adap-

tive lossy compression for the values of the sparse volumes.

More precisely we summarize our contributions as follows:

Memory Efficiency. The main focus of NeuralVDB is data com-

pression, both out-of-core and in-memory. In contrast, OpenVDB

only provides out-of-core compression, like Blosc and Zlib [Gailly

and Adler 2004]. In-core representations of OpenVDB apply no

compression to the sparse values, and only per-node bitmask

compression of the topology, i.e., sparse coordinates. While

NanoVDB improves on OpenVDB by offering in-core variable

bitrate quantization of the sparse values, the compression ratio

of NanoVDB rarely exceeds 6×, when low quantization noise

is desired. Conversely, for in-core representations NeuralVDB

typically offers an order of magnitude higher compression ratio

than NanoVDB, and two orders of magnitude higher compression

ratio than OpenVDB. However, neither data-agnostic compression

techniques like Zlib nor bit-quantization leverage feature level

similarities of sparse voxels.

Neural networks, on the other hand, can be designed to discover

such hidden features and can infer values without reconstructing

the entire data set. NeuralVDB exploits such characteristics of neu-

ral networks to effectively compress volumetric data while simul-

taneously supporting random access.

Compatibility. NeuralVDB is designed to be compatible with

existing VDB pipelines. Specifically, NeuralVDB representations

can readily be encoded from VDB data and decoded back into VDB

representations, with small often invisible reconstruction errors.

Borrowing standard terminology from machine learning we

refer to these steps as training and inference, respectively. While

NeuralVDB is designed to encode topology information exactly,

values are encoded with a lossy compressor whose key objective is

to retain as much information as possible during the training. For

instance, a NeuralVDB structure shares the same higher level tree

structure with standard VDB. The hierarchical network, which

replaces the lower level structure is also designed to reconstruct

the original VDB tree levels. As such, NeuralVDB supports both

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:3

out-of-core and in-core decompression, which can be utilized

respectively as an offline compression codec or alternatively for

online applications like rendering that require direct in-memory

access.

The remainder of this article is organized as follows: in Sec-

tion 2 we review related work, followed by a brief summary of the

key features of VDB and the framework supporting NeuralVDB in

Section 3. Finally, we validate our performance claims of Neu-

ralVDB in Section 4 and conclude with a discussion of limitations

and future work in Section 5.

2 RELATED WORK

In this section, we review previous studies discussing efficient

representation and computation of sparsely distributed volumetric

data.

2.1 Data Compression

While there is a wide variety of algorithms for data compression,

we shall limit our discussion to three subcategories that best high-

light the difference between traditional compression techniques

and the novel approach of NeuralVDB.

The first category of compression techniques includes data-

agnostic algorithms like Zlib [Gailly and Adler 2004]. As men-

tioned in the previous section, these algorithms are great at com-

pressing arbitrary data, but by design cannot exploit geometric

structures or patterns present in the data. It can, however, be uti-

lized to compress the last layer of our neural networks. For in-

stance, similarly to OpenVDB, NeuralVDB uses Blosc [The Blosc

Development Team 2020] to compress the serialized buffer.

The second class of compression techniques is best described

as application-specific algorithms similar to JPEG [Pennebaker and

Mitchell 1992] for images or MPEG [Le Gall 1991] for videos. The

extension of 2D JPEG algorithms to 3D can be a good candidate

for volumetric data. However, it is not directly applicable to VDB,

since JPEG is based on spectral analysis of 2D images (by means

of discrete cosine transformations), which operates on dense do-

mains, whereas VDB is inherently sparse in 3D. However, we have

seen promise in recent studies that employ neural networks for

compression problems [Kirchhoffer et al. 2021; Ma et al. 2019] or

even combining conventional compression techniques with neu-

ral approaches [Liu et al. 2018] to exceed the compression per-

formance of the original algorithm. There are mesh based com-

pression methods [Pajarola and Rossignac 2000; Sattler et al. 2005;

Valette and Prost 2004], which can only handle meshes as oppose

to sparse volumes.

Lastly, the third type of compression is statistical approaches

such as principal component analysis (PCA) or auto-

encoders (AE). These techniques are based on learned models

that are derived from training data. By transforming the input

space into a reduced latent space, high dimensional input data can

be represented with relatively small-sized vectors. In fact, some

of the earlier studies on neural-implicit representation, such as

DeepSDF [Park et al. 2019], utilize AE to further compress the SDF

volumes. This approach, however, requires the input space to be

known and/or normalized into a known shape. NeuralVDB takes a

different approach in that it deliberately “over-fits” to the input vol-

ume, i.e., memorizes the input as much as possible. This approach

trades off statistical knowledge that could be learned from data

with flexibility that can take arbitrary inputs.

2.2 Sparse Grid

While there is a large body of work on sparse data structures in

computer graphics, we shall limit our discussion to sparse grids in

the context of numerical simulation and rendering, which are the

core target applications of NeuralVDB.

One such key application is level set methods, which are es-

sentially time-dependent truncated signed distance fields (SDF).

These are efficiently implemented with narrow-band methods that

track a deforming zero-crossing interface [Peng et al. 1999]. Ad-

ditional memory efficiently has been demonstrated with adaptive

structures like octree grids [Bargteil et al. 2006; Losasso et al.

2004; Strain 2001], Dynamic Tubular Grids (DT-Grid, based on

compressed-row-storage) [Nielsen and Museth 2006], or tall-cell

grids [Chentanez and Müller 2011; Irving et al. 2006].

More flexible data structures for generic simulation and data

types include Hierarchical Run-length Encoding (HRLE)

grid [Houston et al. 2006], B+Grid (precursor to VDB) [Museth

2011], VDB (open sourced as OpenVDB) [Museth 2013], Field3D

(tiled dense grid) [Wrenninge et al. 2020], Sparse Paged Grid

(SPGrid, inspired by VDB) [Setaluri et al. 2014], GVDB (loosely

based on VDB) [Hoetzlein 2016], KDSM (Kinematically Deforming

Skinned Mesh) [Lee et al. 2018, 2019] and more recently NanoVDB

(strictly based on VDB) [Museth 2021].

2.3 Neural Representation

The idea of utilizing neural networks to represent volumet-

ric data is by no means novel. Examples include occupancy

field [Mescheder et al. 2019a; Peng et al. 2020], implicit surface like

SDF [Chen and Zhang 2019; Mescheder et al. 2019b; Michalkiewicz

et al. 2019; Park et al. 2019; Tang et al. 2018, 2020], and multi-

dimensional data like radiance field [Mildenhall et al. 2020] are

encoded using neural networks. Most of these studies utilize

coordinate-based neural networks and feature mapping/encoding

techniques such as SIREN [Sitzmann et al. 2020b], Fourier Feature

Mapping [Tancik et al. 2020], and Neural Hashgrid [Müller et al.

2022]. We refer readers to Xie et al. [2022] for a general survey on

neural fields.

2.4 Hybrid Methods

The desire for neural representations that are both memory effi-

cient and allow for fast random queries, has led to the develop-

ment of hybrid methods that combines neural networks and sparse

data structures. Recent examples hereof are Neural Sparse Voxel

Fields [Liu et al. 2020], Neural Geometric Level of Detail [Takikawa

et al. 2021], Baking NeRF [Hedman et al. 2021], and Adaptive Coor-

dinate Networks [Martel et al. 2021]. Learning a tree data structure

indexing was also presented in Kraska et al. [2018].

NeuralVDB also falls into this category. The main difference be-

tween existing hybrid methods and NeuralVDB lies in the key de-

sign goals we mentioned earlier—better memory efficiency and

compatibility with VDB. While the previous hybrid approaches

are memory-efficient compared to conventional neural representa-

tions, they are less efficient compared with the non-neural sparse

grid structures. We carefully allocate and train parameters such

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:4 • D. Kim et al.

that NeuralVDB can achieve high-fidelity reconstruction while

consuming much less memory than compressed VDB. Also, Neu-

ralVDB is compatible with existing VDB pipelines by design and

can retain input (standard) VDB’s original hierarchical structure

with minimal error. Additionally, NeuralVDB is not limited to spe-

cific types of volumes such as occupancy, signed distance field, vol-

ume density, or even vector fields. Finally, NeuralVDB is an open

framework that does not require a dedicated network architecture.

Therefore, any purely neural or even hybrid methods can be used

as a black box submodule of NeuralVDB.

3 METHOD

This section will briefly outline the original VDB tree structure

and explain how it is used to derive NeuralVDB, which combines

explicit tree and implicit neural representations. More precisely,

we demonstrate how different neural networks can be designed to

separately encode topology and value information in NeuralVDB.

We demonstrate how the decoder in NeuralVDB can be used for

both offline/out-of-core and online/in-memory applications. Fi-

nally, we introduce a novel temporal warm-starter that encodes

animated VDBs with improved training performance and tempo-

ral coherency of the reconstructed VDBs.

3.1 VDB

Let us briefly summarize the main characteristics of a VDB tree

structure as well as its unique terminology. (For more details we

refer the reader to the original article [Museth 2013]).

In a VDB tree structure, values are associated with all levels of

the tree, and exist in a binary state referred to as respectively ac-

tive or inactive values. Specifically, values at the leaf level, i.e., the

smallest addressable (integer) coordinate space, are denoted vox-

els, whereas values residing in the upper node levels are referred

to as tile values, and cover larger coordinate domains. That is, tile

values conceptually corresponding to uniform values assigned to

all voxels subsumed by the node that the tile resides in, thus com-

pactly representing constant regions of space. While the VDB tree

structure, detailed in Museth [2013], can have arbitrarily many con-

figurations, we will exclusively focus on the default configuration

used in OpenVDB, which has proven useful for most practical ap-

plications of VDB. This configuration uses four levels of a tree with

a sparse unbounded root node followed by three levels of dense

nodes of coordinate domains 40963, 1283, and 83. Thus, leaf nodes

can be thought of as small dense grids of size 8× 8× 8, arranged in

a shallow tree of depth four with variable fanout factors (n as in n3,

the number of nodes per level) of 32 and 16 respectively. We will

refer to the leaf level as level 0, internal nodes as levels 1 and 2, and

the top-most root level as level 3. Thus, a default VDB tree can be

implemented as a hash table of dense child nodes of size 323, each

with dense child nodes of size 163, each with dense child nodes

of size 83. Figure 2 illustrates this tree structure in one and two

spatial dimensions. Finally, note that all internal nodes (at levels

1 and 2) have two bitmasks, denoted active mask al and child

mask cl , which respectively indicate if a tile value is active or

whether it is connected to a child node. Conversely, leaf nodes only

have an active mask al used to distinguished active vs. inactive

voxels.

Throughout this article, we will adopt the same notation for

VDB tree configurations that was introduced in Museth [2013].

