
Near-realtime Facial Animation by Deep 3D Simulation
Super-Resolution

HYOJOON PARK, University of Wisconsin-Madison, Madison, USA

SANGEETHA GRAMA SRINIVASAN, University of Wisconsin-Madison, Madison, USA

MATTHEW CONG, NVIDIA, Santa Clara, USA

DOYUB KIM, NVIDIA, Santa Clara, USA

BYUNGSOO KIM, NVIDIA, Zürich, Switzerland

JONATHAN SWARTZ, NVIDIA, Santa Clara, USA

KEN MUSETH, NVIDIA, Santa Clara, USA

EFTYCHIOS SIFAKIS, University of Wisconsin-Madison, Madison, USA and NVIDIA, Santa Clara, USA

Fig. 1. From left to right: Facial animation resulting from low-resolution simulation (Coarse), embedding low-resolution 3D mesh (red) simulating at 30.06

FPS, result of our simulation super-resolution framework (Ours), result from a corresponding off-line high-resolution simulation (Target), conforming high-

resolution 3D mesh simulating at 0.16 FPS. Note the similarities between our result (Ours) and that from the high-resolution simulation (Target), which

both differ from the result obtained by the low-resolution simulation (Coarse), especially around the mouth and chin area. Our simulation super-resolution

achieves an effective 18.46 FPS, i.e., 115× faster than the high-resolution simulation. The low- and high-resolution meshes have 73 thousand and 1.9 million

tetrahedra, respectively, corresponding to a coarsening of 27×, and both simulations are accelerated with CUDA. ©NVIDIA.

Authors’ Contact Information: Hyojoon Park; e-mail: hpark376@wisc.edu, Univer-
sity of Wisconsin-Madison, Madison, Wisconsin, USA; Sangeetha Grama Srinivasan;
e-mail: sgsrinivasa2@wisc.edu, University of Wisconsin-Madison, Madison, Wiscon-
sin, USA; Matthew Cong; e-mail: mdcong@cs.stanford.edu, NVIDIA, Santa Clara, Cal-
ifornia, USA; Doyub Kim; e-mail: doyubkim@gmail.com, NVIDIA, Santa Clara, Cali-
fornia, USA; Byungsoo Kim; e-mail: contact.byungsoo@gmail.com, NVIDIA, Zürich,
Switzerland; Jonathan Swartz; e-mail: jonathanswartz@gmail.com, NVIDIA, Santa
Clara, California, USA; Ken Museth; e-mail: ken.museth@gmail.com, NVIDIA, Santa
Clara, California, USA; Eftychios Sifakis; e-mail: sifakis@cs.wisc.edu, University of
Wisconsin-Madison, Madison, Wisconsin, USA and NVIDIA, Santa Clara, California,
USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2024/08-ART158
https://doi.org/10.1145/3670687

We present a neural network-based simulation super-resolution frame-

work that can efficiently and realistically enhance a facial performance

produced by a low-cost, real-time physics-based simulation to a level of de-

tail that closely approximates that of a reference-quality off-line simulator

with much higher resolution (27× element count in our examples) and accu-

rate physical modeling. Our approach is rooted in our ability to construct a

training set of paired frames, from the low- and high-resolution simulators

respectively, that are in semantic correspondence with each other. We use

face animation as an exemplar of such a simulation domain, where creating

this semantic congruence is achieved by simply dialing in the same muscle

actuation controls and skeletal pose in the two simulators. Our proposed

neural network super-resolution framework generalizes from this training

set to unseen expressions, compensates for modeling discrepancies

between the two simulations due to limited resolution or cost-cutting

approximations in the real-time variant, and does not require any semantic

descriptors or parameters to be provided as input, other than the result of

the real-time simulation. We evaluate the efficacy of our pipeline on a vari-

ety of expressive performances and provide comparisons and ablation ex-

periments for plausible variations and alternatives to our proposed scheme.

Our code is available at https://github.com/hjoonpark/3d-sim-super-

res.git.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0002-3796-9777
HTTPS://ORCID.ORG/0000-0001-6508-7256
HTTPS://ORCID.ORG/0000-0003-2956-2050
HTTPS://ORCID.ORG/0000-0002-8932-5519
HTTPS://ORCID.ORG/0000-0003-4482-8363
HTTPS://ORCID.ORG/0000-0003-1959-6396
HTTPS://ORCID.ORG/0000-0002-9926-780X
HTTPS://ORCID.ORG/0000-0001-5608-3085
mailto:permissions@acm.org
https://doi.org/10.1145/3670687
https://github.com/hjoonpark/3d-sim-super-res.git
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3670687&domain=pdf&date_stamp=2024-08-09

158:2 • H. Park et al.

CCS Concepts: • Computing methodologies → Neural networks;

Physical simulation;

Additional Key Words and Phrases: 3D super-resolution, physics-based

simulation, facial animation, deep learning

ACM Reference Format:

Hyojoon Park, Sangeetha Grama Srinivasan, Matthew Cong, Doyub Kim,

Byungsoo Kim, Jonathan Swartz, Ken Museth, and Eftychios Sifakis.

2024. Near-realtime Facial Animation by Deep 3D Simulation Super-

Resolution. ACM Trans. Graph. 43, 5, Article 158 (August 2024), 20 pages.

https://doi.org/10.1145/3670687

1 Introduction

Physics-based simulation is widely used to drive animations of

both human bodies and faces. However, in order to obtain the

highest levels of visual quality and realism, traditional simulation

pipelines based on anatomic first principles resort to costly design

choices. Detailed specifications of geometry and materials are

essential, including the muscle and tendon shapes and attachment;

bone geometry and motion; and constitutive properties of soft

tissue and skin. Collision and frictional contact are ubiquitous

in faces, and the resolution of such effects is dependent on mesh

detail and the sophistication of detection and response algorithms.

Finally, recreating intricate local shapes to match performance

details from real actors may impose further directability demands

on the simulation pipeline. Such feature demands in conjunction

with the sheer geometric mesh resolution necessary for detailed

facial expressions often place reference-quality face simulation

well beyond the cost that would allow for real-time performance.

This article explores an alternative approach to achieving faith-

ful and accurate facial animation at a much reduced execution cost,

ideally as close as possible to real-time. Our method (Figure 1)

seeks to convincingly approximate a full, high-resolution (HR)

3D simulation with the combination of a simulator that uses lower

resolution and model simplifications, paired with a deep neural net-

work that boosts the resolution, detail, and accuracy of this coarse

simulated deformation. Our simulation super-resolution (SR)

module is trained on a dataset of coordinated performances crafted

using the high- and low-resolution (LR) face simulators and gen-

eralizes to novel performances by boosting the output of the LR

simulator to the quality anticipated from its HR counterpart.

We aspire to create the best preconditions for the success of

such a SR module by focusing our attention on types of physics-

based simulations where it may be possible to craft animations

from the LR and HR simulators that have strong semantic corre-

spondence on a frame-by-frame basis. In other words, we look for

types of simulation where it might be possible to infer—at some

level of abstraction—what the fine-resolution simulation would

want to do, by observing what the LR simulator was able to do.

Face simulation is a good exemplar of this concept; regardless of

resolution, the same core drivers of deformation can be seen as be-

ing present in both cases: the action of muscles, and the kinematic

state of skeletal bones and other collision objects. This allows

us to create a training set by simply dialing in the same control

parameters for these driving factors of simulations both in the

LR and HR models. Hence, we can hope that this semantic corre-

spondence can be learned in a SR neural network that generalizes

this semantic correspondence between resolutions to unseen

performances.

We highlight that even “semantically corresponding” simulated

poses from the respective simulators described above can be quite

different. In particular, the LR result can deviate significantly

from the mere downsampling of the HR simulation, with dis-

crepancies extending beyond high-frequency details. There are

at least three core causes of such discrepancy: First, and most

obvious, the reduced mesh resolution of the coarser simulation

will be unable to resolve fine geometric features such as localized

folds, wrinkles, and bulges that the fine-resolution mesh would

capture. Second, the fact that governing physics and topology

have to be represented using a coarser discretization may create

bulk deviations from the expected behavior of the continuous

medium. For example, the action of thin muscles might have

to be dissipated over larger elements, reducing the crispness of

their action. Fine topological features like the corners of the lips

may be under-resolved, especially if at lower resolution we opt

for an embedding simulation mesh that does not conform to the

model boundary. Non-conforming embedded simulation offers

well-conditioned elements and improved convergence that is

attractive for real-time performance, but it also leads to a crude

first-order approximation of the material volume for elements on

the model boundary, leading to artificial stiffness and resistance

to bending. The third and final contributor to bulk discrepancy

between resolutions could be conscious design choices for the

sake of interactive performance; for example, we may choose to

perform elaborate contact/collision processing in our reference-

quality simulation but forego collision processing altogether

in the LR simulator (as in our examples). Thus, our SR module

must account for much more than localized high-frequency

deformation details and should compensate for all factors (mesh

resolution, discretization non-convergence, and physical sim-

plifications) of bulk differences between the two simulation

resolutions.

Our objective is to build a framework capable of producing high-

accuracy animations without incurring the cost of simulations on

HR meshes. We achieve this by training a deep neural network to

act as a SR upsampler of simulations performed on a coarser 3D

mesh. In practice, this allows for real-time simulations of facial an-

imations that preserve many of the qualities associated with much

slower HR simulations.

We simulate a coarse LR face mesh with significantly fewer

mesh elements allowing for real-time simulations and reconstruct

the HR details learned from data. Our upsampling module accounts

for both high-frequency details and bulk differences between res-

olutions, responses to dynamics and external forces, and can also

approximate a degree of collision response even if collision han-

dling is omitted from the LR simulator. Our end-to-end animation

attains near-realtime at 18.46 FPS from 30.06 FPS simulation and

47.82 FPS upsampling. We also emphasize that true real-time end-

to-end animation (i.e., 24 or more FPS) is attainable by scaling

down to coarser representations at a modest sacrifice of upsam-

pling accuracy (discussed more in Section 5.5.1).

Previous efforts to accelerate physics-based simulations of de-

forming elastic bodies have focused on building faster numeri-

cal methods [Hauth and Etzmuss 2001; Kharevych et al. 2006;

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

https://doi.org/10.1145/3670687

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:3

Stern and Grinspun 2009; Su et al. 2013], employing alternative

constraint-based formulations such as Position Based Dynamics

[Bender et al. 2013; Macklin et al. 2016; Müller et al. 2007] and its

variants [Bouaziz et al. 2014; Liu et al. 2013; Stam 2009], and other

techniques such as adaptively computing higher resolutions only

when needed [Bergou et al. 2007]. However, given the real-time

performance afforded by regular, embedded models for LR simula-

tions and the fast inferencing time of deep models, our framework

can reconstruct HR facial expressions faster and with reduced de-

velopmental effort.

We extend the concept of SR to the domain of physics-based

simulation, contrasting with most prior applications of this process

to purely geometric 3D models without regard to the fact the data

originated from simulation. We summarize our core contributions

as follows:

— We demonstrate a neural network-based pipeline that can

convincingly approximate a HR facial simulation, using as

input a real-time LR approximate simulation and a fast infer-

ence step that performs the resolution boost. We show that

this pipeline can robustly compensate for discrepancies be-

tween the two simulation resolutions extending beyond lo-

calized high-frequency deformation details.

