
10

Decorrelating ReSTIR Samplers via MCMC Mutations

ROHAN SAWHNEY, Carnegie Mellon University and NVIDIA, USA

DAQI LIN, NVIDIA, USA

MARKUS KETTUNEN, NVIDIA, Finland

BENEDIKT BITTERLI, NVIDIA, USA

RAVI RAMAMOORTHI, NVIDIA and UC San Diego, USA

CHRIS WYMAN and MATT PHARR, NVIDIA, USA

Fig. 1. A single sample per pixel (spp) comparison of indirect illumination rendered using ReSTIR Path Tracing (PT) [Lin et al. 2022] with and without our

sample mutations. By performing even a single mutation per sample, our approach can suppress correlation artifacts that may arise within ReSTIR samplers

due to spatiotemporal reuse. Mutations improve visual fidelity of both rendered and denoised results (with the OptiX denoiser [NVIDIA 2017]) while leaving

mean squared error unchanged.

Monte Carlo rendering algorithms often utilize correlations between pixels
to improve efficiency and enhance image quality. For real-time applications
in particular, repeated reservoir resampling offers a powerful framework
to reuse samples both spatially in an image and temporally across multi-
ple frames. While such techniques achieve equal-error up to 100× faster
for real-time direct lighting [Bitterli et al. 2020] and global illumination
[Ouyang et al. 2021; Lin et al. 2021], they are still far from optimal. For
instance, spatiotemporal resampling often introduces noticeable correla-
tion artifacts, while reservoirs holding more than one sample suffer from
impoverishment in the form of duplicate samples. We demonstrate how
interleaving Markov Chain Monte Carlo (MCMC) mutations with reservoir
resampling helps alleviate these issues, especially in scenes with glossy ma-
terials and difficult-to-sample lighting. Moreover, our approach does not in-
troduce any bias, and in practice, we find considerable improvement in im-
age quality with just a single mutation per reservoir sample in each frame.

CCS Concepts: • Computing methodologies→ Ray Tracing;

Authors’ addresses: R. Sawhney, Carnegie Mellon University and NVIDIA; e-mail:
rsawhney@nvidia.com; D. Lin, B. Bitterli, C. Wyman, and M. Pharr, NVIDIA; e-
mails: {daqil, bbitterli, cwyman, mpharr}@nvidia.com; M. Kettunen, NVIDIA, Finland;
e-mail: mkettunen@nvidia.com; R. Ramamoorthi, NVIDIA and UC San Diego; e-mail:
ravir@cs.ucsd.edu.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

© 2024 Copyright held by the owner/author(s).
0730-0301/2024/01-ART10
https://doi.org/10.1145/3629166

Additional Key Words and Phrases: Real-time rendering, resampled impor-
tance sampling, weighted reservoir sampling, Markov Chain Monte Carlo

ACM Reference format:

Rohan Sawhney, Daqi Lin, Markus Kettunen, Benedikt Bitterli, Ravi Ra-
mamoorthi, Chris Wyman, and Matt Pharr. 2024. Decorrelating ReSTIR
Samplers via MCMC Mutations. ACM Trans. Graph. 43, 1, Article 10 (Janu-
ary 2024), 15 pages.
https://doi.org/10.1145/3629166

1 INTRODUCTION

The efficiency of rendering algorithms often hinges on their
ability to effectively evaluate similar integrals by reusing
samples across pixels [Ward et al. 1988; Jensen 1996; Veach and
Guibas 1997; Keller 1997]. In real-time path tracing, sample reuse
becomes more critical since tracing rays is computationally inten-
sive even on high-end consumer GPUs [Kilgariff et al. 2018]. More-
over, while existing denoisers drastically improve image quality
even at low sample counts [Chaitanya et al. 2017; Schied et al.
2017, 2018; Kozlowski and Cheblokov 2021; NVIDIA 2022], they
are unable to reconstruct features missing from their input sam-
ples. Thus, sample reuse across pixels is often the only means
to improve sampling quality given limited computational budgets.
Compared to methods that generate independent samples, reuse
is also at times the only practical approach to render challenging
scenes with caustics and tricky lighting [Hachisuka and Jensen
2009; Veach and Guibas 1997].

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

https://orcid.org/0000-0002-3661-1554
https://orcid.org/0000-0002-5139-6418
https://orcid.org/0000-0002-5206-9603
https://orcid.org/0000-0002-8799-7119
https://orcid.org/0000-0003-3993-5789
https://orcid.org/0000-0002-5133-4292
https://orcid.org/0000-0002-0566-8291
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629166
https://doi.org/10.1145/3629166
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629166&domain=pdf&date_stamp=2024-01-05

10:2 • R. Sawhney et al.