Thus, the configuration outlined above, which is the default in

OpenVDB, is denoted [Hash, 5, 4, 3], where Hash refers to the fact

that the root node employs a sparse hash-table whereas the remain-

ing tree levels are dense, i.e., fixed-size, with nodes logarithmic

sizes 5, 4, 3, corresponding to the dimensions 323, 163, 83, which

in turn covers the coordinate domains 40963, 1283, and 83. In the

appendix we explain how VDB facilitates fast random access, and

how NanoVDB offers GPU acceleration [Museth 2021].

3.2 NeuralVDB

NeuralVDB retains the VDB tree structure outlined above, but em-

ploys novel techniques to encode values, of both tiles and vox-

els, and topologies, of both nodes and the active states of values,

cf. active-masks mentioned in Section 3.1. Whereas OpenVDB en-

codes values explicitly at full bit-precision, and NanoVDB (option-

ally) uses explicit but adaptive bit-precision, NeuralVDB instead

uses neural representations for values, their states, and (optionally)

parts of the tree-structure itself. Specifically, we are proposing two

types of NeuralVDB that are optimized for respectively speed and

memory. The first version, which we denote [Hash, 5, 4,NN(3)],

only applies neural networks to the leaf nodes, whereas the sec-

ond version is dubbed [Hash, 5,NN(4),NN(3)] and applies neu-

ral networks heuristically to the two lower levels. As we shall

demonstrate [Hash, 5, 4,NN(3)] favors fast random access whereas

[Hash, 5,NN(4),NN(3)] achieves a smaller memory footprint at the

cost of slower access.

Our neural network architecture is based on several multi-layer

perceptrons (MLPs) that partition the entire coordinate span of the

sparse volume into partially overlapping domains (more on this

partitioning in Section 3.4). Each MLP maps floating-point voxel

coordinates (x ,y, z) to the relevant value type of the VDB tree,

e.g., scalar, vector, and binary mask values. For the scalar and vec-

tor values, we use the MLP as a regression network. We encode the

binary mask, which indicates whether a given coordinate maps to

an active value/child or not, using an MLP classifier. We will cover

the details of this classifier network in Section 3.3.1.

The regression MLPs are defined through training, which opti-

mizes a mean squared error (MSE) loss function of the type

LMSE (f , f̂) =
1

N

N∑

i=1

(f − f̂i)
2, (1)

where f is the target value and f̂ is the predicted value from

the network. For an SDF data, we scale the target to be in the

range of [−1, 1], whereas for the fog volumes, we keep the original

range, which is typically [0, 1]. For the classification MLPs, we use

cross-entropy loss. We also use stochastic gradient descent with an

Adam optimizer [Kingma and Ba 2014]. Learning rate is scheduled

to decay exponentially for every epoch. In Section 4, we list all the

hyperparameters that we used to perform the experiments.

While training of MLPs is occasionally straightforward, it is

well-known that in many practical applications MLPs often fail

to reconstruct high-frequency signals, even with high-capacity,

i.e., wide/deep, networks [Jacot et al. 2018]. We apply two different

techniques to mitigate this issue: Firstly we restrict the training

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:5

Fig. 2. 1D and 2D illustrations of VDB data structures. Left: A 1D 4-level VDB tree hierarchy is shown with its various node structures and bitmasks. The

top-most root node (level 3) holds an unbounded set of internal nodes (level 2), and the red/blue internal nodes encode tile values or child pointers using

bitmasks (al and cl). The lower green leaf nodes store voxel values f and their active masks a0. Right: 2D illustration of the hierarchical tree nodes that

intersect the sparse (gray) pixels. The color schemes are shared between the 1D and 2D illustrations. The number of nodes per level are indicated where the

level 2 and 1 internal nodes have 323 and 163 children nodes and level 0 (leaf) nodes have 83 voxels per node.

samples to active values only, and secondly, we map the low di-

mensional feature (x ,y, z) to different feature spaces for better ac-

curacy. We will elaborate more on both these ideas below.

3.2.1 Sparse Field Training. The encoding process of the value

regression MLP starts with an existing VDB grid, either repre-

sented as an OpenVDB or NanoVDB. For each epoch, i.e., pass

over the training set, we randomly sample the active voxels, thus

explicitly excluding all inactive values, e.g., background values, en-

coded in the VDB tree since, by design, active values are used to

indicate that a value is significant. This is a simple but efficient

way to introduce sparseness in the training despite the fact that

tree nodes are dense. For instance, a narrow-band level set is rep-

resented as a truncated signed distance field where the active vox-

els “uniformly sandwich” the zero-crossing surface, i.e., a narrow-

band level set of width six has active voxels in the range [−3Δ, 3Δx]

where Δx denotes the size of a voxel. Conversely, a fog, i.e., nor-

malize density, volume typically has a wider active value set, but

they are still sparse in the sense that the active set is bounded, typi-

cally with non-trivial boundaries, e.g., see the cloud example from

Figure 4. Training a network with only these active voxels allows

the model to focus its learning capacity on the most important con-

tent encoded into a VDB tree; thus the adaptive structure of VDB is

encoded implicitly into the network during training. The effect of

training with sparsity information is demonstrated in Appendix C.

Obviously, this network alone will not extrapolate well outside the

active voxels, which is by-design. Therefore, the hierarchical struc-

ture from the source VDB is embedded as part of the NeuralVDB

data, except the dense leaf nodes, to mask out any random access

outside the active voxel regions which are not trained.

3.2.2 Feature Mapping. As shown in recent work on spectral

bias and Neural Tangent Kernels [Jacot et al. 2018; Rahaman et al.

2019; Tancik et al. 2020], a vanilla MLP tends to fail to capture

high-frequency details even with deep and wide networks. It was

demonstrated in Jacot et al. [2018] that the effective regression ker-

nel width of a regular MLP is too wide to represent such signals. To

overcome this issue, a number of different techniques have been

proposed, including positional encoding [Mildenhall et al. 2020],

and Fourier feature mapping (FFM) [Tancik et al. 2020] as its

generalization. Different mapping techniques have been proposed

from different contexts as well such as one-blob encoding [Müller

et al. 2019, 2020], triangle wave [Müller et al. 2021], or neural hash

encoding [Müller et al. 2022]. These mapping (or encoding) tech-

niques transform input coordinates, x ∈ R3, into higher dimension

vectors γ (x)

z = γ (x), (2)

where z ∈ Rn and n � 3 where n is the new feature dimension. By

applying such mappings, an MLP can converge faster with fewer

parameters and shorter training times. Alternatively, the domain

itself can be decomposed into smaller geometrical representations,

such as octrees [Takikawa et al. 2021] or grid of subdomains [Mose-

ley et al. 2021], which tackles the spectral bias problem, i.e., the fact

that networks tend to bias toward low frequency signals in the

training set. However, we prefer feature mapping techniques over

the geometric approaches to decouple the neural network design

from the VDB tree structure. This way, the architecture is open to

other feature mapping methods such as neural hash grids [Müller

et al. 2022] and can adopt new techniques without heavy

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:6 • D. Kim et al.

Fig. 3. Illustration of two different NeuralVDB structures: (a) a standard VDB tree with neural voxel values ([Hash, 5, 4, NN(3)] using the VDB tree notation),

and (b) a hybrid VDB/neural tree with neural representations of both nodes and their values ([Hash, 5, NN(4), NN(3)] using the tree notation).

Fig. 4. Examples of reconstructed volumes from NeuralVDB on Disney Cloud dataset [Walt Disney Animation Studios 2017].

refactoring. Therefore, we implement FFM as the main feature

mapping method in the NeuralVDB framework.

The final NeuralVDB data is then a concatenation of mask-only

VDB trees with the value regressor MLP network (see Figure 3).

While this already reduced the memory footprint significantly (see

Table 1), we show that the memory efficiency can be further im-

proved by encoding the hierarchy of the VDB tree with neural net-

works in the following section.

3.3 Hierarchical Networks

As indicated above, NeuralVDB achieves a significant reduction

in its memory footprint, relative to OpenVDB, by replacing dense

tree nodes with a shared neural network. To motivate some of our

design decisions consider Table 1, where we quantify this mem-

ory reduction for a specific sparse volume, namely the level set

model of the dragon shown in third column of Figure 5. This table

shows node counts and memory footprints at different tree levels

for one standard and two neural representations with the same low

reconstruction error (Intersection over Union (IoU) of 99%). The

first column, with OpenVDB, denoted [Hash, 5, 4, 3], clearly shows

that the overall memory footprint is dominated by the voxels,

i.e., values in the leaf nodes, that take up 94% of the total footprint.

The neural representation of voxels, shown in the middle column

and denoted [Hash, 5, 4,NN(3)], reduces the footprint of the leaf

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:7

values to only 6%, corresponding to 16×. However, the total foot-

print is now dominated by the leaf bit masks and the internal nodes

at level 1, i.e., the states of the voxels and the nodes just above the

leaf nodes. As stated in Section 1, one of our key design goals is to

preserve as much of the information captured in the source VDB

data structure as possible, which includes the hierarchical tree

structure as well as the spatial occupancy, i.e., topology, and values

of the sparse volumetric data. In other words, we seek a more com-

pact neural representation of the source tree structure that encodes

most if not all of its payload. A natural approach is therefore to ap-

ply neural representations to all voxels, as well as their masks and

parent nodes, which is shown in the right-most column of Table 1,

denoted [Hash, 5,NN(4),NN(3)]. This results in an overall com-

pression factor of 68× when comparing [Hash, 5, 4, 3] at 257MB
to [Hash, 5,NN(4),NN(3)] at 3.8MB. Note that we use the same

network capacity for the voxels and masks at level 0, resulting in

virtually identical footprints. Interestingly, the neural compression

of the two lowest levels of the VDB tree structure results in a hi-

erarchical representation, [Hash, 5,NN(4),NN(3)], whose memory

footprint is still dominated by those two lowest levels. This seems

to suggest that neural representations of the remaining top levels,

2 and 3, will have little impact on the overall memory footprint.

3.3.1 Encoding Hierarchy. Based on the observations above, we

propose only to introduce hierarchical neural networks at the two

lowest levels of VDB tree structure. More precisely, we replace

voxel and tile values at levels 0 and 1 with MLP-based value re-

gression networks as well as child and active masks at level 1 and

active masks at level 0 with classifiers. The root and upper inter-

nal levels of the tree structure shall remain unchanged. This con-

figuration is illustrated in the right column of Figure 3. The mask

classifier at level 1 is trained with level 1 child nodes’ coordinates

as the input and its child and active masks m1 ∈ {c1 = 1,a1 = 1}

as the target labels. Thus, this ternary classifier predicts three pos-

sible cases, (1) a leaf child node, (2) an active tile value, or (3) an

inactive tile value, from the input coordinates. Conversely, the clas-

sifier at level 0 is trained with voxel coordinates as the input and

the active leaf masksm0 ∈ {a1 = 1} as the label. Thus, this binary

classifier predicts whether given coordinates map to active or inac-

tive voxels. To optimize the parameters, cross-entropy loss is used

for the level-1 mask classifier and binary cross-entropy (BCE)

loss is used for the level-0 mask classifier. For the nodes at level 1

with tile values (m1 = 0), these tile values are also encoded using

an MLP-based value regressor, similar to the voxel value regressor.