— We identify the opportunity to create a training set for our

SR module with a high degree of semantic correspondence

between LR and HR simulation frames, by giving the two

simulators the same anatomical controls of muscle activa-

tions and bone kinematics.

— We demonstrate near-realtime performance of the end-to-

end pipeline, and a robust ability to generalize to expres-

sions not in the training set. We can even demonstrate this

ability on deformations that extend beyond the parametric

space used in the simulations that generated the training set

(e.g., dynamics, external forces, collisions, or constraints not

present in the training data).

2 Related Work

2.1 3D Super-Resolution

Our framework shares the motivation (and also adopts the termi-

nology) of SR approaches that operate in the domain of images.

SR was initially introduced for 2D images to restore HR images

from their LR observations [Nasrollahi and Moeslund 2014]. SR

for 3D shapes shares similar characteristics with several relevant

research areas.

Surface reconstruction. A closely related and widely studied area

is a surface reconstruction from sampled points [Alexa et al. 2003].

Prior research can be classified into two groups: global and lo-

cal methods. Global methods are more robust than local methods

against noise and sparsity of the observations but at the cost of

reconstruction accuracy, and vice versa. Global methods include,

namely, the radial basis function (RBF) [Carr et al. 2001; Ohtake

et al. 2005b; Turk and O’brien 2002] and Poisson problem [Kazh-

dan et al. 2006; Kazhdan and Hoppe 2013]. On the other hand, lo-

cal methods include MLS [Alexa et al. 2001, 2003; Fleishman et al.

2005], fitting of piecewise functions [Nagai et al. 2009; Ohtake et al.

2005a], and construction of signed distance functions [Curless and

Levoy 1996]. A comprehensive review of this topic can be found

in Berger et al. [2017].

Point cloud upsampling. Another widely studied area that resem-

bles several aspects of our work is point cloud upsampling, which

has been actively explored by both traditional and learning-based

methods for many applications such as robotics, autonomous cars,

and rendering [Zhang et al. 2022]. A pioneering approach is PU-

Net [Yu et al. 2018a] which operates on patches to learn per-point

multi-level features and expands them through a multi-branch

convolution network. Follow-up works include EC-Net [Yu et al.

2018b], 3PU [Yifan et al. 2019], PU-GAN [Li et al. 2019], PUGeo-

Net [Qian et al. 2020], and PU-GCN [Qian et al. 2021]. While all

the previous works supported only a fixed integer ratio of upsam-

pling, Meta-PU [Ye et al. 2021] pioneered in adapting to arbitrary

non-integer upsampling ratios.

Although we similarly adopt point cloud representations, we do

not assume the input and output points are from the same geome-

try which motivates us to carefully design the upsampling method

to adapt to the geometric discrepancy between the LR and HR

points and arbitrary non-integer upsampling ratios (Section 3.2

and more discussion in Section 5.5.2).

3D face SR. Existing works focusing on 3D face SR can be cat-

egorized as either method- or learning-based methods. Method-

based works include registration and filtering of the 3D acquisi-

tions [Berretti et al. 2012, 2014; Bondi et al. 2016], whereas learning-

based methods map from a LR model to its HR counterpart, namely,

via intermediate cylindrical coordinate representations [Peng et al.

2005], progressive resolution chain [Pan et al. 2006], database re-

trieval [Liang et al. 2014], curve fitting [Zhang et al. 2020], and

mapping from a set of rig parameters to the 2D deformation maps

[Bailey et al. 2020]. Recently, the problem was formulated as a

point cloud upsampling to predict z-coordinates of the HR face

point cloud given its (x ,y) coordinates; however, the upsampling

ratio is fixed by a factor of 2, and each (x ,y) coordinate can only

correspond to a unique z coordinate [Li et al. 2021].

In contrast to acquiring the LR surface data from a 3D scanner,

depth camera, or multi-view fusion, our work is rooted in a fast

but fully volumetric physics-based simulator which allows us to

provide as an input to our model a set of points that reach deep into

the flesh volume and convey richer information about deformation

and strain.

2.2 3D Super-Resolution in other Domains

3D SR has also been actively explored in different simulation

domains, namely, garments and fluids. Notably, garment surface

upsampling by learning of per-vertex deformations [Zurdo et al.

2012] and 2D normal map representations [Zhang et al. 2021] have

been explored. For fluids, procedural [Kim et al. 2008] and GAN-

based [Xie et al. 2018] methods have been explored to enhance the

resolution of the simulated coarse turbulent flows.

2.3 Coordinate-Based MLPs

We employ coordinate-based multilayer perceptrons (MLPs)

[Tancik et al. 2020] to model our upsampling (Section 3.2) and

reconstruction modules (Section 3.3). Coordinate-based MLPs

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:4 • H. Park et al.

Fig. 2. The overview of our pipeline for 3D simulation SR aiming at learning a mapping from a LR volumetric mesh to a HRsurface mesh. Our pipeline is

comprised of (1) FE, (2) CU, and (3) Surface Reconstruction modules. The input and output are sets of 3D displacement vectors from the LR and HR rest

pose shapes, respectively. ©NVIDIA.

learn a continuous mapping from input coordinates to signals

and have shown promising results for various visual tasks, such

as 3D shape representation [Jiang et al. 2020; Mescheder et al.

2019; Park et al. 2019; Saito et al. 2019], novel view synthesis

[Chan et al. 2021; Ma et al. 2021; Mildenhall et al. 2021], and SR

frameworks for images [Chen et al. 2021]. Coordinate-based MLPs

have also been employed to enforce physical constraints in the

SR framework for physics simulations and generate continuous

grid-free HR solutions from LR data [Esmaeilzadeh et al. 2020].

Recently, SIREN [Sitzmann et al. 2020] leverages periodic acti-

vation functions for implicit neural representations and has also

demonstrated superior expressivity (with principled initialization

scheme) in modeling continuous and fine-detailed signals in vari-

ous tasks [Chan et al. 2021; Ma et al. 2021; Yang et al. 2022].

2.4 Model Reduction Methods

Model reduction methods (also referred to as subspace simula-

tion methods) are used for accelerating physics simulations by

creating a lower dimensional representative subspace for the

full space degrees of freedom in the discretization of choice.

The subspace can be constructed by computing an appropriate

subspace basis for nonlinear models [Barbič and James 2005; Krysl

et al. 2001]. Extensions to accelerate force computations [An et al.

2008] or utilize an adaptive combination of the full space and

reduced subspace degrees of freedom [Teng et al. 2015] have also

been proposed. Furthermore, deep learning models have been

integrated with these subspace simulation methods employing

variational autoencoder [Fulton et al. 2019] and deep autoencoder

leveraging its high-order differentiability [Shen et al. 2021].

Recently, a framework to augment parametric skeletal models

with subspace soft-tissue deformations has been proposed [Tapia

et al. 2021] to combine the benefits of data-driven skeletal models

[Romero et al. 2017] and skinning-based subspace methods [Wang

et al. 2015]. Recently, reduced order models for material point

method using implicit neural representations were proposed to

construct low-dimensional manifolds of deformation fields [Chen

et al. 2023] as well as stress and affine fields [Zong et al. 2023].

The low-dimensional manifolds were subsequently employed in

conjunction with projection-based dynamics.

While our method and the class of model reduction methods

share the common goal of simulation acceleration, we propose a

complementary approach of using physics simulators augmented

with deep learning for simulation SR. Model reduction methods

have been almost exclusively demonstrated only on linear or

isotropic nonlinear constitutive models for passive bodies and re-

quire careful consideration to accommodate objects with varying

shapes.

To the best of our knowledge, there has been no prior work on

reduced-order modeling that accommodates anisotropic consti-

tutive models for active biomechanical systems such as muscles.

Incorporating anisotropic modeling and localized collision reso-

lution into the lower-dimensional subspaces computed for model

reduction methods, such as those proposed in Fulton et al. [2019]

and Shen et al. [2021], is non-trivial. It requires a separate line

of investigation and hinders their extensibility for accurate facial

animation. In contrast, physics simulators are well-known for sup-

porting anisotropic active models and resolving localized collisions

[Cong et al. 2016; Sifakis et al. 2005]. Our method utilizes a GPU-

accelerated physics simulator capable of meeting both of these

requirements. We demonstrate that our framework can achieve

accurate and detailed facial animation without sacrificing speed.

3 Method

tIn this section, we present the specific design choices for our

model architecture, aimed at learning to map from a LR volumetric

mesh to a HR surface mesh depicting the same facial expression

(Figure 2). The input LR volumetric mesh contains 15,872 vertices

and is derived from regular BCC (body-centered cubic) lattices

for real-time simulation leveraging on its sparse and regular

distribution of the vertices but with a compromise on accuracy

and visual fidelity (Figure 4(c)). On the other hand, the target HR

mesh contains 35,637 vertices and is a triangular mesh conforming

to a denser volumetric mesh capable of producing fine details

of deformations but at a significantly slower simulation speed

(Figure 4(b)). More information about the data generation is

outlined in Section 4.

We represent our input and output as a set of 3D displacement

vectors from a rest pose stacked in an arbitrary yet consistent

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:5

order. We divide our pipeline into three modules for (1) feature

encoding (FE), (2) coordinate-based upsampling (CU), and

(3) surface reconstruction. The hyperparameters are specified in

Appendix A.1.

3.1 FE Network

The FE network computes feature embedding for each input vector.

We first concatenate each input displacement vector with a posi-

tional encoding ∈ R32 using sine and cosine functions as done in

Transformers [Vaswani et al. 2017]. Then, the concatenated input

∈ RD0 (in our implementation, D0 = 35) goes through the submod-

ules of the FE network.

While deformations in the human face are primarily attributed

to the activation and motion of the underlying muscles and bones,

respectively, they can also be a result of deformations in other parts

of the face (e.g., a wide smile can cause the skin around the eyes

to fold); therefore, the localized per-vertex information of defor-

mation needs to be shared with other vertices. For this reason, we

model the submodules of the FE network with edge convolutional

layers, dubbed EdgeConv, introduced in DGCNN [Wang et al. 2019]

which is capable of aggregating neighborhood information in fea-

ture space rather than coordinate space by dynamically construct-

ing a k-NN graph in each layer.

We initialize the first k-NN graph of the network using geo-

desic distances based on the edge information of the LR mesh in

the rest pose. The subsequent graphs are constructed on the fly

in their learned feature spaces. The motivation is to encourage

capturing local spatial correlations in the first submodule and po-

tentially global feature correlations in the subsequent submodules

(discussed more in Section 5.5.4).

We apply max and average pooling on the intermediate outputs

from EdgeConv to extract global features. They are repeated and

concatenated with the outputs from EdgeConv and the preceding

input encoding feature, which are then passed through a shared

fully connected network. We repeat the submodule S = 2 times

with the intermediate outputs from one module passed as input

to the next. The output of the last submodule is concatenated

with all of the previous S intermediate features (including the

position-encoded input) to construct the final encoded feature.

Specifically, denoting the output of the sth submodule for the

ith LR mesh vertex as z
L
i ∈ RDs , the final encoded output has

the dimension of z
L
i ∈ R

∑S
s=0 Ds . In our implementation, we used

S = 2 with D1 = 64 and D2 = 128.

3.2 Coordinate-Based Upsampling Network

The upsampling network takes as the input a set of encoded

per-vertex features from the LR mesh and outputs per-vertex

features for the HR surface. To generalize over arbitrary and

non-integer upsampling ratios, we propose to formulate the up-

sampling operation as a continuous local interpolation of the input

features.

Formally, let the set of encoded features contributing to the up-

sampled jth feature be {zL
i }i ∈Nj

where z
L
i denotes the encoded

ith LR mesh feature, and Nj denotes a set of local interpolation

neighbors for the jth feature. Then, the upsampling operation can

Fig. 3. Illustration of finding the k nearest vertices {xL
1 , . . . , x

L
k
} (where

i, . . . , k ∈ Nj) on the LR mesh to the vertex x
H
j on the HR mesh using

geodesic distances. ©NVIDIA.

be expressed as

z
H
j =

∑
i ∈Nj

wi j z
L
i , (1)

where wi j indicates the contribution of the ith LR mesh feature

to the jth HR mesh feature. Different modeling options can be

explored for defining the local neighbors set Nj (e.g., number and

criteria of neighbors) and computing the interpolation weight

wi j (e.g., inverse distance weighting (IDW), RBF), which we

describe next.

Neighborhood locality. We define the local neighbors set Nj

as the indices of the k nearest LR mesh vertices from the jth

HR mesh vertex in terms of geodesic distances (illustrated in the

blue point cloud in center-bottom of Figure 2). Since the LR and

HR vertices do not live on the same surface, we first map the

LR vertices {xL
i } to the HR vertices (we temporarily denote the

resulting mapped vertices as {x′Li }) using the linear assignment

algorithm [Crouse 2016]. This finds the optimal one-to-one map-

ping between the LR and HR vertices by minimizing the mapping

distance (Euclidean). Then, we use Dijkstra’s algorithm to find the

k nearest mapped vertices {x′Li } (which directly corresponds to

the original LR vertices {xL
i }) for every HR vertex using the edges

of the HR surface mesh as paths (Figure 3). The local neighbor

information is pre-computed offline once. In this work, we use

k = 20 and additionally explore the effects of different values of k
in Section 5.5.

Weighting function. The weighting function w ′
i j = fθ (ui j) out-

puts the interpolation weight w ′
i j ∈ R for the ith LR mesh vertex

neighboring the jth HR mesh vertex, given some input vector ui j .

Conceptually, the HR surface mesh can be thought of as a dis-

cretization of a continuous and smooth limit-surface, i.e. its ver-

tices are approximations of the sampled points from the continu-

ous surface. Thus, one could sample an infinite number of contin-

uously varying features from any point on this surface. For this

reason, we model fθ as a trainable coordinate-based MLP where

we employ SIREN [Sitzmann et al. 2020] for its superiority in mod-

eling continuous (and differentiable) functions.

As the input to fθ (ui j), we provide the spatial information us-

ing a concatenated vector of coordinates of the HR and LR mesh

vertices (xH
j , x

L
i ∈ R3, respectively) and their mutual Euclidean

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:6 • H. Park et al.

distance, written as

ui j =
[
x

H
j , x

L
i ,
������xL

i − x
H
j

������
2

]
. (2)

Then, we normalize the output weight w ′
i j across the local neigh-

bors Nj using the softmax function σj and obtain the final interpo-

lation weight wi j , expressed as

wi j = σj

(
w ′

i j |
{
w ′

k j

}
k ∈Nj

)
=

ew ′
i j∑

k ∈Nj
e

w ′
k j

, (3)

for j = 1, . . . ,M and i ∈ Nj .

3.3 Surface Reconstruction Network

The surface reconstruction network predicts the per-vertex dis-

placements Δx
H
j from the upsampled features z

H
j . Since z

H
j implic-

itly inherits coordinate information x
H
j from the upsampling net-

work and to reconstruct fine deformation details on the HR surface,

we also model the surface reconstruction network using SIREN

[Sitzmann et al. 2020] to exploit its ability to model high-frequency

signals utilizing coordinate information. As the last step, the pre-

dicted deformations are added to the HR mesh in its rest pose to

reconstruct the final deformed HR surface.

We also note that we use a minimal modeling technique for the

surface reconstruction network not only to reduce the computa-

tional overhead for processing a relatively large number of HR

mesh vertices (>36k) but also because we assume all the informa-

tion needed for the fine-detailed surface reconstruction is to be

encoded in the LR mesh features.

3.4 Loss Function

We minimize the reconstruction loss Lr econ between the pre-

dicted and ground-truth per-vertex deformations of the HR surface

mesh denoted Δx̂
H
j and Δx

H
j , respectively:

Lr econ =

M∑
j=1

������Δx̂
H
j − Δx

H
j

������
1
. (4)

Moreover, we introduce the loss term Lf n for local smoothness

which encourages the face normal of triangles on the predicted and

target HR surface meshes (denoted n̂k and nk , respectively) to be

equivalent in terms of cosine similarity:

Lf n =

F∑
k=1

1 −
n̂k · nk

| |n̂k | | | |nk | |
, (5)

where F is the number of triangles on the HR surface mesh.

We also include the regularization term Lr eд to encourage the

encoded intermediate features {{z̄s,i }
N
i=1}

S
s=1 (Figure 2) to center

around 0, encouraging their prior to follow a multivariate normal

distribution [Chabra et al. 2020; Park et al. 2019]:

Lr eд =

S∑
s=1

N∑
i=1

| |z̄s,i | |F . (6)

We find that the face normal loss improves the visual fidelity of

the reconstructed face and the regularization term helps prevent

overfitting.

Fig. 4. (a) High-resolution surface model in dimensions of 289.0× 342.7×

291.1 [mm] w.r.t. x , y , and z axis, respectively, including the part of the

shoulder, (b) high-resolution simulation model (0.16 FPS simulation), (c)

LR simulation model (30.06 FPS simulation) for the near-realtime end-to-

end animation at 18.46 FPS, and (d) coarser LR simulation model (67.79

FPS simulation) for the true real-time end-to-end animation at 28.04 FPS.

©NVIDIA.

The final loss function L is written as

L = Lr econ + αLf n + βLr eд , (7)

where α and β are the scalar weight terms whose values are re-

ported in Table 4 of the Appendix.

4 Dataset Generation

In this section, we outline the process for acquiring the mesh mod-

els and attachment of muscle fibers, as well as our simulation

framework for synthesizing the dataset consisting of the LR vol-

umetric simulation mesh for flesh and the corresponding HR) sur-

face mesh for the face as shown in Figure 4.

4.1 Acquisition of Simulation Models

In this section, we explain the process for sculpturing our LR and

HR simulation models ((b) and (c) in Figure 4, respectively) which

are then used for generating semantically corresponding facial an-

imation dataset.

Anatomical model. Following prior common approaches [Cong

et al. 2015; Sifakis et al. 2005], we construct an anatomically and

biomechanically motivated simulation model of our subject’s face.

Given a HR neutral face mesh, we model the underlying anatomy

including the cranium, mandible, teeth, and a comprehensive set of

facial muscles with the aid of anatomical references. For each facial

muscle, we calculate volumetric fiber directions by first tetrahe-

dralizing the muscle and then applying the approach of Choi and

Blemker [2013]. Alternatively, a morphing approach such as Ali-

Hamadi et al. [2013] and Cong et al. [2015] can also be employed

to estimate the underlying anatomy.

High-resolution volumetric mesh. For our highest resolution

model, we create a tetrahedral simulation mesh consisting of 1.9

million tetrahedra [Molino et al. 2003] (Figure 4(b)) that conforms

to the HR neutral face mesh (Figure 4(a)) as well as the underly-

ing skull. We opted for a conforming tetrahedralized simulation

mesh in order to maximize deformation accuracy and minimize ar-

tificial stiffness often associated with non-conforming tetrahedra.

The tradeoff is the potential for less well-conditioned tetrahedra

and longer simulation times.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:7

LR volumetric mesh. For our LR model, we create a regular non-

conforming tetrahedralized simulation mesh consisting of 73 thou-

sand tetrahedra (Figure 4(c)), to be used in an embedded simulation.

We begin by voxelizing the HR conforming tetrahedron mesh at a

coarse granularity and discarding tetrahedra outside the regions

of the face most responsible for facial expression, including the

neck and the back of the head. Then, we subdivide each voxel into

eight regular tetrahedra. In constrast to our HR model, our non-

conforming regular LR model consists of regular well-conditioned

tetrahedra that enables us to target real-time simulation. In

order to avoid merging the upper and lower lips with our coarse

discretization, we separate the lips via linear blend skinning, pre-

deforming the HR conforming tetrahedralized simulation mesh

by a small rotation of the jaw joint along its axis. This results in

a rest configuration with the mouth slightly open; this necessary

modeling discrepancy is among the factors that our SR network

must compensate for (and is largely successful in doing so).

Muscle fibers and attachments. Following the prior approaches

of Cong et al. [2016] and Sifakis et al. [2005], we rasterize the vol-

umetric muscle fiber directions onto both the high- and LR simu-

lation meshes. Then, we specify anatomically-motivated cranium

and jaw attachments of the muscles on both simulation meshes via

Dirichlet boundary conditions. Finally, the HR neutral face mesh

(containing 61,520 vertices) is embedded in both the high and LR

simulation mesh, respectively, via barycentric weights enabling us

to deform the face mesh by interpolating vertex positions from the

respective deformed simulation mesh.

Discrepencies between high- and LR surfaces. Figure 5 illustrates

the discrepancies between the surface embedded in the simulated

LR mesh and the surface simulated using the conforming HR mesh.

Even though the two performances show semantic similarities,

there have both macroscopic (lips) and microscopic (forehead and

eyes) differences owing to simulation resolution.

4.2 Simulation Framework

We employ a CUDA-accelerated implementation of Cong et al.

[2016] as our simulation framework for both resolutions. This

framework endows the simulation mesh with the anisotropic

constitutive model consisting of three components for modeling

elasticity, incompressibility, and muscle contractions [Teran et al.

2003] as well as optional kinematic muscle tracks for additional

expressivity and directability. Both the finite element forces and

the track spring stiffnesses are parameterized to be invariant to

mesh refinement in order to maintain consistent bulk behavior

across resolutions. Given a set of control parameters and (option-

ally) kinematic muscle tracks, we calculate the deformation of the

tetrahedralized simulation mesh using the quasistatic framework

of Teran et al. [2005], factoring in object and self-collisions for the

HR simulation. In contrast, we forgo collision handling in our LR

simulation for the sake of robustness and performance.

HR dataset. Prior to synthesizing our HR dataset, we ran simu-

lations targeting a wide range of facial performance capture data

as well as a set of 31 artist-sculpted blendshapes [Cong et al. 2016]

using our HR anatomical model. This allowed us to validate that

our simulation can accurately reproduce the performance range of

Fig. 5. The face surface embedded in the non-conforming low-resolution

volumetric mesh with 73 thousand tetrahedra (left) deviates significantly

from the same surface simulated using a conforming HR mesh with 1.9 mil-

lion tetrahedra (right), even though both deformations are parameterized

using the same blend shape weights and jaw transformation. We zoom

into different regions of the face to highlight macro and microscopic dis-

crepancies. ©NVIDIA.

the actor while also outputting a corresponding set of 31 kinematic

muscle blendshapes. These kinematic muscle blendshapes are com-

bined into a blendshape muscle rig which can be used to deform

the kinematic muscle tracks and control the simulation. In addition,

we also express the simulation control parameters in terms of the

blendshape weights thus extending our simulation framework to

be fully differentiable [Bao et al. 2019].