Note that the level-0 mask classifier is essentially an occupancy

network. When reconstructing voxel occupancy, the BCE loss func-

tion can be tweaked to tackle sparse and imbalanced distribution as

well as the vanishing gradient problem [Brock et al. 2016; Saito et al.

2018]. However, the level-0 mask network is performed within

level-1’s chidren nodes which addresses the imbalance problem

since the children nodes are allocated only around where the actual

values are, instead of its full domain. Also, a typical network depth

is not very deep (e.g., [2, 4]), and hence gradients do not vanish

easily. Therefore, we keep the vanilla BCE without further tuning.

Due to the hierarchical nature of the tree structure, the capaci-

ties of mask classifier and tile value regressor at level 1 are typically

much smaller than the capacities of the mask classifier or voxel

regressor at level 0. During the reconstruction, we perform top-

down traversal by first querying the level-1 mask classifier. If the

query point is classified as an active tile, then the corresponding

tile value is predicted and returned using the tile value regressor.

Conversely, if the query is classified as a leaf node, its mask clas-

sifier is used to determine the active state. The query points that

map to active states are then used for the final inference through

the value regressor, mimicking the tree traversal/early termination

of the standard VDB tree.

3.3.2 Source Embedding. Although the networks with

FFM [Tancik et al. 2020], which is our feature mapper of choice as

mentioned in Section 3.2.2, can classify level-1 and voxel masks

accurately; it still might produce a number of positive samples

that are incorrectly classified. However, we observed that the

number of such samples is relatively small (e.g., <1% of all positive

samples for level-1 masks and 5% of active voxel masks), and in

fact, can be appended to the data structure.

For the active mask classifier for voxels, however, even a per-

cent of false positives might result in significant number of voxels

to embed since the number of active voxels easily exceeds tens

of millions (see Tables 2 and 3). While this is impractical and de-

feats the purpose of space efficiency, most of such false negatives

are near the decision boundaries (not the geometrical boundaries).

Based on this observation, we filter out voxels that are far enough

from the surface (in case of SDF) or do not have significant value

(in case of volume density or any other scalar fields). This remedy

seems to work well enough not to show any significant artifacts.

3.4 Sparse Domain Decomposition

When a scene is too large and/or contains disjoint clusters of vol-

umes, a single network can perform poorly since the input co-

ordinates are normalized between [0, 1] before the feature map-

ping stage. In contrast, the value-mapping in a standard VDB is

agnostic to such an incoherent clustering of voxels. To address

the problems above, we propose a sparse domain decomposition

approach, which is inspired by the sparsely-gated Mixture-of-

Experts (MoE) method [Shazeer et al. 2017]. First, we decompose

the domain with fixed-size subdomains where each subdomain Dk

spans configurable size in index space in range of 512 to 2048. A

subdomain has a fixed-width halo that overlaps with other adja-

cent subdomains. We chose 8 voxels for the halo size which is wide

enough to eliminate the discontinuity and small enough to reduce

the compute overhead. The entire domain is partitioned into a reg-

ular grid of subdomains, where empty subdomains are discarded.

Also, a dedicated neural network (expert) is defined for each subdo-

main. For simplicity, the same network architecture is used for all

the experts. Given this setup, we define a gate function G(x)k for

each subdomain Dk , where x is a normalized coordinates between

[0, 1] for the given subdomain bounding box. This gate function

G(x)k is defined as a clamped tent function (a tent function with

max value of 1 uniformly outside the overlapping region) which

covers the subdomain Dk including the halo. When input coordi-

nates are passed, the gate functions and the expert networks gen-

erates the output as

ŷ =
n∑

k=1

G(x)kEk (x), (3)

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:8 • D. Kim et al.

Table 1. Memory Cost of the VDB Hierarchy

Standard VDB NeuralVDB ([Hash,5,4,NN(3)]) NeuralVDB ([Hash,5,NN(4),NN(3)])

Num. Nodes Bytes Num. Nodes Params Bytes Num. Nodes Params Patches Bytes

Internal (Level 2) 8 327,776 8 327,776 8 327,776

Internal (Level 1) 318 5,539,560 318 5,539,560 318 99,332 1,879 423,692

Mask (Level 0) 124,166 9,436,616 124,166 9,436,616 395,268 7,293 1,668,588

Voxels (Level 0) 63,572,992 254,291,968 398,352 1,593,408 395,268 1,581,072

Total 269,595,920 16,897,360 4,001,128

6.268% 1.484%

Columns on the left (Standard VDB) show the statistics of the dragon model represented in standard VDB format. Columns in the middle (NeuralVDB [Hash, 5, 4, NN(3)])
show similar statistics when only the voxel values are encoded in neural networks. The right-most columns (NeuralVDB [Hash, 5, NN(4), NN(3)]) shows the numbers when
neural networks are used to encode both tree hierarchy and values for two lower levels. NeuralVDB with [Hash, 5, 4, NN(3)] was able to reduce its size down to 6.268% of
the original VDB and NeuralVDB with [Hash, 5, NN(4), NN(3)] achieved even smaller footprint. Note that due to the sparse domain decomposition described in Section 3.4,
the voxel values are encoded with multiple neural networks where each network encodes its dedicated bounding box.

Fig. 5. Ground truth SDF VDB models (top row) and reconstructed SDF VDB models using NeuralVDB (bottom row).

where n is the number of subdomains and output ŷ can be one

of the child/active masks or voxel values, which means the sparse

subdomain decomposition can be applied to any neural modules

in our framework (see Figure 3(b) for the reference). Note that the

gate function above is not learnable, which is different from the

sparsely-gated MoE [Shazeer et al. 2017]. Also, a single input co-

ordinate can activate (return non-zero output) multiple gate func-

tions (as many as eight) due to the overlapping halos, and we aver-

age the evaluated values weighted by the gate functions. In prac-

tice, we examine the gate function first to determine which net-

work should be invoked and only perform the computation for the

networks with non-zero gate values. Since each subdomain has

dedicated classifiers and regressors, we can train concurrently on

multiple GPUs. When multiple GPUs are used, groups of subdo-

mains (since there can be more subdomains than number of avail-

able GPUs) are assigned for each GPU. After training, the groups

of the subdomains are merged into a single NeuralVDB structure.

Using the sparse domain decomposition outlined above, large

sample scenes like the Space model with a voxel resolution of

32,844×24,702×9,156 in Figure 5, can be effectively handled with-

out sacrificing accuracy. In this particular case, twelve subdomains

for the entire scene are allocated in total by our algorithm (i.e., sub-

dividing the entire domain into a grid of subdomains and discard-

ing the subdomains without any voxels). The sizes are determined

heuristically as described in Appendix E.

3.5 Reconstruction

So far we have focused on how standard VDB trees can be com-

pactly encoded in NeuralVDBs by means of training various neu-

ral networks. This of course leaves the problem of efficiently de-

coding NeuralVDBs by inferencing, which is the topic of this sec-

tion. We will consider two fundamentally different scenarios. First,

we show how a standard VDB can be reconstructed from an exist-

ing NeuralVDB representation, which is useful when a NeuralVDB

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:9

Fig. 6. Reconstructing VDB from a NeuralVDB data. (a) Virtual coordinates from level 1 are classified into either one of (1) child node, (2) active tile,

(3) inactive tile. From the resulting vector at (b), active mask coordinates are then further passed down to the tile value regressor to reconstruct the tile

values at (c). Input coordinates with child mask on are passed to the level-0 mask classifier to check active voxel state and then active voxel (d) is finally

used to infer the voxel value for the reconstruction of level 0 at (e).

is stored offline, e.g., on disk or transmitted over a network, and

needs to be decoded into a standard VDB in memory. This is typ-

ically an offline process where we reconstruct the entire VDB

tree in a single sequential pass thought the NeuralVDB data. Sec-

ond, we show how we can support random access to values di-

rectly from in-memory NeuralVDB data, without first fully recon-

structing the entire VDB tree. The first case favors memory effi-

ciency over reconstruction time, whereas the latter needs to bal-

ance these two factors in order to allow for reasonable access times

for applications like rendering and collision detection. To this

end, we propose the two different configurations of NeuralVDB,

[Hash, 5, 4,NN(3)] and [Hash, 5,NN(4),NN(3)] introduced in Sec-

tion 3.3. We will elaborate more on these two cases below.

Offline Sequential Access. For applications that prioritize a low

memory footprint over fast reconstruction times, we use the Neu-

ralVDB configuration denoted [Hash, 5,NN(4),NN(3)]. Examples

of such applications are storage on slow secondary-storage devices

like hard drives and DVDs or transfer over low-bandwidth inter-

net. The reconstruction into a standard VDB tree only requires a

single sequential pass over the compressed data. Since the root and

its child nodes are encoded identically to a standard VDB tree, we

will limit our description of the reconstruction to the lower two

levels of the tree that use neural representations. Sequential ac-

cess to level 1 nodes is straightforward since their coordinates are

trivially derived from the child masks at level 3 (see Museth [2013]

for details on how bit-masks compactly encode coordinates). Thus,

for each node at level 1 (of size 163) we use standard inference

to reconstruct the child and active masks from the classifiers and

the tile values from the value regressors described in Section 3.3.1.

We correct the masks with the list of false positives that we ex-

plicitly encoded during the training step (see 3.2). Next, using the

child masks at level 1 we proceed to visit all the leaf nodes (of size

83) and sequentially infer the voxel values and their active states

from the value regressor and binary classifier at level 0. During

the decoding process, we use disjoint blocked ranges, which are

distributed amongst multiple GPUs and subsequently merged into

a single output VDB. Since each blocked range has dedicated clas-

sifiers and regressors, like in the training stage, inferencing can

also be performed concurrently on multiple GPUs. When recon-

structing one of these blocked ranges, it still has access to all the

networks, meaning it can still reconstruct volumes without discon-

tinuity thanks to Equation (3), Figures 6 and 7.

Online Random Access. Since [Hash, 5,NN(4),NN(3)] employs

hierarchical neural networks (two levels) we have found this con-

figuration to be too slow for real-time random access applications.

Consequently, we propose [Hash, 5, 4,NN(3)], show in the left col-

umn of Figure 3, for applications that require both fast random

access and a small memory footprint since it uses the proven ac-

celeration techniques of VDB for the tree traversal in combination

with the compact neural representation of the voxel values only. In

other words, random access into [Hash, 5, 4,NN(3)] has the same

performance characteristics as a standard VDB tree, except for

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:10 • D. Kim et al.

Fig. 7. Ground truth volume density VDB models (top row) and recon-

structed volume density VDB models using NeuralVDB (bottom row). The

Chameleon model is acquired from Open Scientific Visualization Datasets

where the original dataset is from DigiMorph [Maisano 2003].

leaf values that require an additional regression for the voxels. As

shown in the middle column in Table 1, [Hash, 5, 4,NN(3)] still has

an in-memory footprint that is an order of magnitude smaller than

[Hash, 5, 4, 3]. While [Hash, 5, 4,NN(3)] consumes more memory

than [Hash, 5,NN(4),NN(3)], it still benefits from a massive com-

pression ratio of the leaf level value regression network. Moreover,

[Hash, 5, 4,NN(3)] can be trivially reconstructed from the other

version, [Hash, 5,NN(4),NN(3)], by leaving the voxel regressor un-

changed, and can therefore be seen as a pre-cached representa-

tion for the faster access, similar in spirit to Hedman et al. [2021].

Once the [Hash, 5, 4,NN(3)] representation is available, random ac-

cess becomes a simple two-step process: (1) Use standard (accel-

erated) random access techniques (see Museth [2013]) to decide

if a query point maps to a tile or a voxel, i.e., level {3, 2, 1} or 0.

(2) if it is a tile, return the value explicitly encoded into the stan-

dard VDB structure, and else, predict the voxel values using the

regressor.

While [Hash, 5, 4,NN(3)], the in-memory representation of Neu-

ralVDB, can be viewed as a cached evaluation of offline repre-

sentation [Hash, 5,NN(4),NN(3)], there are still room for more

active caching mechanism such as caching of evaluated voxel

masks/values in a cyclic buffer to reduce number of neural net-

work inferences. We are investigating this approach as part of our

future work.

3.6 Temporally-coherent Warm-start Encoder

One of the main sources of sparse volumetric data are simulations.

As such, one of the key applications for OpenVDB, and hence by ex-

tension NeuralVDB, is time-sequences of animated sparse volumes.

This presents both an opportunity for acceleration as well as a chal-

lenge in terms of expected temporal coherence. We achieve both of

these with a relatively simple idea, namely that of warm starting

the neural training, i.e., encoding, of one frame with the converged

network weights from the previous frame. As indicated, this has

two significant benefits that are unique to NeuralVDB. Firstly, the

coupling (through initialization) to a previous frame introduces

temporal coherency across frames, and secondly, it accelerates the

training times, typically by a factor of 1.5 − 2.5 times, when com-

pared to a “cold-start” training. Thus, our novel warm-start en-

coder leverages temporal coherency of the input volumes to pre-

serve temporal coherency of the output volumes (see Figure 8), in

addition to reducing encoding times (see Section 4). Specifically,

we run the encoder sequentially from the first frame to the last

frame, while saving neural networks per frame to re-use them in

the following frame as a warm-starter to achieve temporally coher-

ent network weights. If the input volumes contain high-frequency

details, like thin layers of smoke, then a naive (“cold-start”) encod-

ing can produce flickering due to the fact that a fixed learning rate

for all frames can introduce discontinuities of network weights

across frames. In order to fix the issue, we run the first frame with

the target learning rate, and re-process the first frame with the

same or smaller learning rate (e.g., up to 100 times smaller). The

rest of the frames are processed only once using the new learn-

ing rate, and this step reduces the training iteration when the loss

becomes lower than the first frame’s final loss. This technique is

similar to the fine-tuning method for transfer learning [Zhou et al.

2017] where it adapts to the new target (new frame) without drift-

ing too much from the old target (previous frame). When the do-

main decomposition step adds a new domain in the middle of the

animated sequence, we repeat the same process of encoding the

domain with the target learning rate, then again with the smaller

one. Warm starting not only produces temporally coherent results

but also boosts encoding performance while satisfying both qual-

ity and compression ratio requirements as shown in Table 3.

4 RESULTS

In this section, we test NeuralVDB under a number of scenarios, in-

cluding encoding, decoding, and random access. All the numerical

experiments were performed on a virtual machine with NVIDIA

RTX A40 GPUs and a host AMD EPYC 7502 CPU. NeuralVDB

is implemented in C++17 and makes use of both CUDA and Py-

Torch [Paszke et al. 2019].

4.1 Encoding

We first evaluate our new VDB architecture by analyzing its effi-

ciency at encoding a variety of model volumes with a given quality

criteria expressed as specific error tolerances. We define our main

target error metric to be Intersection of Union (IoU) for narrow-

band level sets, i.e., truncated signed distance fields (SDF), and

Root Mean Squared Error (RMSE) for density volumes. Modi-

fied Chamfer Distance (mCD), which is a modified version of

standard Chamfer Distance [Wu et al. 2021], is also measured for

level sets, which is defined as

mCD =
1

2N1

N1∑

i=1

SDF2(v1,i) +
1

2N2

N2∑

i=1

SDF1(v2,i), (4)

where the sampling points v1 ∈ V1 and v2 ∈ V2 were generated by

extracting the isosurfaces from both ground truth (SDF1,V1) and

the reconstructed VDBs (SDF2,V2). Note that the closest points to

each other’s surface are measured by directly sampling the SDF

from the VDB data, which is different from the original Cham-

fer distance definition. We acknowledge that relying solely on

the mCD as a metric is insufficient, particularly because it was

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:11

Fig. 8. Reconstructions from temporally encoded NeuralVDB examples. Smoke Plume is simulated density volumes for 0−165 frames, Ship Breach is signed

distance fields of a spaceship breaching a water surface for 0 − 200 frames, and Dust Impact is simulated density volumes for 0 − 166 frames.

originally designed to evaluate point clouds [Bouaziz et al. 2016].

Nevertheless, the mCD can still offer an indication of geometrical

deviation when an implicit surface (SDF) is rendered as an explicit

surface. Hence, we enhance its assessment by incorporating IoU,

following a similar approach to NGLOD [Takikawa et al. 2021].

The hyperparameters were tuned to exceed 99% IoU for SDFs and

produce an RMSE of less than 0.1 for the densities. Tables 2 and

3 list the compression ratios for respectively non-temporal and

temporal encoders. For the SDF models, [Hash, 5,NN(4),NN(3)]

achieved a compression ratio up to 61.2, whereas for the den-

sity volumes, the compression ratio is as high as 140.9. Figures 5

and 7 compare the ground truth with the reconstruction results

of [Hash, 5,NN(4),NN(3)]. The Chameleon model achieved the

best compression ratio among our dataset (140.9) since the data

was smoother and evenly distributed compared to the other vol-

umes. Consequently, the decision boundary of the classifier does

not have to fit against high-frequency details, and the value re-

gressor can use less neurons to represent a rather smooth value

distribution.

Figure 9 shows reconstruction results from procedurally ad-

vected SDFs called LeVeque’s Test [LeVeque 1996]. Figures 8 and

10 shows simulation examples, Smoke Plume, Dust Impact, and

Tornado from EmberGen VDB Dataset [JangaFX 2020] and Ship

Breach from the output of a high-resolution particle-based fluid

solver. Table 3 shows min, max, and mean values per column to

illustrate variance of the temporal data.

While most of the compression ratios for the SDF volumes are

in the range from 20 to 60, the Crawler model is an outlier in the

sense that it only has a compression ratio of 13.3. This particular

SDF model is uniquely challenging because it contains some ex-

ceptionally thin geometric features as well as large flat surfaces.

This amounts to both high- and low-frequency details, which are

challenging to capture with a band-limited neural network. Con-

sequently, this Crawler model requires a wider network with a

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:12 • D. Kim et al.

Fig. 9. Reconstruction from temporally encoded NeuralVDB data for 0 −

300 frames, procedurally generated based on LeVeque’s Test [LeVeque

1996] (also known as Enright test).

Fig. 10. Reconstruction from temporally encoded NeuralVDB data from

simulated density volumes for 0− 127 frames, dataset generated from Em-

berGen Tornado simulation [JangaFX 2020].

Fig. 11. The offset between the ground truth and reconstructed meshes

are rendered with a color map. Red and blue indicate positive and negative

displacements relative to the outward normal direction. Unit of the color

map is the voxel size of the source VDB grid.

Fig. 12. Error visualization for the Bunny Cloud example. The absolute

error is averaged in z-axis.

higher capacity than most of the other SDF models, which in turn

accounts for its lower relative compression radio.

4.2 Reconstruction Error

Given the fact that the proposed NeuralVDB representations are

conceptually lossy compressions of standard VDB values (but im-

portantly not its topology), it is essential to investigate and under-

stand the nature of these reconstruction errors.

In Figure 11, we visualize the error of the SDF reconstruction on

the iso-surface mesh of the dragon model, by color-coding the clos-

est distance to the ground truth. Specifically, the offset between the

ground truth and the reconstruction is measured for each vertex

of the reconstructed mesh. The blue-white-red color map shows

the “blobby” error pattern generated by the NeuralVDB compres-

sion. This “blobby” error pattern is even more evident on flat sur-

faces, as shown in the two middle images of Figure 13 based on

the spacesuit and Crawler SDF models. The right-most images in

Figure 13 clearly show that this error can be significantly reduced

by employing wider networks, of course at the expense of reduced

compression ratios.

Finally, in Figure 12, we compare renderings of the recon-

structed density volumes relative to their ground truth represen-

tation. Small reconstruction errors are (barely) visible along the

silhouettes in regions with small-scale details.

4.3 Hyperparameters

We have listed the hyperparameters used throughout this article in

Table 4. Currently, the capacity of the networks (number and width

of the multiple MLP layers) is chosen heuristically based on the

complexity of the input volumes (more hidden neurons for more

complex volume). Different activation functions are used for each

example, based on heuristics discussed in Appendix E. For all the

examples shown in Figures 5 and 7, we use FFM [Tancik et al. 2020].

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:13

Fig. 13. Visualization of the error convergence as more network parameters are used. For each example, the left-most column corresponds to the baseline

reconstruction where fewer parameters are used. The center column shows the result from a larger network (2× the width). The right-most column shows

the ground truth. For the EMU example, the compression ratio is 40.9 and 11.4 for the smaller and larger models, respectively. For the Crawler example, the

compression ratio is 13.8 and 3.8 for the smaller and larger models.

4.4 Performance

As described in Section 3.4, the sparse domain decomposition al-

lows the encoding and decoding processes to be accelerated by

multiple GPUs. In Table 5, we report these speedup factors as a

function of the number of GPUs applied to large volumes. For train-

ing, the subdomain resolutions listed Tables 2 and 3 are used. For

reconstruction, blocked ranges of size 5123 are used for the job

distribution onto multiple GPUs. As expected the strong-scaling

is sub-linear, which is a consequence of the fact that both training

and reconstruction have several sequential steps. This includes file

I/O, domain decomposition, and gathering. Another factor that re-

sults in sub-linear strong-scaling is poor load balancing caused by

imbalanced subdomains due to fluctuating sparse voxel counts in

the subdomains. Still, Table 5 shows a significant benefit of using

multiple GPUs for NeuralVDB. For certain combinations of input

volumes and GPU counts, the automatic load balancers for the en-

coder and decoder determined that there are simply not enough

subdomains and/nor blocked ranges to decompose and/or that us-

ing more GPUs is not beneficial. For instance, the Bunny model is

smaller than the configured subdomain size (see Table 2). Also, the

number of decoding blocked ranges (where each range has size of

5123) from the model is not large enough to use multiple GPUs.