Using the Gauss-Newton optimization proposed in Sifakis

et al. [2005] in conjunction with Bao et al. [2019], we solve for

four sequences of high-fidelity facial performance capture data

corresponding to four different semantic themes (amazement,

anger, fear, and pain) totaling 880 frames using our HR simulation

mesh. This results in a simulated HR simulation and surface mesh,

as well as time-varying blend shape weights and jaw transforms

for each performance.

Low-resolution dataset. Since our facial muscles are in corre-

spondence between the HR and LR, we can use the same blend

shape muscle rig to drive the LR simulation and synthesize a cor-

responding LR dataset. We use the blend shape weights and jaw

transforms resulting from the HR optimization as input into our

LR simulation and run the quasistatic solver to obtain the corre-

sponding LR tetrahedral simulation mesh deformations across all

four sequences. The discrepancies between the surfaces embedded

in the simulated LR mesh and conforming HR mesh, respectively,

are illustrated in Figure 5 of Section 4.1.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:8 • H. Park et al.

5 Experiments and Evaluation

We report performance metrics in terms of reconstruction speed

(Section 5.1) and as well as quantitative and qualitative reconstruc-

tion errors (Section 5.2). We use the unseen performances in the

test set to evaluate the generalization capacity of the trained model.

We also evaluate our framework’s ability to generalize to unseen

dynamics and forces (Section 5.3). Additionally, we present the ex-

perimental results pertaining to the utilization of blendshape in-

puts as a substitute for the LR physics-based simulator in generat-

ing the input LR tetrahedral mesh (Section 5.4).

We also conduct ablation experiments. In Section 5.5.1, we

explore the tradeoffs in the reconstruction performance of our

model when trained using the coarser LR volumetric mesh

capable of attaining the true real-time end-to-end animation at

28.04 FPS as compared to our recommended near real-time at

18.46 FPS. In Section 5.5.2, we explore how the submodules of

our framework, namely FE and CU modules, contribute to the

reconstruction accuracy, and, in Section 5.5.3, evaluate the effects

of using different interpolation neighbors Nj for the CU network

and different neighbors k for the k-NN graph from the FE network.

Then in Section 5.5.4, we qualitatively evaluate the correlations

among different parts of the face learned by the EdgeConv layers

in the FE submodules.

In addition, we investigate our framework’s capability to ap-

proximate self-collisions between the upper and lower lips in Sec-

tion A.3, and we conduct ablation experiments to assess the impact

of incorporating higher degrees of wrinkle details on the target sur-

face mesh in Section A.5.

5.1 Near-Realtime High-Resolution Facial Animations

Simulations speed. The average time to simulate the HR con-

forming simulation with 1,944,549 tetrahedral elements is 6.22s per

frame or a frame rate of 0.16 FPS. Conversely, the average time to

simulate the LR embedding mesh with 73,128 tetrahedral elements

is 0.033s, corresponding to 30.06 FPS, i.e. 188× faster than the HR

simulation. These simulation times are recorded on a workstation

with a single GeForce RTX 4090 GPU.

SR inference speed. To approximate the HR surface from the LR

simulation, we need to infer the HR displacements from our model.

The computational overhead of our model inference on a single

GeForce RTX 4090 GPU is 0.0209s per frame, corresponding to

47.82 FPS for inference alone.

End-to-end speed and additional performance boosting. Conse-

quently, our simulation SR framework takes a total of 0.054 FPS

per frame, or 18.46 FPS, which implies that we achieve a speedup

of 115× relative to the HR simulation that takes 6.22s per frame

(0.16 FPS). We emphasize that there are multiple ways to bridge

the gap from near-realtime, e.g., 18.46 FPS, to true real-time, i.e.,

24 or more FPS.

First and foremost, using a coarser LR simulation mesh can eas-

ily attain the true real-time end-to-end animation given tolerance

to a minute tradeoff in the quality of reconstructions which our

current LR mesh enjoy (we explore the tradeoff in Section 5.5.1).

Similarly, we can also achieve faster inference time by choosing

to use fewer interpolation neighbors in the CU module but with a

Fig. 6. Frame-wise mean surface reconstruction error of unseen facial ex-

pressions for each tested model. Our method (in red line) achieved the

lowest mean error across every test frame.

tradeoff in the overall reconstruction accuracy (see Section 5.5), as

we identify the bottleneck of inference is the neighborhood infor-

mation gathering step in the CU module.

On the other hand, while adhering to the strict bar for the

permissible reconstruction quality, we could pipeline the LR

simulation and inference steps using a 2 GPU workstation. In

such a set up, we could achieve an end-to-end speed of 30.06 FPS

after tolerating a single frame latency. Conversely, we could also

move away from the inference library (we use ONNX Runtime for

PyTorch) and implement custom inference kernels on GPUs that

speed up computation.

5.2 Generalization to Unseen Facial Expressions

Using the simulation data, generated as described in Section 4, we

select the amazement and pain sequences for training (435 frames)

and test on anger and fear sequences (445 frames), ensuring that

the test set contains unseen performances. We use the trained

model to infer the HR face surface from unseen LR volumetric

mesh performances in the test set.

Quantitative evaluation. As we have access to the HR simula-

tions of the test data, we can readily compute the reconstruction

error in terms of per-point Euclidean distance between the

reconstructed and the target (reference) mesh whose dimension is

179.8 × 257.3 × 164.5 [mm] (Figure 4). We also set up other com-

monly used reconstruction methods to serve as comparisons for

our method. We train a β-VAE [Higgins et al. 2016], on the same

dataset to serve as a baseline generative neural framework compar-

ison. We implement two of the commonly used surface reconstruc-

tion methods: the RBF and moving least-square (MLS)-based

methods as the representative global and local methods, respec-

tively, where we employ the Gaussian function for RBF. Lastly,

we compare with Deep Detail Enhancement (DDE) framework

[Zhang et al. 2021] as the representative state-of-the-art SR frame-

work for 3D garment surfaces which uses normal maps to synthe-

size plausible wrinkle details on a coarse geometry. The formula-

tions for RBF and MLS along with details on the β-VAE and DDE

can be found in Section A.2.1, A.2.2, A.2.3, and A.2.4, respectively.

Our method outperformed the others and robustly achieved the

lowest mean reconstruction errors per frame <0.59mm. We plot

the frame-wise mean reconstruction errors of the comparisons to

validate that our method has the least error for every test perfor-

mance in Figure 6. The evaluation result is summarized in Table 1.

Qualitative evaluation. In Figure 7, we evaluate the visual fi-

delity of the inferred face mesh by visualizing the reconstructed

HR surfaces and heatmaps of corresponding reconstruction errors

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:9

Fig. 7. Our method can generalize to unseen facial expressions and reconstruct the target face with high accuracy compared to the standard embedded

surface and other tested models (β -VAE, RBF, MLS, and DDE). The second and third rows show the left eye and mouth zoomed-in, respectively. The heatmaps

visualizing the reconstruction errors are shown in the respective last rows. In the last row is frame 9 where our model has the largest reconstruction error

across frames particularly near the lips (See Figure 6 for frame-wise mean errors). ©NVIDIA.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:10 • H. Park et al.

Table 1. Descriptive Statistic Measures of Mean Surface

Reconstruction Errors (in Millimeters) on Unseen Facial

Expressions for Each Tested Model

[mm] Mean Median Std. Max. Min.

Ours 0.37 0.36 0.07 0.59 0.24

Embedded 0.80 0.77 0.13 1.40 0.55

β -VAE 0.94 0.87 0.25 1.60 0.46

RBF 1.10 1.08 0.13 1.57 0.77

MLS 1.09 1.07 0.14 1.58 0.74

DDE 1.01 0.99 0.12 1.58 0.78

for all the methods. Our method can infer the target facial expres-

sion from the input LR volumetric mesh more faithfully than other

methods, allowing us to conserve both the expression and the sub-

tle deformation details that otherwise would have been compro-

mised by using the LR simulation.

5.3 Generalization Beyond Parametric Space

We test the ability of our framework to handle deformations that

extend beyond the parametric space used in simulations. To eval-

uate, we simulate the LR simulation mesh with unseen dynamics

and external forces, respectively, and qualitatively evaluate the in-

ference accuracy.

5.3.1 Unseen Dynamics. To evaluate our model’s capability in

generalizing to non-quasi-static simulations, we simulate the dy-

namics of the LR simulation mesh using a semi-implicit backward

Euler scheme. This allows us to model ballistic effects that are not

present in our training dataset which was simulated under the

quasi-static assumption. We further exaggerate the ballistic effects

in the simulation by shaking the head back and forth in conjunc-

tion with the muscle contractions and jaw motion.

We compare the reconstructed surface inferred from the input

mesh with unseen dynamics (middle row of Figure 8(b)) and the

reference surface conforming to the quasi-static simulation mesh

(middle row of Figure 8(a)). Also, we visualize heatmaps showing

average facial deformations across the training data (top row of

Figure 8(c)) and the deformation differences between the predicted

and reference surfaces, respectively (middle row of Figure 8(c)). We

highlight that although the nose shows little or no deformations

throughout the training data (thus, showing the nose as a dark

blue region in the first heatmap), our model is capable of inferring

them from the unseen input (showing as a lighter blue region in

the second heatmap).

Similarly, we visualize the dynamic simulations (with yaw rota-

tion motions of the head) and their reconstructions in a time se-

quence in Figure 9 along with the heatmaps (Figure 9(e)–(f)) show-

ing deformation differences between the quasi-static/dynamic sim-

ulation meshes (Figure 9(a)/(b)), and also the reference conforming

quasi-static surface (Figure 9(c)) and the reconstructed surface in-

ferred from the dynamic LR simulation mesh (Figure 9(d)), respec-

tively. Regions with distinctive facial deformations of the inferred

faces (Figure 9(e)) are in line with the deformed regions of the input

simulation meshes (Figure 9(f)), implying generalizations beyond

the quasi-static simulation data.

5.3.2 Unseen Forces. We craft two quasi-static simulation

examples with external forces applied on the rest pose mesh

(Figure 8(d)). In the first example (Figure 8(e)), we apply a spring

force pulling the side of the lips. This force can also be interpreted

as a candy cane pulling on one side of the lips. In the second

example (Figure 8(f)), we collide the LR simulation mesh with a

sphere, pushing the cheek inward. The LR performances, recon-

ciled by the simulator, are given as input to our framework. The

predictions indicate that our framework is able to handle inputs

that have deformations not seen in the training performances.

Moreover, for side-by-side comparisons, we visualize the surface

mesh embedded in the LR simulation mesh in Appendix A.4.

5.4 Experiments with Blendshape Inputs

Employing a LR physics-based simulator for producing the input

mesh is perfectly affordable and absorbs much of the nonlineari-

ties in mapping from the simulation parameters (e.g., muscle acti-

vations) to the input mesh. Moreover, incorporating dynamics or

external forces into the input mesh is a straightforward application

for the physics-based simulator, providing an inherent advantage

to its usage. Additionally, our SR framework can produce intended

facial expressions of the HR surface mesh from its semantically cor-

responding LR input while compensating for topological discrep-

ancies and can extrapolate to unseen physical effects after being

trained only on purely quasi-static simulations.