This decoding criterion is determined heuristically by checking if

the number of average active voxels × number of blocked ranges

is greater than or equal to 200 × number of GPUs.

The temporal warm-start encoder of NeuralVDB boosts perfor-

mance of LeVeque’s Test 2.4 times, Smoke Plume 2.5 times, Ship

Breach 1.6 times, Dust Impact 1.2 times, and Tornado 3.1 times.

This is a significant benefit of warm starting each encoder with

the converged neural network weights from the previous frame.

As described in Section 3, for in-memory random access the

NeuralVDB representation of choice, [Hash, 5, 4,NN(3)], combines

a standard VDB tree with neural networks for the voxel val-

ues only. In Table 6, we compare the performance of the in-

memory random access of [Hash, 5, 4,NN(3)] and [Hash, 5, 4, 3],

implemented as NanoVDB, by randomly sampling 1M points in-

Fig. 14. Bunny Cloud model rendered with ray-marching directly on in-

memory NeuralVDB.

side the bounding box of a given volume. The NanoVDB re-

sults are generated by performing zeroth (nearest neighbor), first-

order (tri-linear), and third-order (tri-cubic) interpolation using

nanovdb::SampleFromVoxels function object for each random

sample. The time-complexity of NeuralVDB is a combination of

that of NanoVDB’s random access tree-traversal, which is identi-

cal for the two representations, and the neural network inference

applied to a subset of the original sampling points. The NeuralVDB

random access is more expensive than both nearest neighbor and

tri-linear interpolation of NanoVDB, but similar to third-order in-

terpolation, and cheaper than pure neural network predictions

since it prunes out queries that fall into tiles, i.e., non-voxels.

As an additional benchmark test we implemented a simple ray-

marcher that operates on [Hash, 5, 4,NN(3)], see Figure 14. Ren-

dering of the bunny model with [Hash, 5, 4, 3] using the zeroth-

order sampler took 75 ms, first-order sampler took 97 ms, and the

third-order sampler took 1660 ms, compared to 1316 ms for the

[Hash, 5, 4,NN(3)] grid. This benchmark test illustrates that while

NeuralVDB can replace OpenVDB for run-time applications like

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:14 • D. Kim et al.

Table 2. List of Input Grid Statistics for SDF Models and Density Volumes: OpenVDB File Sizes for both Raw 32-bit Precision with No Compression and

16-bit Precision with Blosc Compression [The Blosc Development Team 2020] in MB, NeuralVDB File Size with 16-bit Precision with Blosc Compression

in MB, Number of Total Parameters (Both Learnable and Static) of Neural Networks, Number of False Positive Patches for the Classifiers, Compression

Ratio Comparing 16-bit Compressed File Sizes, and Evaluation Metrics Including IoU and mCD for the Selected SDF Volumes,

and RMSE for the Selected Density Volumes

Name Num. Active Voxels Effective Res. VDB Raw VDB Comp. [Hash,5,NN(4),NN(3)] Num. Params Num. Patches Comp. Ratio IoU mCD RMSE

Bunny 5,513,993 628 × 621 × 489 33.3 15.2 0.2 125,379 0 61.2 0.999 0.072 -

Armadillo 22,734,512 1276 × 1519 × 1160 137.7 63.5 1.5 752,274 9,402 41.3 0.998 0.115 -

Dragon 23,347,893 2023 × 911 × 1347 140.0 65.0 1.8 889,868 9,172 36.2 0.997 0.125 -

Lucy 61,305,123 1866 × 1073 × 3200 679.7 167.5 3.3 1,184,774 134,360 50.1 0.998 0.138 -

EMU 96,956,688 1481 × 2609 × 1843 541.8 232.3 5.7 2,661,894 71,793 40.9 0.999 0.106 -

Thai Statue 141,166,655 2358 × 3966 × 2038 1522.8 377.5 13.6 3,812,364 759,320 27.8 0.997 0.249 -

Space 165,909,193 32844 × 24702 × 9156 950.2 439.7 14.3 5,995,044 344,405 30.8 1.000 0.169 -

Crawler 181,196,266 2619 × 511 × 2149 846.2 254.3 18.5 9,160,716 118,464 13.8 0.996 0.174 -

Smoke Plume 11,111,873 254 × 500 × 319 31.4 24.1 0.9 459,622 2,616 26.7 - - 0.081

Bunny Cloud 19,210,271 577 × 572 × 438 139.7 43.8 0.9 323,014 41,395 48.0 - - 0.073

Chameleon 93,994,042 1016 × 1012 × 700 445.1 160.2 1.1 592,387 10 140.9 - - 0.025

Disney Cloud 1,487,654,107 1987 × 1351 × 2449 3947.5 1491.5 25.0 11,825,176 293,110 59.6 - - 0.080

Table 3. List of Input Grid Statistics for Animated SDF Models and Density Volumes: OpenVDB File Sizes for both Raw 32-bit Precision with No

Compression and 16-bit Precision with Blosc Compression [The Blosc Development Team 2020] in MB, NeuralVDB File Size with 16-bit Precision with

Blosc Compression in MB, Number of Total Parameters (both Learnable and Static) of Neural Networks, Number of False Positive Patches for the

Classifiers, Compression Ratio Comparing 16-bit Compressed File Sizes, and Evaluation Metrics Including IoU and mCD for the Selected SDF Volumes,

and RMSE for the Selected Density Volumes

Name Num. Active Voxels Effective Res. VDB Raw VDB Comp. [Hash,5,NN(4),NN(3)] Num. Params Num. Patches Comp. Ratio IoU mCD RMSE

LeVeque’s Test Min 7,084,662 572 × 547 × 547 81.1 19.6 0.6 333,699 8 - 0.954 0.133 -

Max 29,117,298 1351 × 1155 × 1155 325.4 78.5 6.4 3,336,990 2,929 - 1 0.345 -

Mean 17,700,052 1053.7 × 970.6 × 970.6 201.2 48.5 3.3 1,718,383 91 14.7 0.992 0.167 -

Smoke Plume Min 9,462,168 231 × 493 × 319 27.2 20.5 1.4 673,126 2,126 - - - 0.071

Max 11,453,882 272 × 500 × 319 32.0 24.7 1.4 673,126 4,828 - - - 0.075

Mean 10,658,599 254.0 × 496.3 × 319.0 30.0 23.0 1.4 673,126 3,870 17 - - 0.073

Tornado Min 7,084,010 321 × 284 × 447 27.1 16.8 0.4 213,350 819 - - - 0.025

Max 7,909,306 303 × 305 × 447 27.4 18.0 0.4 213,350 4,223 - - - 0.035

Mean 7,342,839.5 312.9 × 309.3 × 446.6 27.2 17.3 0.4 213,350 2,537 40.5 - - 0.03

Dust Impact Min 34 163 × 139 × 25 0.0 0.0 0.3 180,582 2 - - - 0

Max 25,553,596 716 × 855 × 339 89.2 55.8 2.1 1,083,492 16,872 - - - 0.034

Mean 13,160,681.80 630.4 × 720.1 × 227.3 46.7 28.5 1.5 771,442 5,105 18.8 - - 0.009

Ship Breach Min 29,539,953 1295 × 204 × 1440 296.5 76.2 4.0 2,056,716 8,496 - 0.989 0.095 -

Max 54,216,738 1728 × 1419 × 1970 596.6 145.2 12.1 6,170,148 96,707 - 0.998 0.265 -

Mean 41,325,814 1490.7 × 727.3 × 1793.7 488.4 112.7 6.1 2,844,612 26,584 18.4 0.995 0.131 -

Table 4. List of Hyperparameters used in All the Experiments, Including Subdomain Size (in Voxel Dimension for a Cubic Subdomain),

the Number of Layers and Neurons Per Layer for the Level-1 Classifier (L-1 Net.), the Tile Value Regressor,

and the Level-0 Classifier (L-0 Net.), and the Voxel Value Regressor

Subdomain Size L-1 Net. Tile Val. Net. L-0 Net. Voxel Val. Net. Activation/Freq. FFM Scale/Size Learning Rate LR Decay/Interval Max. Epochs Sample Interval Batch Size

Bunny 1024 3×48 - 3×96 3×96 sin / 3.0 5.0/192 0.001 0.975/100 2500 1 216

Armadillo 1024 3×48 - 3×96 3×96 sin / 3.0 5.0/192 0.001 0.975/100 2500 1 216

Dragon 1024 3×64 - 3×128 3×128 sin / 1.5 10.0/256 0.001 0.975/100 2500 1 216

Lucy 2048 3×128 - 3×256 3×256 sin / 1.5 10.0/256 0.001 0.975/100 2500 1 216

EMU 2048 3×192 - 3×384 3×384 ReLU 10.0/384 0.001 0.75/1000 10000 500 212

Thai Statue 2048 3×128 - 4×256 3×256 sin / 1.5 10.0/512 0.001 0.975/100 2500 1 216

Space 2048 3×96 - 3×192 3×192 ReLU 10.0/384 0.001 0.975/100 2500 1 216

Crawler 1536 3×192 - 4×384 4×384 ReLU 20.0/768 0.0002 0.75/1000 6000 100 216

Bunny Cloud 1024 3×64 3×16 3×192 3×192 sin / 3.0 5.0/192 0.001 0.975/100 2500 1 216

Chameleon 1024 3×128 - 3×256 3×256 sin / 3.0 10.0/256 0.001 0.975/100 2500 1 216

Disney Cloud 1536 3×256 3×128 4×512 4×512 sin / 2.0 20.0/512 0.001 0.75/1000 10000 500 212

LeVeque’s Test 1024 3×96 - 3×192 3×192 sin / 1.5 2.0/192 0.001/0.0002 0.975/100 2500 1 216

Smoke Plume 512 3×48 3×16 3×256 3×256 sin / 3.0 10.0/384 0.001/0.0001 0.975/100 2500 1 216

Dust Impact 512 3×48 3×16 3×128 3×128 sin / 1.5 15.0/192 0.001 0.975/100 2500 1 216

Tornado 512 3×48 3×16 3×128 3×128 sin / 1.5 15.0/256 0.001 0.975/100 2500 1 216

Ship Breach 1024 3×96 - 3×192 3×256 sin / 1.5 10.0/384 0.001/0.001 0.975/100 5000 1 216

The activation function is either sin or ReLU, and if sin is used, the frequency parameters are noted. All these examples were trained using FFM, and the mapping scale and
feature size are shown as well. Finally, learning rate (LR), LR decay rate and its interval, resampling interval, and maximum epochs for each example are listed. For the
animation examples (LeVeque’s Test, Smoke Plume, Ship Breach, Dust Impact, and Tornado), two different learning rates are shown where the first value is the initial
(cold-start) learning rate whereas the second value is for the refinement (warm-start).

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:15

Fig. 15. Visualization of different neural representation methods on various SDF geometries.

rendering that require in-memory random access, it does come

with a performance tradeoff which is comparable to the higher-

order samplers. All results were measured with a single NVIDIA

A40 GPU.

4.5 Random Sampling Error

We already showed the quantitative measurement of the Neu-

ralVDB’s reconstruction accuracy in Tables 2 and 3, and the qual-

itative visualization in Figures 11 and 12. Here, we show a further

experiment where we compare the sampling errors between con-

ventional grid-based interpolation methods and NeuralVDB con-

suming the same amount of memory. We first create a NanoVDB

grid initialized with a simplex noise function. We also generate a

NeuralVDB grid with approximately the same “in-memory” foot-

print, which is trained with the same noise function. We then gen-

erate 1 M random sampling points and perform zeroth, first-order,

and third-order queries to the NanoVDB grid and the voxel value

regression for the NeuralVDB grid. We measure RMSE error for

each sampling strategy to evaluate their accuracy compared to the

ground truth noise function. The results are shown in Table 7. We

can observe that the accuracy goes up when higher-order methods

are used, and NeuralVDB can have better performance than even

the third-order cubic sampling result.

4.6 Comparison

The goal of this article is to effectively encode volumetric data

with good reconstruction quality. Therefore, we designed our com-

Fig. 16. Rate-distortion plot for different neural representation methods.

parison experiments to focus on how well a given method can re-

construct volumes with low-quality loss for the same model sizes.

We compared NeuralVDB with three different neural represen-

tation methods, including Neural Geometric Level of Details

(NGLOD) [Takikawa et al. 2021], Variable Bitrate Neural Fields

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:16 • D. Kim et al.

Table 5. Encoding/decoding Performance Measured using

Multiple GPUs for the Static Volumes

Encoding Time Decoding Time

GPUs 1 2 4 1 2 4

Bunny 32.020 - - 1.683 - -

1.000 - - 1.000 - -

Armadillo 84.262 46.123 44.632 6.897 - -

1.000 1.827 1.888 1.000 - -

Dragon 66.244 38.506 33.369 7.913 - -

1.000 1.720 1.985 1.000 - -

Lucy 85.650 58.407 - 25.530 17.036 -

1.000 1.466 - 1.000 1.499 -

EMU 151.618 91.497 - 43.943 30.367 25.176

1.000 1.657 - 1.000 1.447 1.745

Thai Statue 148.361 104.713 99.304 75.917 51.958 24.852

1.000 1.417 1.494 1.000 1.461 3.055

Space 158.421 101.308 75.100 79.580 51.995 41.334

1.000 1.564 2.109 1.000 1.531 1.925

Crawler 284.042 156.179 110.086 103.198 59.391 44.362

1.000 1.819 2.580 1.000 1.738 2.326

Bunny Cloud 55.614 - - 5.181 - -

1.000 - - 1.000 - -

Chameleon 74.923 - - 22.678 - -

1.000 - - 1.000 - -

Disney Cloud 709.446 431.065 285.415 397.376 269.628 180.088

1.000 1.646 2.486 1.000 1.474 2.207

The timing in seconds and relative scaling factor is presented for each volume.

Table 6. Random Access Performance Measured for NanoVDB (Zeroth,

First, and Third-order Interpolation), NeuralVDB ([Hash, 5, 4, NN(3)]),

and Pure Neural Networks (Same Structure as the Voxel Value Regressor

of the NeuralVDB) in Milliseconds

Name NanoVDB (0) NanoVDB (1) NanoVDB (3) NeuralVDB Neural Net

Bunny 0.107 0.287 4.548 2.762 40.481

Armadillo 0.073 0.169 3.916 3.634 44.320

Dragon 0.068 0.166 3.850 6.174 50.245

Lucy 0.072 0.135 3.513 1.313 79.199

EMU 0.090 0.282 4.068 6.506 94.817

Thai Statue 0.073 0.178 3.897 6.740 95.810

Space 0.058 0.155 3.763 5.797 49.250

Crawler 0.159 0.968 5.034 10.345 156.831

Bunny Cloud 0.074 0.217 4.579 11.325 59.108

Chameleon 0.086 0.241 3.239 9.653 71.046

Disney Cloud 0.122 0.533 4.397 24.617 191.327

For each static test model, 1M random samples with batch size of 216 were
generated within the model’s bounding box.

Table 7. RMSE Measured for both NanoVDB and NeuralVDB

([Hash, 5, 4, NN(3)]) where both Grids Encode a Fractal Brownian

Motion Field [Vivo and Lowe 2015]

Method NanoVDB (0) NanoVDB (1) NanoVDB (3) NeuralVDB

RMSE 0.206 0.157 0.149 0.133

For NanoVDB, four different sampling methods are tested (zeroth, first, and
third-order interpolation). Both NanoVDB and NeuralVDB have similar
“in-memory” footprint. For each test model, 1M random samples with batch size of

216 were generated within the model’s bounding box.

(VBNF) [Takikawa et al. 2022a], and Instant Neural Graphics

Primitives (INGP) [Müller et al. 2022], as they provide compact

neural representations using dedicated data structures (octree for

NGLOD and VBNF or hash grid for INGP) as well as quantization

(VBNF). We used Kaolin Wisp as a reference implementation for

these three methods [Takikawa et al. 2022b].

For the encoding process, the input was a mesh, and the output

was a trained SDF neural model. In the case of NeuralVDB, the in-

put mesh was converted into a narrow-band level set using Open-

VDB’s vdb_tool. Other methods used Kaolin Wisp’s mesh sam-

pler, which utilizes an octree data structure for generating samples.

While the CPU-based mesh sampler is available as part of the open

source repository, we also acquired a private GPU implementation

of the mesh sampler from the authors of the library. We included

both performance results from the public and private codes in our

comparison. For the decoding (reconstruction) process, the input

was the trained model, and the output was a volume represented in

OpenVDB format. For non-NeuralVDB methods, we densely sam-

pled the bounding boxes and extracted a narrow band of the SDF

volume to reconstruct VDB grids.

In the first comparison experiment, we made each method pro-

duce similar model sizes to NeuralVDB for a given input mesh.

We tested with three different input meshes (Bunny, Armadillo,

and Dragon) and evaluated the IoU, mCD, encoding, and decoding

times. The reported encoding time includes the following steps:

reading and processing of the input mesh, generation of samples,

training of the model, and compression/serialization of the model

to disk. Similarly, the decoding times measure deserialization of

the model, inference, and writing back to the VDB data structure.

The results are summarized in Table 8 and visualized in Figure 15.

NeuralVDB achieved the best performance with respect to most

of the metrics, both in terms of quality and encoding/decoding

timings. A notable exception is the encoding time of the Dragon

model where NGLOD with private GPU mesh sampler code was

the fastest. Among the non-NeuralVDB methods, INGP achieved

the best accuracy and decoding performance, since this method

was specifically designed for fast inference with a hash grid that

can utilize larger feature dimensions for better reconstruction

quality.

In the second comparison experiment, we compared the rate

distortion plot, which measures the distortion loss for different

compression levels. We used mCD for the distortion loss and the

model size of the compression level. We used the Bunny model

as the input for each method. As shown in Figure 16, the results

were consistent compared to the first experiment above, where

NeuralVDB showed better accuracy (lower mCD) across different

compression levels. Among the other methods, NGLOD performed

better than other non-NeuralVDB methods as it can effectively

leverage sparsity of the volume distribution. The INGP does show

better accuracy over other methods for the smallest model size,

and it converges slower than NGLOD with more model parame-

ters. The VBNF also performed worse than NGLOD, which is ex-

pected as it has been found perform better on NeRF representa-

tions but exhibits high-frequency errors on SDF models [Takikawa

et al. 2022a].

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:17

Table 8. Performance Comparison of Different Neural Representation Methods on Various SDF Geometries

Model File Size (MB) IoU mCD Encoding (Public/Private) (sec.) Decoding (sec.)

Bunny NGLOD 0.2 0.966 0.516 96.318 / 99.078 8.815

34,835 vertices VBNF 0.2 0.980 0.762 182.459 / 163.218 24.722

INGP 0.2 0.992 0.449 630.898 / 342.754 8.063

NeuralVDB 0.2 0.997 0.122 62.048 1.683

Armadillo NGLOD 1.8 0.984 0.853 193.397 / 119.767 82.909

172,976 vertices VBNF 1.7 0.941 1.084 1365.301 / 1055.914 1065.290

INGP 1.8 0.989 0.767 1690.559 / 358.348 47.917

NeuralVDB 1.5 0.998 0.115 88.558 6.897

Dragon NGLOD 1.9 0.773 1.032 2121.700 / 157.234 140.994

5,832,139 vertices VBNF 1.8 0.929 1.313 9203.716 / 1133.834 1205.431

INGP 1.8 0.969 0.784 45833.001 / 435.927 70.087

NeuralVDB 1.8 0.997 0.125 191.716 7.913

All inputs were mesh geometries. The encoding timings include generating samples from input meshes. For non-NeuralVDB methods, we
included both public open source version of the mesh sampler (Public) as well as the private GPU-accelerated version of the mesh sampler
(Private) that we acquired from the authors. While NeuralVDB supports multi-GPU encoding and decoding, single GPU is used for all the
experiments for the comparison.

Note that the comparisons in these experiments were conducted

solely on SDF representations. We couldn’t directly compare

density volume encodings with the existing methods, as they only

support SDF or NeRF models. However, these methods also ad-

dress sparsity using their own approaches, such as octrees or hash

grids, in contrast to the VDB tree in NeuralVDB. Nonetheless, Neu-

ralVDB has demonstrated superior performance, although its ad-

vantage in terms of sparsity diminishes in denser volumes like

clouds, compared to truncated SDFs. For these denser volumes,

all methods would need to increase their capacity, either by ex-

panding the MLP network to be wider and deeper or by increas-

ing the feature vector dimension. In the case of INGP, the size of

the hash table is also crucial. Therefore, we maintain that there

will likely be a performance gap between NeuralVDB and other

methods.

5 DISCUSSION

In this article, we presented NeuralVDB, a new, highly compact

VDB framework using hierarchical neural networks. We combined

the effectiveness of the standard sparse VDB structure and the

highly efficient compression capability of neural networks. To

further leverage the high compression ratio of neural networks,

we use them to encode both voxel values as well as the topol-

ogy (i.e., node and tile connectivity) of the two lowest levels of

the tree structure itself. This results in a novel representation,

dubbed [Hash, 5,NN(4),NN(3)], that reduces the memory foot-

print of the already compact VDB, with up to a factor of 100 in

some cases. We also propose a NeuralVDB configuration, denoted

[Hash, 5, 4,NN(3)], which balances memory reduction and random

access performance. While both configurations feature highly at-

tractive characteristics in terms of the reduced memory footprints,

they are by no means silver bullets. More to the point, we are not

proposing that NeuralVDB can replace standard VDBs for all appli-

cations. In fact, we primarily recommend [Hash, 5,NN(4),NN(3)]

as a very efficient but lossy offline representation.