In this section, we further investigate whether our SR frame-

work can still predict the intended facial expressions from a non-

physics-based LR input animated using blendshapes. Specifically,

we conduct two experiments employing the blendshape system as

a replacement for the LR physics-based simulator. First, we con-

struct volumetric blendshapes of our LR input mesh and gener-

ate the training dataset using a blendshape animator, instead of

the physics simulator. We also go a step further and use the low-

dimensional blendshape weights to approximate the HR facial per-

formances by training a decoder-style neural network with around

628×more trainable parameters than our method. The architecture

of the neural network is specified in Appendix A.2.5. We highlight

that in both approaches, incorporating dynamics or external forces

into the input mesh presents significant challenges compared to

the straightforward application of the LR physics-based simulator,

which inherently confers an advantage to its use.

In the following subsections, we describe our blendshape sys-

tem setup used for constructing the volumetric blendshapes and

weights for producing facial performances. Then, we provide the

evaluation results of the two approaches.

5.4.1 Construction of Low-Resolution Tetrahedral Mesh Blend-

shapes. For each blendshape in the blendshape muscle rig con-

structed in Section 4.2, we set its weight to 1.0 and zero out the

remaining weights in order to obtain the kinematic muscle defor-

mation corresponding to solely that blendshape. Then, we run the

quasi-static solver to obtain the muscle-driven deformation of the

LR tetrahedral mesh which is then stored as the corresponding LR

tetrahedral mesh blendshape.

Volumetric blendshape animation as input. In the first scenario,

we use the tetrahedral mesh animated using the blendshape

weights constructed in Section 4.2 as input, as a replacement for

the LR physics-based simulator. We then re-initialize and train our

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:11

Fig. 8. We test the ability of our framework to handle deformations that extend beyond the parametric space used in the simulation by visualizing the

inferred surfaces from unseen dynamics (left) and unseen external forces (right) (Section 5.3). ©NVIDIA.

Table 2. Descriptive Statistic Measures (Normalized Mean, Median,

Standard Deviation, and Min/max Values for Each Method) of Mean

Surface Reconstruction Errors (in Millimeters) on Unseen Facial

Expressions

[mm] Mean Median Std. Max. Min.

Low-res. sim. (Ours) 0.37 0.36 0.07 0.59 0.24

Blendshape animation 0.51 0.50 0.07 0.75 0.36

Blendshape weights 0.95 0.95 0.23 1.75 0.37

existing neural network (Section 3) to learn to predict the corre-

sponding HR surface mesh.

Blendshape weights as lower-dimensional input. In the second

scenario, we directly use the blendshape weights of the facial per-

formances as inputs, bypassing the use of the simulator. To achieve

this, we construct a fully connected neural network with ample

capacity (443,840,125 trainable parameters) to learn the mapping

from 38-dimensional blendshape weight vector (comprised of 31

blendshapes weights and a 7-dimensional vector for the rigid trans-

formation of the jaw - quaternion and a translation vector) to the

HR surface mesh.

5.4.2 Evaluation Results. We infer the HR surface mesh in the

test dataset and plot the framewise errors for both methods and

ours utilizing the LR physics-based simulator. We overlay the

plots in Figure 6 to highlight the overall difference. As shown in

Figure 10 and detailed in Table 2, using the blendshape weights as

inputs (in blue) yields the largest reconstruction error compared

to the other two methods (in red and green). We explain the

larger error by noting that the neural network, despite having

628× more learnable parameters than our method, must learn the

blendshapes and produce accurate jaw transformations - tasks

that the blendshape animator can easily produce.

On the other hand, using the input tetrahedral mesh produced

by the blendshape animator (in green) leads to marginally higher

error when compared to using the LR physics-based simulator

(in red). This finding aligns with our expectations, given that the

physics-based simulator can generate an input mesh that more

faithfully adheres to the target surface mesh, accommodating

the highly nonlinear and intricate nature of the physics-based

simulations.

Notably, relying on blendshape weights as inputs often leads

to difficulties in generalizing to unseen jaw transformations. This

is clearly observed in the close-up side view of the mouth in the

3rd row of Figure 11(d), where the red background highlights the

reconstruction difference between the target mesh (Figure 11(a)).

Employing the blendshape animator helps to mitigate this issue by

generating the LR tetrahedral mesh with accurate jaw motions, as

depicted in Figure 11(c). Nevertheless, using the LR physics-based

simulator demonstrates the superior performance in faithfully

predicting the target facial deformations, particularly evident

in the close-up front views of the mouth in the 2nd rows of

Figure 11(a)–(c).

5.5 Additional Experiments

In this section, we compare the quality of reconstructed faces in-

ferred by our model trained using the original LR simulation mesh

with 73k elements (Figure 4(c)) and another one trained using a

coarser LR simulation mesh with 34k elements (Figure 4(d)). The

coarser mesh attains the true real-time end-to-end animation at

28.04 FPS (67.79 FPS simulation and 47.82 FPS inference) on the

same hardware setup.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:12 • H. Park et al.

Fig. 9. Visualization of sequential frames. From top to bottom: The LR input meshes simulated using (a) a quasi-static and (b) dynamic scheme with left-

and-right head spin motions. (c) The HR target faces conforming to the HR quasi-static simulation mesh. (d) Reconstructed surfaces inferred from (b). (e)/(f)

The heatmaps showing deformation differences between the meshes {(a), (b)} and {(c), (d)}, respectively. ©NVIDIA.

Fig. 10. Frame-wise mean surface reconstruction error of unseen facial

expressions of the three scenarios (using the LR physics-based simulator,

blendshape animator, and direclty using the blendshape weights) overlaid

on the plot in Figure 6.

Furthermore, we evaluate the contributions of our FE

(Section 3.1) and CU (Section 3.2) modules. We explore the

effects of the key parameters in each of the two modules, namely,

the neighbors k in the FE module and the interpolations neigh-

bors in the upsampling module, respectively. Additionally, we

qualitatively validate the correlations among different parts of the

face learned by our FE network.

5.5.1 Comparison with Coarser Low-Resolution Simulation

Mesh. For training, we use the same hyperparameters as the train-

ing on the original LR simulation mesh. Following the same proce-

dure in Section 5.2, we evaluate the surface reconstruction errors

on the unseen facial expressions in the test dataset.

Fig. 11. Visualization of (a) the target surface mesh and its reconstructions

predicted by the three different methods using (b) the LR physics-based

simulator (ours), (c) blendshape animator, and (d) blendshape weights. The

3rd row shows close-up side views of the mouth where the target is shown

as the red background and highlights the reconstruction difference. The

reconstruction error heatmaps are shown in the last row. ©NVIDIA.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:13

Fig. 12. Comparisons of the surface reconstruction qualities by our model

trained using the original LR simulation mesh (73k elements) and a coarser

mesh with half the resolution (34k elements), respectively. We visualize the

reconstructed surfaces in (a) and (b). ©NVIDIA.

As shown in the error plot of Figure 12, using the coarser

LR mesh expectedly attains slightly larger reconstruction errors

across most of the frames compared to the original mesh. We ob-

serve increased artifacts in the inferred surfaces especially around

the mouth regions in Figure 12(a)-(b). We highlight that, in practice,

Fig. 13. We visualize predictions on a test performance from three

models—our proposed framework (b), model with FE module excluded (c)

and model with the CU module replaced (d). The same test performance,

simulated in HR is visualized in (a). ©NVIDIA.

true real-time end-to-end animation is easily attainable had we tol-

erated a minute deterioration of the reconstruction quality which

could become unnoticeable to human eyes with different render-

ing techniques such as using texture map as opposed to a plain

diffuse rendering. However, we choose to adhere to the current

resolution for the robustness of generalization capabilities beyond

the parametric space used in the simulation (e.g., unseen dynam-

ics and external forces), given that true real-time animation is also

attainable, in practice, had we tolerated one frame latency.

5.5.2 Contributions of FE and Coordinate-Based Upsampling

Modules. We evaluate the contributions of the FE and CU modules

by excluding them (one at a time). We compare the predictions on

test performances.

Specifically, we train three different models using the same

dataset and hyperparameters for the same number of epochs

(1000). The first model we train includes both the FE and CU mod-

ules (our proposed framework). The second model excludes the

FE module and directly feeds the output of position-encoding to

the CU module. In the third model, we reintroduce the FE module

and exclude the CU module. To replace the CU module, we opt for

a different and standard upsampling method (with a fixed upsam-

pling ratio) that uses the transposed convolution operation, widely

adopted in upsampling images for SR [Yang et al. 2019]. To mimic

the transposed convolution operator, we find 20 nearest LR mesh

vertices from each HR mesh vertex in terms of Euclidean distance

(same number as our neighbor interpolation in the CU module). We

then compute weighted sums of the 20 LR mesh features for every

HR mesh vertices. For a fair comparison, we learn these weights,

similar to the weights learned in our CU module.

From the three trained models, we compare the reconstruction

error on the test dataset. As summarized in Table 3, our model

which includes both the FE and CU modules outperforms the other

two variants which have been trained in the absence of the FE and

CU modules, respectively.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:14 • H. Park et al.

Table 3. Descriptive Statistic Measures of

Surface Reconstruction Errors in the Absence

of our FE and Coordinate-Based Upsampling

(CU) Network

[mm] Ours w/o FE w/o CU

Mean 0.38 0.45 0.59

Std. 0.06 0.07 0.10

Median 0.38 0.45 0.58

Max. 0.64 0.75 1.11

Min. 0.27 0.33 0.41

We qualitatively validate the visual fidelity of the performances

reconstructed by the three models in Figure 13. We observe that

in the absence of the FE module, the model fails to reconstruct

the parts of the face with larger deformations accurately (like the

mouth area in Figure 13(c)), and replacing the CU module leads

to reconstruction artifacts and discontinuities in the HR surface

(Figure 13(d)).

5.5.3 Effects of Different Locality Parameters.

Interpolation neighbors in CU. We explore the effects of using a

different number of interpolation neighbors for defining the local

neighbors set Nj in Section 3.2. For this experiment, we train our

model using the same training dataset and hyperparameters for

500 epochs but vary the number of interpolation neighbors as 1, 3,

5, 10, and 20. We fix k = 5 for the k-NN graph in the FE module for

these experiments. We plot the mean surface reconstruction error

on the test dataset to study the effect of varying the number of

interpolation neighbors on reconstruction accuracy.

As shown in the plot in Figure 14(a), we observe that using a

higher number of interpolation neighbors achieves lower mean re-

construction error on unseen performances (shown in red). How-

ever, the tradeoff is a linearly increasing time consumption for each

inference (shown in blue).

Number of neighbors k in FE. We conduct another experiment

to study the effect of varying the neighbors k used in constructing

the k-NN graph in the EdgeConv layer of the FE module. We train

our model for 500 epochs while varying k from 1 to 10 in each

experiment, and evaluate the mean surface reconstruction error

on the test dataset. We fix the number of interpolation neighbors

in the CU module to 10 for these experiments. As shown in the

plot in Figure 14(b), we find that using k = 4, 5 gives the minimum

reconstruction error (shown in red) without a large tradeoff in the

inference time (shown in blue).

5.5.4 Correlations Learned in FE Module. We visualize the

heatmaps of the feature similarities learned by the EdgeConv layer

in the second FE network submodule. This can reveal the correla-

tions among different parts of the face learned from data. As out-

lined in Section 3.1, we encourage the first submodule to learn lo-

cal spatial correlations by constructing thek-NN graph in based on

geodesic distances, and the second submodule to learn (potentially

global) feature correlations in its learned feature space.

Figure 15 shows the learned similarities for four selected frames

where the red point in each image denotes a queried point, and the

similar colors and shades represent higher similarities. We observe

Fig. 14. Surface reconstruction errors on unseen facial expressions (red

plots) as a function of the number of interpolation neighbors (left) and

the number of neighbors k for the k -NN graphs in FE submodules (right).

The blue plots show the inference time per frame for each of the tested

values.

Fig. 15. Correlations among different parts of the face learned in the sec-

ond submodule of the FE network. Similar colors and shades represent

higher correlations with the queried (red) point.

that the FE module has captured the correlations among different

parts of the face, such as the right part of the chin being correlated

with the left part of the mouth (third image from the left).

6 Conclusion

We have proposed a data-driven deep neural network framework

which, using as input a LR simulation of facial expression, en-

hances its detail and visual fidelity to levels commensurate with

that of a much more expensive, HR simulation. The combined per-

formance of the low-resolution simulator and the upsampling mod-

ule itself is efficient enough to yield 18.46 FPS end-to-end, with

the potential of the true real-time 28.04 FPS end-to-end for a mod-

est sacrifice of accuracy. We demonstrate that our SR framework

is able to convincingly bridge the visual quality gap between the

real-time LR and offline HR simulations, even in instances where

the two simulations have substantial differences due to discretiza-

tion, modeling, and resolution disparities. Our SR network success-

fully upsamples even deformations that go beyond the parametric

poses exemplified in the training set (triggered by muscle action

and bone motion), to include dynamics, external forces, and col-

lision objects and constraints. Finally, we observe that our frame-

work can approximate a degree of collision response purely via

generalization from the training data. Our code is available on

https://github.com/hjoonpark/3d-sim-super-res.git

6.1 Limitations and Future Work

We have adopted a number of design choices that may consciously

limit the scope of our work. We have chosen the output of our

upsampling module to be the surface of the face model, rather

than a description that includes the interior of the HR target

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

https://github.com/hjoonpark/3d-sim-super-res.git

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:15

simulation mesh. The same output is also purely geometry, as

opposed to physical quantities such as volumetric strain tensor

fields or action potentials (e.g., in the style of Srinivasan et al.

[2021] and Yang et al. [2022]) which might have been useful

for an extra simulation pass at the HR to incorporate additional

effects. Both such choices are made to reduce the dependency

of our system on any internal traits of the simulation engine

that was used to produce the HR training data, requiring only

surfaces at HR for training (those could even have originated from

performance acquisition, as opposed to simulation), and stay as

close to the real-time regime as possible.

Our SR approach strives to recreate physical behaviors as ex-

emplified at the HR component of the training set; however, the

degree at which such physical traits are conveyed is limited by

how large and representative our training set is, and not enforced

via explicit physics-based simulation at the HR output. For ex-

ample, traits such as volume preservation, strain limits, or con-

tact/collision behavior are only approximated to the degree that

the network can learn them from data, while a full-fledged simula-

tor could provide stronger guarantees. Specifically, if the LR sim-

ulation does not employ collision handling and the HR simulator

used for training does, it would be very challenging to resolve be-

haviors where the exact result of contact resolution is history de-

pendent and admits multiple solutions. A typical example would

be a facial motion that brings the lips into deep collision at LR; at

HR, any result including the lips being pressed together, or sliding

under one another in any order, would not have the benefit of his-

tory dependence or friction to naturally lead to one of the possible

scenarios.

In future work, we wish to further investigate possibilities

for boosting our method’s efficacy of collision handling, by tun-

ing the training loss to more directly emphasize collision avoid-

ance (rather than just matching the target provided), and possi-

bly augment the LR simulation with cheap approximations to col-

lisions (e.g., using proxy geometry and repulsive forces to create a

“soft” collision response) to help disambiguate collision scenarios

where multiple solutions are admissible. We would also investigate

adding a temporal element to our prediction; this could be benefi-

cial both as a way to enhance temporal consistency of our anima-

tion, and perhaps as a pathway to adding dynamic effects to the

resulting animation (even if the LR simulation was overdamped

or quasistatic). Lastly, our method is trained on the facial model

of a single identity, overfitting on a specific face mesh. Extending

our proposed simulation SR framework to accommodate multiple

identities is also an interesting direction for future work.

A Appendices

A.1 Additional Information of Our Framework

A.1.1 Neural-Network Architecture. We report the specifica-

tions of parameters in the implemented model in Table 4, whose

definitions and uses are as introduced in Section 3. Our model is

comprised of 706,871 trainable parameters.

A.1.2 Training Statistics. Each training epoch takes 45s on a

workstation with 2 NVLink-connected NVIDIA RTX A6000 GPUs,

for a batch size of 6. We trained the model for 2800 epochs (which

took about 35 hours on the 2 GPU workstation). We used Adam

Table 4. Specifications of Parameters in the Implemented Model

Notation Value

N (num. of LR volumetric mesh vertices) 15,872

M (num. HR surface mesh vertices) 35,637

S (num. of submodule layers in Feature

Encoding network)

2

D0 35

D1 64

D2 128

α in Equation (7) 0.001

β in Equation (7) gradually increased

from 0.001 to 20

k neighbors in the k-NN graphs from

Feature Encoding networks

5

Interpolation neighbors for

Coordinate-based Upsampling

20

[Kingma and Ba 2014] to optimize the loss with a learning rate of

1e-4.

A.2 Additional Information of Compared Models

A.2.1 RBF. Following the standard RBF techniques [Anjyo et al.

2014], we formulate our surface reconstruction based on RBF inter-

polation to predict the deformation vectors {Δx
H
j }M

j=1 for vertices

on the HR surface mesh {xH
j }M

j=1.

Each deformation vector of the LR mesh can be approximated

as

Δx
L
i =

N∑
k=1

wkϕ
(������xL

i − x
L
k

������
2

)
, (8)

where {wk ∈ R3} is the set of weights we wish to find, andϕ(| |xL
i −

x
L
k
| |2) ∈ R is the radial function centered at x

L
k

modeled as the

Gaussian function

ϕ(R) = e−R2/σ 2
RBF (9)

We compute the distance measure R(·) geodesically following the

method in Section 3.2, and use σ 2
RBF
= 25. The weights {wk } then

can be obtained by solving the following linear system in each

frame: ⎡⎢⎢⎢⎢⎢⎣
ϕ1,1 . . . ϕ1,N
...

. . .
...

ϕN ,1 . . . ϕN ,N

⎤⎥⎥⎥⎥⎥⎦︸���������������������︷︷���������������������︸
=: Φ

⎡⎢⎢⎢⎢⎢⎣
w

T
1
...

w
T
N

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
Δx

L
1
...

Δx
L
N

⎤⎥⎥⎥⎥⎥⎦ , (10)

where Φ is invertible for the given Gaussian radial function.

Finally, the deformation vectors {Δx
H
j }M

j=1 of the HR surface

mesh is calculated as⎡⎢⎢⎢⎢⎢⎣
Δx

H
1
...

Δx
H
M

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
ϕ(| |xH

1 − x
L
1 | |2) . . . ϕ(| |xH

1 − x
L
N
| |2)

...
. . .

...

ϕ(| |xH
M

− x
L
1 | |2) . . . ϕ(| |xH

M
− x

L
N
| |2)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
w

T
1
...

w
T
N

⎤⎥⎥⎥⎥⎥⎦ .
(11)

A.2.2 Moving Least-Square . Similarly, following the standard

MLS technique for approximating scalar functions [Anjyo et al.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:16 • H. Park et al.

2014; Liu et al. 1995] we formulate our MLS-based surface recon-

struction as approximating each component of displacement vec-

tors [ΔxH
j ,Δy

H
j ,Δz

H
j] ∈ R3 for every vertex on the HR surface

mesh {xH
j }M

j=1.

The approximation is a linear combination of polynomials of

degree r (we use r = 2) which, using the y component (i.e., ΔyH
j)

for an example, can be written as

ΔyH
j = b

T
(
yL

k

)
c

(
x

H
j

)
, (12)

where b(y) =: [1,y,y2, . . . ,yr] ∈ Rr+1 is the basis function, and

c(xH
j) = [c0, c1, . . . , cr] ∈ Rr+1 is a vector of unknown coefficients

dependent on x
H
j , which we wish to find.

The coefficients can be obtained by solving the following

weighted least-square problem:

c

(
x

H
j

)
= arg min

c∈Rr+1

∑
k ∈Nj

wk

(������xH
j − x

L
k

������
2

) (
b

T
(
yL

k

)
c − ΔyL

k

)2
,

(13)

where Nj is a set of indices of LR mesh vertices neighboring x
H
j

(we use the same 20 neighbors as defined in Section 3.2), andwk (R)
is a weighting function modeled as

wk (R) = e−R2/σ 2
M LS , (14)

where we use the geodesic distance between x
H
j and x

L
k

for

the distance measure R(·) (as computed in Section 3.2), and use

σ 2
MLS

= 200.

Then, c(xH
j) can be computed by differentiating Equation (13)

w.r.t. c and setting it to zero:

∂

∂c

���
∑

k ∈Nj

wk

(������xH
j − x

L
k

������
2

) (
b

T
(
yL

k

)
c − ΔyL

k

)2���
�����
c(xH

j)

= 0

⇔

⎡⎢⎢⎢⎢⎣
∑

k ∈Nj

wk

(������xH
j − x

L
k

������
2

)
b

(
yL

k

)
b

T
(
yL

k

)⎤⎥⎥⎥⎥⎦︸��︷︷��︸
=: M

c(xH
j)

=
∑

k ∈Nj

wk

(������xH
j − x

L
k

������
2

)
ΔyL

k
b

(
yL

k

)
︸���������������������������������������︷︷���������������������������������������︸

=: d

,

(15)

and solving c = M−1
d, where the matrix M is invertible for a non-

negative value of wk (D). For numerical stability, we re-center the

polynomial basis around x
H
j [Liu et al. 1995], replacing b(yL

k
) with

b(yL
k
− yH

j) which reduces Equation (12) to

ΔyH
j = c0. (16)

This process is repeated for each of x , y, z components (i.e.,

ΔxH
j ,Δy

H
j , and ΔzH

j) for every vertex on the HR mesh {xH
j }M

j=1.

A.2.3 β-Variational Auto Encoder. We train a β-Variational

Auto Encoder (β-VAE) [Higgins et al. 2016] to predict HR dis-

placements using LR displacements as input to serve as a baseline

generative neural network. The β-VAE has two fully connected lay-

ers in the encoder and three fully connected layers in the decoder.

The encoder has 2 hidden layers with 1024 neurons in the first layer

and 512 neurons in the second layer. The output of the encoder is

composed of 256 neurons (128 neurons for the mean and 128 neu-

rons for the variance). The decoder has three hidden layers with

256, 1024, and 4096 neurons. All the hidden layers use Leaky RELU

activations. During every training epoch, the mean and variance

output from the encoder are used to compute latent parameters

by sampling from a normal distribution. To train the weights of

this network, we compute the loss on the output displacements

(L2-norm) and the KL-Divergence of the latent parameters. The

former penalizes reconstruction error while the latter encourages

disentanglement between latent parameters. The KL-Divergence

term is also scaled by a hyperparameter β which controls the de-

gree of disentanglement between the latent parameters. We fixed

β to be 0.01 for this dataset and used Adam [Kingma and Ba 2014]

to train the network weights, with a learning rate of 1e-4. Since

the input and output dimensions of our β-VAE are different, we do

not design identical encoder and decoder architectures. We use the

same partition for the train and test sets as our method.