As indicated already there are some limitations to NeuralVDB

that we seek to improve in future work. While NeuralVDB can en-

code and decode most of the examples in a couple of minutes, some

examples like the Disney Cloud takes nearly five minutes to en-

code and three minutes to decode. Also, the random query perfor-

mance is comparable to the third-order interpolation of NanoVDB,

but still slower than the first-order sampler, which is typically used

in computer graphics applications. We expect to achieve improved

performance by further reducing the size of the neural networks,

e.g., by means of improved feature mapping like neural hash en-

coding [Müller et al. 2022] and/or applying mixed-precision in-

ference. Specifically for encoding/training, data-driven approaches

like MetaSDF [Sitzmann et al. 2020a] can help warm starting the

training process. Such warm starting feature has already been

leveraged in our animated examples with great success. Also, while

most of the offline compressors like Zlib [Gailly and Adler 2004] or

Blosc [The Blosc Development Team 2020] have a few control pa-

rameters, NeuralVDB has even more hyperparameters that need

to be specified for optimal performance. This usability issue can

be improved by systematic/automated parameter selection, poten-

tially using data-driven approaches. Additionally, in the context

of the temporal encoder, although initializing the network with

the previous frame significantly diminishes artifacts, there is still

a noticeable level of reconstruction artifacts present. Lastly, Neu-

ralVDB shares one fundamental limitation with NanoVDB, notably

not shared with the standard VDB, namely that it assumes the tree

and its values to be fixed. This is an assumption that we also plan

to relax in future work.

APPENDICES

A RANDOM ACCESS IN VDB

Random (i.e., coordinate-based) access to values in a VDB struc-

ture is fast (on average constant time) due to a unique caching

mechanism and the fact that the tree structure has a fixed depth of

only four levels. Whenever a random value query is performed, a

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

20:18 • D. Kim et al.

Fig. 17. Comparison of the effects that sparse vs. dense representations have on training of sparse volumes. The left image is trained with a dense grid with

no sparsity information. The middle image is trained with a sparse blocked grid, but without active voxel masks. The right image is trained with a VDB grid

that offers both sparse nodes and active voxel masks. All experiments were trained with the same network architecture and hyper-parameters.

value accessor caches all the nodes visited. For subsequent queries,

the cached nodes are initially visited bottom-up, and the first node

that contains the new query point is used as the starting point for

a top-down traversal, which also updates the cache with newly vis-

ited nodes. Consequently, a value accessor effectively performs a

bottom-up, versus a traditional top-down, tree traversal, which is

very fast for typical access patterns, like Finite-Difference stencils

that are spatially coherent.

B NANOVDB

The open source C++ implementation of VDB, dubbed Open-

VDB, makes use of several libraries that only work on CPUs, or

more to the point not on GPUs. NanoVDB [Museth 2021] ad-

dressed this limitation by offering C++ and C99 implementations

of the VDB tree structure without any external library depen-

dencies. Consequently, NanoVDB runs on both CPUs and GPUs,

and supports most graphics APIs including CUDA, DX12, OptiX,

OpenGL, OpenCL, Vulcan, and GLSL. However, one limitation

is that NanoVDB assumes the topology of the tree to be static,

which follows from the entire tree can be serialized (or linearized)

into a single continuous block of memory. Other than GPU sup-

port, NanoVDB offers another advantage over OpenVDB, namely

in-memory compression by means of variable bit-rate quantiza-

tion with dithering to randomize the inevitable quantization noise.

This typically reduces the memory footprints of NanoVDB vol-

umes by a factor of 4–6 relative to OpenVDB representations, at

the cost of small quantization errors and the assumption of fixed

trees, which is ideal for especially rendering and some simulation

applications.

C EFFECT OF TRAINING WITH SPARSITY

INFORMATION

As an ablation study, we performed an experiment where the

Bunny Cloud model is trained on (1) a dense grid, (2) a block grid

(represented by dense leaf nodes in a VDB tree), and (3) sparse vox-

els represented by the active voxel in a VDB grid. We trained these

models with identical configurations including the MLP architec-

ture as well as training parameters. As shown in Figure 17, the

results from the dense grid contain the highest amount of noise,

whereas the other models show much better visual quality. The

noise is still visible in the blocked (2) fog volume, which does not

make use of the active voxel masks in VDB. However, when using

the sparse VDB voxel representation (3), the same network can ef-

fectively reconstruct the model with low noise.

D EFFECT OF ACTIVATION FUNCTIONS

While the ReLU activation function works for most of the cases,

we noticed that different activation functions could affect the re-

construction quality as well as the convergence rate. In our exper-

iments, the ReLU works great for flat, structured, or artificial mod-

els, while the sin and tanh function can work better for smooth or

unstructured models as shown in Figure 18. Furthermore, although

it is redundant to the Fourier feature mapping, we noticed that the

sin function, as shown in SIREN [Sitzmann et al. 2020b] also can

be used for specific smooth and unstructured models and also ac-

celerate the convergence compared to ReLU or tanh functions.

E HEURISTIC ESTIMATION OF HYPER-PARAMETERS

Table 4 lists several hyperparameters for NeuralVDB that impact

both accuracy and efficiency. In this section, we elaborate on the

effect of each hyperparameter and provide heuristics for determin-

ing their values.

The subdomain size affects both training accuracy and time. If

too large, most of the subdomains will be empty, wasting comput-

ing resources. If the domain is too small, the cost of dispatching

query points can be non-negligible, and overlapping halo regions

can become dominant, which in turn results in redundant com-

putation. We picked a subdomain size for each experiment with a

multiple of 512, which proved sufficient to efficiently subdivide the

examples studies in this paper.

For the network parameters, level-1 networks use half of the

width of the level-0 networks. We found that for most examples,

three layers were sufficient for the desired tolerances, while four

layers are used for volumes with more details to capture. As men-

tioned in D, we used either sin or ReLU activations depending on

how smooth or structured the input volume is. The frequency of

sin activation ranged from 1.5 to 3.0.

The parameters for Fourier feature mapping are determined

by the width of the network. For a wide network, which nor-

mally means there are high-frequency details to capture, the same

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:19

Fig. 18. Comparison of the effect of sin (middle column) and ReLU activation functions (right-most column) for the Armadillo example. The ground truth

model (left) has both smooth geometry as well as flat surfaces from the coarse input mesh. The sin activation function tends to smooth out the sharp edges

while ReLU can introduce more high-frequency noise.

number of mapped features (FFM size) to the network width and

a larger FFM scale are used (see Section 3.2.2).

The sampling strategy for the batches was either drawing 216

random samples for each epoch or resampling a subset of input

voxels for a given interval and drawing smaller batches (212) for

each epoch. In the latter case, the number of a subset to be resam-

pled is determined by the number of resampling intervals (either

100 or 500 in our examples) times batch size. This resampling is

used when fine details with thin structures are critical.

For the network optimizer, a learning rate of 0.001 was used

for most of the experiments, except the Crawler model which has

uniquely complex geometric features. We decayed the learning

rate with 0.975 with an interval of 100 when no subset resampling

was used. When we performed the resampling, we used a decay

rate of 0.75 with an interval of 1,000. The number of maximum

epochs was 2,500 for non-resampled cases. More epochs were used

for the resampled cases.

In general, for less artificially shaped geometry or small vol-

umes, a level-0 network with width 128, depth 3, sin activation

with frequency 1.5, matching feature mapping size with the width,

and FMM scale of 5 or greater proved to be a good starting point.

(Level-1 network should be half of the width.) Similar to our ex-

amples, a learning rate of 0.001, decay rate and interval of 0.975

and 100, and maximum epochs of 2,500 with a batch size of 216

should be sufficient for most cases. For a structured geometry or

a volume with high-frequency details, wider networks with the

subset resampling approach and its parameter set from one of our

examples should be a good baseline.

ACKNOWLEDGEMENTS

We thank Nvidia for supporting this project and in particular

Christopher Horvath, Alexandre Sirois-Vigneux, Greg Klar,

Jonathan Leaf, Andre Pradhana, and Wil Braithwaite for the

water simulation and rendering of Ship Breach, and Nuttapong

Chentanez, Matthew Cong, Stefan Jeschke, Eric Shi, Ed Quigley,

and Byungsoo Kim for proofreading our article. We also thank to

Towaki Takikawa, Or Perel, and Clement Fuji Tsang for their help

on conducting the comparison experiment using Kaolin Wisp

[Takikawa et al. 2022b].

REFERENCES
Felix Achilles, Alexandru-Eugen Ichim, Huseyin Coskun, Federico Tombari, Soheyl

Noachtar, and Nassir Navab. 2016. Patient MoCap: Human pose estimation under
blanket occlusion for hospital monitoring applications. Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference,
491–499.

Adam W. Bargteil, Tolga G. Goktekin, James F O’brien, and John A. Strain. 2006. A
semi-Lagrangian contouring method for fluid simulation. ACM Transactions on
Graphics 25, 1 (2006), 19–38.

Narasimha Boddeti, Yunlong Tang, Kurt Maute, David W. Rosen, and Martin L. Dunn.
2020. Optimal design and manufacture of variable stiffness laminated continuous
fiber reinforced composites. Scientific Reports 10,1 (2020), 16507.

Sofien Bouaziz, Andrea Tagliasacchi, Hao Li, and Mark Pauly. 2016. Modern tech-
niques and applications for real-time non-rigid registration. In Proceedings of the
SIGGRAPH ASIA 2016 Courses. 1–25.

A. Brock, Th. Lim, J. M. Ritchie, and N. Weston. 2016. Generative and discriminative
voxel modeling with convolutional neural networks. CoRR abs/1608.04236 (2016).

Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape mod-
eling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2019).

Nuttapong Chentanez and Matthias Müller. 2011. Real-time Eulerian water simulation
using a restricted tall cell grid. ACM Transactions on Graphics 30, 4 (2011), 1–10.

Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. 2020. On the effectiveness
of weight-encoded neural implicit 3D shapes. arXiv:2009.09808. Retrieved from
https://arxiv.org/abs/2009.09808

Jean-loup Gailly and Mark Adler. 2004. Zlib compression library. (2004).
P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec. 2021. Baking

neural radiance fields for real-time view synthesis. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV’21). 5855–5864.

Rama Karl Hoetzlein. 2016. GVDB: Raytracing sparse voxel database structures on the
GPU. In Proceedings of the High Performance Graphics. 109–117.

Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken Museth.
2006. Hierarchical RLE level set: A compact and versatile deformable surface rep-
resentation. ACM Transactions on Graphics 25, 1 (2006), 151–175.

Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. 2006. Efficient
simulation of large bodies of water by coupling two and three dimensional tech-
niques. ACM Transactions on Graphics 25, 3 (2006), 805–811.

Arthur Jacot, Franck Gabriel, and Clement Hongler. 2018. Neural tangent kernel: Con-
vergence and generalization in neural networks. Advances in Neural Information
Processing Systems 31 (2018).