A.2.4 DDE Framework. We compare with DDE framework

[Zhang et al. 2021] as the representative state-of-the-art method

for synthesizing plausible wrinkle details on a coarse garment

geometry based on normal maps. For implementation, we first

bake two UV normal maps of size 512×512 for each of the sur-

face mesh embedded in the LR simulation mesh (e.g., left image of

Figure 5) and the surface conforming to the HR simulation mesh

(e.g., right image of Figure 5) on a frame-by-frame basis. Then, we

train the DDE network (with U-Net architecture) to predict the

HR normal map from its LR counterpart, baked from the train-

ing dataset. We train on the full-size normal maps rather than

randomly subsampled patches as in the original work and omit

training of the garment material classifier since we have only one

type of mesh, the face. Also, we added one layers of downsampling

and upsampling, respectively, given our input dimension is larger

compared to the original work (128×128) and also follow the same

energy-minimization method to recover 3D surfaces from the nor-

mal maps, initialized with the coarse embedded mesh.

A.2.5 Decoder-Style Neural Network for Blendshape Weights In-

put. The decoder-style neural network in Section 5.4 learns to pre-

dict per-vertex deformations of the HR surface mesh (35,637 ver-

tices) from the 38-dimensional input blendshape weights. Its ar-

chitecture is comprised of fully connected layers (Linear(input
dimension, output dimension)) and Leaky-ReLU activations

(LeakyReLU(negative slope)) with 443,840,125 trainable param-

eters. After the last layer, the vector of shape (106911,1) is reshaped

to (35637,3) to obtain the per-vertex deformations.

Linear(38, 256)-LeakyReLU(0.01)

Linear(256, 1024)-LeakyReLU(0.01)

Linear(1024, 4096)-LeakyReLU(0.01)

Linear(4096, 106911)

A.3 Approximate Resolution of Self-Collision

We validate the qualitative performance of self-collisions by

visualizing and comparing the predictions on the test set with

two variants of the HR surface, collision handling applied in the

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:17

Fig. 16. An example of complete collision resolution: The prediction of our

framework (b) on a test performance (a) has collisions resolved. The per-

formance (when simulated in HR) with and without collision handling is

shown in (c) and (d), respectively. Notice that when the penetration is low,

collisions are resolved in the prediction. ©NVIDIA.

Fig. 17. An example of partial collision resolution: The prediction of our

framework (b) on a test performance (a) has collisions partially resolved.

The performance (when simulated in HR) with and without collision han-

dling is shown in (c) and (d), respectively. Notice that when the penetration

is higher, collisions are partially resolved in the prediction. ©NVIDIA.

simulation (Figures 16(c) and 17(c)) and omitted in the simulation

(Figures 16(d) and 17(d)). As mentioned in Section 4, we do not

resolve self-collisions in the LR simulations, but only in the HR

simulations. We observe that the trained model is able to predict

HR performances with partial collision resolution, depending on

the degree of collision (or penetration). Figure 16 illustrates one

such test set performance where the prediction from our model

(Figure 16(b)) does not have lip self-collisions when the penetra-

tion is low (Figure 16(d)). Conversely, when the penetration is high,

as shown in Figure 17(d), the prediction has collisions partially re-

solved (Figure 17(b)). We also highlight that we do not include any

Fig. 18. Visualization of the surface mesh embedded in the LR simulation

mesh undergoing unseen external forces (a) and our prediction of the tar-

get mesh (b), respectively (see Section A.4). ©NVIDIA.

Fig. 19. Frame-wise mean surface reconstruction error of unseen facial ex-

pressions without (i.e., original) vs. with augmented wrinkles.

additional penalty for collisions during training (which is an av-

enue for future work), and the model has approximated partial col-

lision resolution from the HR performances in the training dataset.

A.4 Unseen External Forces - Embedded Surface

In Figure 18 (in addition to Figure 8), we visualize the surface mesh

(Figure 18(a)) embedded in the LR simulation mesh undergoing

unseen external forces for side-by-side comparisons with the pre-

dicted mesh (Figure 18(b)). We also visualize heatmaps showing

deformation discrepancies between the embedded and predicted

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

158:18 • H. Park et al.

Fig. 20. The augmented wrinkles (right) are incorporated by applying wrinkle blendshapes onto the original surface mesh (left). ©NVIDIA.

Fig. 21. Reconstructions of the unseen facial expressions trained on the dataset with augmented wrinkles (see Section A.5). ©NVIDIA.

Table 5. Descriptive Statistic Measures of

Frame-Wise Mean Surface Reconstruction

Errors on Unseen Facial Expressions without

(i.e., Original) vs. with Augmented Wrinkles

[mm] Original Augmented Wrinkles

Mean 0.37 0.62

Median 0.36 0.61

Std. 0.07 0.15

Max. 0.59 1.19

Min. 0.24 0.33

meshes by computing their per-point Euclidean distances. Note

that the embedded mesh is not the target mesh for prediction but

only provided as a visual reference.

A.5 Experiment with Augmented Wrinkles

We evaluate the quality of reconstructed faces inferred by our

model trained using two types of target surface meshes: the

original surface mesh and one with additional wrinkle details.

The augmented wrinkles are incorporated by applying wrinkle

blendshapes onto the original surface mesh (see Figure 20). Using

the same LR volumetric input mesh and hyperparameters from

Section 5.2, we train our model until convergence to predict the

wrinkle-augmented HR surface mesh.

We visually compare the predicted meshes generated by our

model with the target mesh in Figure 21. Our model effectively

captures visually reasonable details of augmented wrinkles, partic-

ularly in areas around the forehead, eyes, and mouth, where wrin-

kles are most pronounced. Additionally, we plot the frame-wise

mean reconstruction errors in Figure 19 and provide a summary in

Table 5. While the mean errors increased overall, we consider this

reasonable considering the additional HR details our model must

infer given the equivalent capacity of our neural network model.

References
Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. 2001. Point set surfaces. In Proceedings Visualization, 2001. VIS’01.
IEEE, 21–29.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and
Claudio T. Silva. 2003. Computing and rendering point set surfaces. IEEE Trans-
actions on Visualization and Computer Graphics 9, 1 (2003), 3–15.

Dicko Ali-Hamadi, Tiantian Liu, Benjamin Gilles, Ladislav Kavan, François Faure,
Olivier Palombi, and Marie-Paule Cani. 2013. Anatomy transfer. ACM Transac-
tions on Graphics 32, 6, Article 188 (Nov 2013), 8 pages. DOI:https://doi.org/10.
1145/2508363.2508415

Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing cubature for
efficient integration of subspace deformations. ACM Transactions on Graphics 27,
5, Article 165 (Dec 2008), 10 pages. DOI:https://doi.org/10.1145/1409060.1409118

Ken Anjyo, John P. Lewis, and Frédéric Pighin. 2014. Scattered data interpolation
for computer graphics. In Proceedings of the ACM SIGGRAPH 2014 Courses.
1–69.

Stephen W. Bailey, Dalton Omens, Paul Dilorenzo, and James F. O’Brien. 2020. Fast
and deep facial deformations. ACM Transactions on Graphics (TOG) 39, 4 (2020),
94–1.

Michael Bao, Matthew Cong, Stéphane Grabli, and Ronald Fedkiw. 2019. High-quality
face capture using anatomical muscles. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 10802–10811.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

https://doi.org/10.1145/2508363.2508415
https://doi.org/10.1145/1409060.1409118

Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution • 158:19

Jernej Barbič and Doug L. James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. ACM Transactions on Graphics 24, 3 (Jul 2005),
982–990. DOI:https://doi.org/10.1145/1073204.1073300

Jan Bender, Matthias Müller, Miguel A. Otaduy, and Matthias Teschner. 2013. Position-
based methods for the simulation of solid objects in computer graphics. In Euro-
graphics (State of the Art Reports), Jan Bender, Matthias Müller, Miguel A. Otaduy,
and Matthias Teschner (Eds.). EUROGRAPHICS, 1–22.

Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gael Guen-
nebaud, Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. 2017. A survey of
surface reconstruction from point clouds. In Computer Graphics Forum, Zhangjin
Huang, Yuxin Wen, Zihao Wang, Jinjuan Ren, and Kui Jia (Eds.). Vol. 36, Wiley
Online Library, 301–329.

Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. Tracks:
Toward directable thin shells. ACM Transactions on Graphics (TOG) 26, 3 (2007),
50–es.

Stefano Berretti, Alberto Del Bimbo, and Pietro Pala. 2012. Superfaces: A super-
resolution model for 3D faces. In Proceedings of the European Conference on Com-
puter Vision. Springer, 73–82.

Stefano Berretti, Pietro Pala, and Alberto Del Bimbo. 2014. Face recognition by super-
resolved 3D models from consumer depth cameras. IEEE Transactions on Informa-
tion Forensics and Security 9, 9 (2014), 1436–1449.

Enrico Bondi, Pietro Pala, Stefano Berretti, and Alberto Del Bimbo. 2016. Reconstruct-
ing high-resolution face models from kinect depth sequences. IEEE Transactions
on Information Forensics and Security 11, 12 (2016), 2843–2853.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly.
2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 1–11.

Jonathan C. Carr, Richard K. Beatson, Jon B. Cherrie, Tim J. Mitchell, W. Richard
Fright, Bruce C. McCallum, and Tim R. Evans. 2001. Reconstruction and represen-
tation of 3D objects with radial basis functions. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques. 67–76.

Rohan Chabra, Jan E. Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Love-
grove, and Richard Newcombe. 2020. Deep local shapes: Learning local SDF priors
for detailed 3D reconstruction. In Proceedings of the European Conference on Com-
puter Vision. Springer, 608–625.

Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
2021. pi-GAN: Periodic implicit generative adversarial networks for 3D-aware
image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 5799–5809.

Peter Yichen Chen, Maurizio M. Chiaramonte, Eitan Grinspun, and Kevin Carl-
berg. 2023. Model reduction for the material point method via an implicit neu-
ral representation of the deformation map. Journal of Computational Physics
478, (1 April 2023), 111908. https://www.sciencedirect.com/science/article/pii/
S0021999123000037

Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021. Learning continuous image repre-
sentation with local implicit image function. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 8628–8638.

Hon Fai Choi and Silvia S. Blemker. 2013. Skeletal muscle fascicle arrangements can
be reconstructed using a Laplacian vector field simulation. Plos One 8, 10 (10 2013),
1–7. DOI:https://doi.org/10.1371/journal.pone.0077576

Matthew Cong, Michael Bao, Jane L. E., Kiran S. Bhat, and Ronald Fedkiw. 2015. Fully
automatic generation of anatomical face simulation models. In Proceedings of the
14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 175–183.

Matthew Cong, Kiran S. Bhat, and Ronald Fedkiw. 2016. Art-directed muscle
simulation for high-end facial animation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA’16). Eurographics
Association, Goslar, DEU, 119–127.

David F. Crouse. 2016. On implementing 2D rectangular assignment algorithms. IEEE
Transactions on Aerospace and Electronic Systems 52, 4 (2016), 1679–1696.

Brian Curless and Marc Levoy. 1996. A volumetric method for building complex mod-
els from range images. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques. 303–312.

Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa,
Hamdi A. Tchelepi, Philip Marcus, Mr Prabhat, and Anima Anandkumar. 2020.
MeshfreeFlowNet: A physics-constrained deep continuous space-time super-
resolution framework. In SC20: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–15.

Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. 2005. Robust moving least-
squares fitting with sharp features. ACM Transactions on Graphics (TOG) 24, 3
(2005), 544–552.

Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacob-
son. 2019. Latent-space dynamics for reduced deformable simulation. Computer
Graphics Forum 38, 2 (2019), 379–391. DOI:https://doi.org/10.1111/cgf.13645

Michael Hauth and Olaf Etzmuss. 2001. A high performance solver for the animation
of deformable objects using advanced numerical methods. In Computer Graphics
Forum, Michael Hauth and Olaf Etzmuss (Eds.). Vol. 20, Wiley Online Library,
319–328.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. 2016. beta-VAE: Learning
basic visual concepts with a constrained variational framework. (2016).

Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Niessner, and
Thomas Funkhouser. 2020. Local implicit grid representations for 3D scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 6001–6010.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface recon-
struction. In Proceedings of the 4th Eurographics Symposium on Geometry Process-
ing, Vol. 7.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.
ACM Transactions on Graphics (ToG) 32, 3 (2013), 1–13.

Liliya Kharevych, W. Wei, Yiying Tong, Eva Kanso, Jerrold E. Marsden, Peter Schröder,
and Matthieu Desbrun. 2006. Geometric, Variational Integrators for Computer An-
imation. Eurographics Association.

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence
for fluid simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1–6.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
DOI:https://doi.org/10.48550/ARXIV.1412.6980

P. Krysl, S. Lall, and J. E. Marsden. 2001. Dimensional model reduction in non-linear
finite element dynamics of solids and structures. International Journal for Numeri-
cal Methods in Engineering 51, 4 (2001), 479–504. DOI:https://doi.org/10.1002/nme.
167

Jiaxin Li, Feiyu Zhu, Xiao Yang, and Qijun Zhao. 2021. 3D face point cloud super-
resolution network. In Proceedings of the 2021 IEEE International Joint Conference
on Biometrics (IJCB’21). IEEE, 1–8.

Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2019.
PU-GAN: A point cloud upsampling adversarial network. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 7203–7212.

Shu Liang, Ira Kemelmacher-Shlizerman, and Linda G. Shapiro. 2014. 3D face hallu-
cination from a single depth frame. In Proceedings of the 2014 2nd International
Conference on 3D Vision. Vol. 1, IEEE, 31–38.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast sim-
ulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6 (2013),
1–7.

Wing Kam Liu, Sukky Jun, and Yi Fei Zhang. 1995. Reproducing kernel particle
methods. International Journal for Numerical Methods in Fluids 20, 8–9 (1995),
1081–1106.

Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang, Yuecheng Li, Fernando
De La Torre, and Yaser Sheikh. 2021. Pixel codec avatars. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 64–73.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-
based simulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games. 49–54.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and An-
dreas Geiger. 2019. Occupancy networks: Learning 3D reconstruction in function
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 4460–4470.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. NeRF: Representing scenes as neural radiance
fields for view synthesis. Communications of the ACM 65, 1 (2021), 99–106.

Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fedkiw. 2003. A crystalline,
red green strategy for meshing highly deformable objects with tetrahedra. In Pro-
ceedings of the International Meshing Roundtable. Citeseer, 103–114.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Yukie Nagai, Yutaka Ohtake, and Hiromasa Suzuki. 2009. Smoothing of partition
of unity implicit surfaces for noise robust surface reconstruction. In Computer
Graphics Forum, Yukie Nagai, Yutaka Ohtake, and Hiromasa Suzuki (Eds.). Vol. 28,
Wiley Online Library, 1339–1348.

Kamal Nasrollahi and Thomas B. Moeslund. 2014. Super-resolution: A comprehensive
survey. Machine Vision and Applications 25, 6 (2014), 1423–1468.

Yutaka Ohtake, Alexander Belyaev, and Marc Alexa. 2005a. Sparse low-degree im-
plicit surfaces with applications to high quality rendering, feature extraction, and
smoothing. In Proceedings of the Third Eurographics Symposium on Geometry Pro-
cessing. 149–158.

Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. 2005b. 3D scattered data in-
terpolation and approximation with multilevel compactly supported RBFs. Graph-
ical Models 67, 3 (2005), 150–165.

Gang Pan, Shi Han, Zhaohui Wu, and Yueming Wang. 2006. Super-resolution of 3D
face. In Proceedings of the European Conference on Computer Vision. Springer,
389–401.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 165–174.

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

https://doi.org/10.1145/1073204.1073300
https://www.sciencedirect.com/science/article/pii/S0021999123000037
https://doi.org/10.1371/journal.pone.0077576
https://doi.org/10.1111/cgf.13645
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1002/nme.167

158:20 • H. Park et al.

Shiqi Peng, Gang Pan, and Zhaohui Wu. 2005. Learning-based super-resolution of 3D
face model. In Proceedings of the IEEE International Conference on Image Processing
2005. Vol. 2, IEEE, II–382.

Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali Thabet, and Bernard Ghanem.
2021. PU-GCN: Point cloud upsampling using graph convolutional networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 11683–11692.

Yue Qian, Junhui Hou, Sam Kwong, and Ying He. 2020. PUGeo-Net: A geometry-
centric network for 3D point cloud upsampling. In Proceedings of the European
Conference on Computer Vision. Springer, 752–769.

Javier Romero, Dimitrios Tzionas, and Michael J. Black. 2017. Embodied hands:
Modeling and capturing hands and bodies together. ACM Transactions on Graph-
ics 36, 6, Article 245 (Nov 2017), 17 pages. DOI:https://doi.org/10.1145/3130800.
3130883

Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa,
and Hao Li. 2019. PIFu: Pixel-aligned implicit function for high-resolution clothed
human digitization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2304–2314.

S. Shen, Y. Yang, T. Shao, H. Wang, C. Jiang, L. Lan, and K. Zhou. 2021. High-order
differentiable autoencoder for nonlinear model reduction. ACM Transactions on
Graphics 40, 4 (2021).

Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic determination of
facial muscle activations from sparse motion capture marker data. In Proceedings
of the ACM SIGGRAPH 2005 Papers. 417–425.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-
zstein. 2020. Implicit neural representations with periodic activation functions. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems. 7462–7473.

Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Ka-
van, and Eftychios Sifakis. 2021. Learning active quasistatic physics-based models
from data. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.

Jos Stam. 2009. Nucleus: Towards a unified dynamics solver for computer graphics.
In Proceedings of the 2009 11th IEEE International Conference on Computer-Aided
Design and Computer Graphics. IEEE, 1–11.

Ari Stern and Eitan Grinspun. 2009. Implicit-explicit variational integration of highly
oscillatory problems. Multiscale Modeling & Simulation 7, 4 (2009), 1779–1794.

Jonathan Su, Rahul Sheth, and Ronald Fedkiw. 2013. Energy conservation for the sim-
ulation of deformable bodies. IEEE Transactions on Visualization and Computer
Graphics 19, 2 (2013), 189–200.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng.
2020. Fourier features let networks learn high frequency functions in low dimen-
sional domains. In Proceedings of the 34th International Conference on Neural In-
formation Processing Systems. 7537–7547.

Javier Tapia, Cristian Romero, Jesús Pérez, and Miguel A. Otaduy. 2021. Parametric
skeletons with reduced soft-tissue deformations. Computer Graphics Forum 40, 6
(2021), 34–46. DOI:https://doi.org/10.1111/cgf.14199

Yun Teng, Mark Meyer, Tony DeRose, and Theodore Kim. 2015. Subspace condensa-
tion: Full space adaptivity for subspace deformations. ACM Transactions on Graph-
ics 34, 4, Article 76 (Jul 2015), 9 pages. DOI:https://doi.org/10.1145/2766904

Joseph Teran, Sylvia Blemker, V. Ng Thow Hing, and Ronald Fedkiw. 2003. Finite vol-
ume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 68–74.

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust
quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 181–190.

Greg Turk and James F. O’brien. 2002. Modelling with implicit surfaces that interpo-
late. ACM Transactions on Graphics (TOG) 21, 4 (2002), 855–873.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems.

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace de-
sign for real-time shape deformation. ACM Transactions on Graphics 34, 4, Article
57 Jul 2015), 11 pages. DOI:https://doi.org/10.1145/2766952

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. 2019. Dynamic graph CNN for learning on point clouds. ACM
Transactions on Graphics (TOG) 38, 5 (2019), 1–12.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow. ACM Transactions on
Graphics (TOG) 37, 4 (2018), 1–15.

Lingchen Yang, Byungsoo Kim, Gaspard Zoss, Baran Gözcü, Markus Gross, and Bar-
bara Solenthaler. 2022. Implicit neural representation for physics-driven actuated
soft bodies. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–10.

Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and Qingmin
Liao. 2019. Deep learning for single image super-resolution: A brief review. IEEE
Transactions on Multimedia 21, 12 (2019), 3106–3121.

Shuquan Ye, Dongdong Chen, Songfang Han, Ziyu Wan, and Jing Liao. 2021. Meta-
PU: An arbitrary-scale upsampling network for point cloud. IEEE Transactions on
Visualization and Computer Graphics 28, 9 (2021), 3206–3218.

Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and Olga Sorkine-Hornung.
2019. Patch-based progressive 3D point set upsampling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5958–5967.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018b.
EC-Net: An edge-aware point set consolidation network. In Proceedings of the
European Conference on Computer Vision (ECCV’18). 386–402.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018a.
PU-Net: Point cloud upsampling network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2790–2799.

Fan Zhang, Junli Zhao, Liang Wang, and Fuqing Duan. 2020. 3D face model super-
resolution based on radial curve estimation. Applied Sciences 10, 3 (2020), 1047.

Meng Zhang, Tuanfeng Wang, Duygu Ceylan, and Niloy J. Mitra. 2021. Deep detail
enhancement for any garment. In Computer Graphics Forum, Meng Zhang, Tuan-
feng Wang, Duygu Ceylan, and Niloy J. Mitra (Eds.). Vol. 40. Wiley Online Library,
399–411.

Yan Zhang, Wenhan Zhao, Bo Sun, Ying Zhang, and Wen Wen. 2022. Point cloud
upsampling algorithm: A systematic review. Algorithms 15, 4 (2022), 124.

Zeshun Zong, Xuan Li, Minchen Li, Maurizio M. Chiaramonte, Wojciech Matusik,
Eitan Grinspun, Kevin Carlberg, Chenfanfu Jiang, and Peter Yichen Chen. 2023.
Neural stress fields for reduced-order elastoplasticity and fracture. In Proceedings
of the SIGGRAPH Asia 2023 Conference Papers. 1–11.

Javier S. Zurdo, Juan P. Brito, and Miguel A. Otaduy. 2012. Animating wrinkles by
example on non-skinned cloth. IEEE Transactions on Visualization and Computer
Graphics 19, 1 (2012), 149–158.

Received 14 October 2023; revised 6 May 2024; accepted 22 May 2024

ACM Trans. Graph., Vol. 43, No. 5, Article 158. Publication date: August 2024.

https://doi.org/10.1145/3130800.3130883
https://doi.org/10.1111/cgf.14199
https://doi.org/10.1145/2766904
https://doi.org/10.1145/2766952