JangaFX. 2020. EmberGen VDB Dataset. Accessed: 2022-02-15.
Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv:1412.6980. Retrieved from https://arxiv.org/abs/1412.6980
Heiner Kirchhoffer, Paul Haase, Wojciech Samek, Karsten Müller, Hamed

Rezazadegan-Tavakoli, Francesco Cricri, Emre B. Aksu, Miska M. Hannuk-
sela, Wei Jiang, Wei Wang, Shan Liu, Swayambhoo Jain, Shahab Hamidi-Rad,

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

https://arxiv.org/abs/2009.09808
https://arxiv.org/abs/1412.6980

20:20 • D. Kim et al.

Fabien Racapé, and Werner Bailer. 2021. Overview of the neural network
compression and representation (NNR) standard. IEEE Transactions on Circuits
and Systems for Video Technology 32, 5 (2021), 3203–3216.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The case
for learned index structures. In Proceedings of the 2018 International Conference on
Management of Data. 489–504.

Didier Le Gall. 1991. MPEG: A video compression standard for multimedia applica-
tions. Communication of the ACM 34, 4 (1991), 46–58.

Minjae Lee, David Hyde, Michael Bao, and Ronald Fedkiw. 2018. A skinned tetrahe-
dral mesh for hair animation and hair-water interaction. IEEE Transactions on
Visualization and Computer Graphics (2018).

Minjae Lee, David Hyde, Kevin Li, and Ronald Fedkiw. 2019. A robust volume con-
serving method for character-water interaction. In Proceedings of the 18th annual
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1–12.

Randall J. Leveque. 1996. High-resolution conservative algorithms for advection in
incompressible flow. SIAM Journal on Numerical Analysis 33, 2 (1996), 627–665.

Yuanzhan Li, Yuqi Liu, Yujie Lu, Siyu Zhang, Shen Cai, and Yanting Zhang. 2022. High-
fidelity 3D model compression based on key spheres. arXiv:2201.07486. Retrieved
from https://arxiv.org/abs/2201.07486

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural sparse voxel fields. Advances in Neural Information Processing Systems 33,
(2020), 15651–15663.

Zihao Liu, Tao Liu, Wujie Wen, Lei Jiang, Jie Xu, Yanzhi Wang, and Gang Quan. 2018.
DeepN-JPEG: A deep neural network favorable JPEG-based image compression
framework. In Proceedings of the 55th Annual Design Automation Conference. 1–6.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. ACM Transactions on Graphics 23, 3 (2004), 457–
462.

Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao, Shiqi Wang, and Shanshe
Wang. 2019. Image and video compression with neural networks: A review. IEEE
Transactions on Circuits and Systems for Video Technology 30, 6 (2019), 1683–1698.

Jessie Maisano. 2003. CT Scan of a Chameleon. Accessed: 2022-02-15.
Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,

and Gordon Wetzstein. 2021. ACORN: Adaptive coordinate networks for neural
scene representation. arXiv:2105.02788. Retrieved from https://arxiv.org/abs/2105.
02788

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and An-
dreas Geiger. 2019a. Occupancy networks: Learning 3d reconstruction in function
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 4460–4470.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and An-
dreas Geiger. 2019b. Occupancy networks: Learning 3D reconstruction in func-
tion space. In Proceedings IEEE Conference on Computer Vision and Pattern
Recognition.

Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack, Mahsa Baktashmotlagh, and
Anders Eriksson. 2019. Implicit surface representations as layers in neural net-
works. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
4743–4752.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields
for view synthesis. In Proceedings of the European Conference on Computer Vision.
Springer, 405–421.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. 2021. Finite basis physics-
informed neural networks (FBPINNs): A scalable domain decomposition ap-
proach for solving differential equations. arXiv:2107.07871. Retrieved from https:
//arxiv.org/abs/2107.07871

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022.
Instant neural graphics primitives with a multiresolution hash encoding.
arXiv:2201.05989. Retrieved from https://arxiv.org/abs/2201.05989

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural importance sampling. ACM Transactions on Graphics 38, 5 (2019),
1–19.

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural con-
trol variates. ACM Transactions on Graphics 39, 6 (2020), 1–19.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
neural radiance caching for path tracing. ACM Transactions on Graphics 40,
4 (2021), 36:1–36:16.

Ken Museth. 2011. DB+Grid: A novel dynamic blocked grid for sparse high-resolution
volumes and level sets. In Proceedings of the ACM SIGGRAPH 2011 Talks (Vancou-
ver, British Columbia). ACM, New York, NY, 1 pages.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology.
ACM Transactions on Graphics 32, 3 (2013), 1–22.

Ken Museth. 2021. NanoVDB: A GPU-friendly and portable VDB data structure for
real-time rendering and simulation. In Proceedings of the ACM SIGGRAPH 2021
Talks. 1–2.

Michael B. Nielsen and Ken Museth. 2006. Dynamic tubular grid: An efficient data
structure and algorithms for high resolution level sets. Journal of Scientific Com-
puting 26, 3 (2006), 261–299. DOI:https://doi.org/10.1007/s10915-005-9062-8

Renato Pajarola and J. Rossignac. 2000. Compressed progressive meshes. IEEE Trans-
actions on Visualization and Computer Graphics (2000).

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 165–174.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An imperative style, high-performance
deep learning library. In Proceedings of the Advances in Neural Information
Processing Systems. H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.), Curran Associates, Inc., 8024–8035. Re-
trieved from http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Danping Peng, Barry Merriman, Stanley Osher, Hongkai Zhao, and Myungjoo Kang.
1999. A PDE-based fast local level set method. Journal of Computational Physics
155, 2 (1999), 410–438.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. 2020. Convolutional occupancy networks. In Proceedings of the European
Conference on Computer Vision. Springer, 523–540.

William B. Pennebaker and Joan L. Mitchell. 1992. JPEG: Still Image Data Compression
Standard. Springer Science & Business Media.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Ham-
precht, Yoshua Bengio, and Aaron Courville. 2019. On the spectral bias of neu-
ral networks. In Proceedings of the International Conference on Machine Learning.
PMLR, 5301–5310.

Shunsuke Saito, Liwen Hu, Chongyang Ma, Hikaru Ibayashi, Linjie Luo, and Hao Li.
2018. 3D hair synthesis using volumetric variational autoencoders. ACM Transac-
tions on Graphics 37, 6 (2018), 1–12.

Mirko Sattler, Ralf Sarlette, and Reinhard Klein. 2005. Simple and efficient
compression of animation sequences. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. Association for Com-
puting Machinery, 209–217.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans-
actions on Graphics 33, 6 (2014), 1–12.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Ge-
offrey E. Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. In Proceedings of the ICLR (Poster).

Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein.
2020. Metasdf: Meta-learning signed distance functions. Advances in Neural Infor-
mation Processing Systems 33, (2020), 10136–10147.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-
zstein. 2020. Implicit neural representations with periodic activation functions.
Advances in Neural Information Processing Systems 33, (2020), 7462–7473.

John Strain. 2001. A fast semi-Lagrangian contouring method for moving interfaces.
Journal of Computational Physics 170, 1 (2001), 373–394.

Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire,
Alec Jacobson, and Sanja Fidler. 2022a. Variable bitrate neural fields. In ACM
SIGGRAPH 2022 Conference Proceedings. 1–9.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
geometric level of detail: Real-time rendering with implicit 3D shapes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
11358–11367.

Towaki Takikawa, Or Perel, Clement Fuji Tsang, Charles Loop, Joey Litalien, Jonathan
Tremblay, Sanja Fidler, and Maria Shugrina. 2022b. Kaolin Wisp: A PyTorch Li-
brary and Engine for Neural Fields Research. Retrieved April 4th, 2023 from
https://github.com/NVIDIAGameWorks/kaolin-wisp

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
2020. Fourier features let networks learn high frequency functions in low dimen-
sional domains. NeurIPS (2020).

Danhang Tang, Mingsong Dou, Peter Lincoln, Philip Davidson, Kaiwen Guo, Jonathan
Taylor, Sean Fanello, Cem Keskin, Adarsh Kowdle, Sofien Bouaziz, et al. 2018.
Real-time compression and streaming of 4d performances. ACM Transactions on
Graphics 37, 6 (2018), 1–11.

Danhang Tang, Saurabh Singh, Philip A. Chou, Christian Hane, Mingsong Dou, Sean
Fanello, Jonathan Taylor, Philip Davidson, Onur G. Guleryuz, Yinda Zhang, et al.
2020. Deep implicit volume compression. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 1293–1303.

The Blosc Development Team. 2020. Blosc. Accessed: 2022-02-04.
Sébastien Valette and Rémy Prost. 2004. A wavelet-based progressive compres-

sion scheme for triangle meshes: Wavemesh. IEEE Transactions on Visualization
and Computer Graphics 10, 2 (2004), 123–129. https://doi.org/10.1109/TVCG.2004.
1260764

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

https://arxiv.org/abs/2201.07486
https://arxiv.org/abs/2105.02788
https://arxiv.org/abs/2107.07871
https://arxiv.org/abs/2201.05989
https://doi.org/10.1007/s10915-005-9062-8
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/NVIDIAGameWorks/kaolin-wisp
https://doi.org/10.1109/TVCG.2004.1260764

NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks • 20:21

Patricio Gonzalez Vivo and Jen Lowe. 2015. The book of shaders: Fractal brownian
motion. Patricio Gonzalez Vivo, https://thebookofshaders.com/13 (2015).

Ignacio Vizzo, Tiziano Guadagnino, Jens Behley, and Cyrill Stachniss. 2022. Vdbfusion:
Flexible and efficient tsdf integration of range sensor data. Sensors 22, 3 (2022),
1296.

Walt Disney Animation Studios. 2017. Disney Clouds Dataset. Accessed: 2021-
12-09.

Magnus Wrenninge, Chris Allen, Sosh Mirsepassi, Stephen Marshall, Chris Burdorf,
Henrik Falt, Scot Shinderman, and Doug Bloom. 2020. Field3D. Retrieved from
https://github.com/imageworks/Field3D

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. 2021.
Density-aware chamfer distance as a comprehensive metric for point cloud com-
pletion. arXiv:2111.12702. Retrieved from https://arxiv.org/abs/2111.12702

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural fields in visual computing and beyond. Computer Graphics Forum (2022).
DOI: https://doi.org/10.1111/cgf.14505

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelNeRF: Neural
radiance fields from one or few images. In Proceedings of the CVPR.

Zongwei Zhou, Jae Shin, Lei Zhang, Suryakanth Gurudu, Michael Gotway, and Jian-
ming Liang. 2017. Fine-tuning convolutional neural networks for biomedical im-
age analysis: Actively and incrementally. In Proceedings of the IEEE Conference on
Computer vision and Pattern Recognition. 7340–7351.

Received 21 November 2022; revised 18 December 2023; accepted 9 January

2024

ACM Trans. Graph., Vol. 43, No. 2, Article 20. Publication date: February 2024.

https://thebookofshaders. com/13
https://github.com/imageworks/Field3D
https://arxiv.org/abs/2111.12702
https://doi.org/10.1111/cgf.14505