Fig. 2. Glossy scenes with difficult-to-sample lighting rendered using Re-

STIR PT often contain correlation artifacts irrespective of the selected

shift mapping strategy (reviewed in Section 4.3 and Lin et al. [2022, Sec-

tion 7]). Artifacts result from suboptimal importance sampling and over-

enthusiastically sharing a few high-contribution samples between pixels.

Recent sampling algorithms for real-time ray tracing achieve
massive speedups in scenes with complex illumination by shar-
ing samples spatially within an image and temporally across
frames [Bitterli et al. 2020; Ouyang et al. 2021; Lin et al. 2021,
2022]. These so-called ReSTIR1 based techniques select N high-
contribution samples from a larger streamed candidate pool of size
M . They do so by reformulating resampled importance sam-

pling (RIS) [Talbot et al. 2005] in terms of weighted reservoir

sampling (WRS) [Chao 1982]. While RIS effectively produces
samples in proportion to an arbitrary target function (e.g., the inte-
grand of the rendering equation), WRS makes resampling efficient
by reducing storage costs from O (M) to O (N). Repeated resam-
pling across pixels then helps distribute important samples over
several frames for estimation.

Though ReSTIR derives impressive efficiency gains from cor-
related sampling, the benefits of repeated resampling are not in-
definite. When only a few high-contribution samples have been
identified, iterative spatial reuse creates blotchy artifacts as several
pixels reuse the same sample (Figure 12, top row). Such undersam-
pling artifacts eventually fade away with temporal reuse over sev-
eral frames, using a user-specified parameter to balance pixel error
with correlations from sample reuse (Figure 4). Unfortunately, sim-
ply emphasizing error reduction via greater reuse adds lag under
camera movement with dynamically changing lighting and geom-
etry (Section 2.4), and introduces distracting low-frequency arti-
facts (Figures 2 and 3) akin to those in photon mapping [Hachisuka
and Jensen 2009], Metropolis Light Transport (MLT) [Veach
and Guibas 1997] and Virtual Point Light (VPL) methods
[Dachsbacher et al. 2014].

As spatiotemporal correlations are difficult to quantify, re-
solving artifacts is challenging. For instance, popular denoisers
that compute first- and second-order moments (e.g., Schied et al.
[2017]) are less effective given imprecise variance estimates

1acronym for Reservoir-based Spatio-Temporal Importance Resampling.

Fig. 3. Reservoir resampling suffers from sample impoverishment as it

becomes more difficult to sample light-carrying paths. Top row, left to

right: The Veach Ajar scene rendered using ReSTIR PT (random replay

shift) at 1 spp with the door’s angle decreasing. Bottom row: Heat

maps visualize duplicate samples in 20 × 20 pixel neighborhoods. Black

represents no duplicates, while white indicates the number of identical

samples in a neighborhood.

with correlated samples. For ReSTIR, trying to reduce such
artifacts by increasing the reservoir size N is also ineffective,
as resampling with replacement [Chao 1982] produces duplicate
samples in the presence of strong correlations (see Wyman and
Panteleev [2021, Figure 19]).

Inspired by work on Sequential Monte Carlo (SMC) [Doucet
et al. 2001] and Population Monte Carlo (PMC) [Cappé et al.
2004], we demonstrate that interleaving MCMC mutations with
reservoir resampling (Section 3) helps alleviate correlations and
impoverishment, especially in scenes with glossy materials and
difficult lighting. Unlike MLT where mutations drive information
sharing across pixels, our mutations instead primarily mitigate

artifacts caused by spatiotemporal reuse, with little-to-no visual
impact in scenes where artifacts do not arise (Figure 13). Our
approach highlights the complementary strengths of resampling
and mutations for real-time rendering: resampling identifies
samples with large contributions proportional to a pixel’s target
distribution, while mutations diversify the resampled popula-
tion by locally perturbing samples in proportion to the same
target distribution. Furthermore, like Veach and Guibas [1997]’s
bias elimination strategy for MLT, we show that resampling
eliminates the need for any burn-in period with Metropolis–

Hastings (MH) mutations [Metropolis et al. 1953; Hastings 1970]
(Section 2.5, Appendix A). This drives considerable image quality
improvements from even a single mutation per frame for each
reservoir sample (Figures 1, 7, 9, and 11).

From an implementation perspective, our approach requires
only simple additions to existing ReSTIR algorithms (see
Algorithm 3)—we mutate reservoir samples using Metropolis–
Hastings and an appropriate target function every frame af-
ter temporal reuse. This is immediately followed by an adjust-
ment to each mutated sample’s contribution weight to maintain
detailed balance and ensure unbiased estimation. Overall, our
contributions include:

— Demonstrating how to incorporate MCMC mutations within
ReSTIR samplers to lessen correlation artifacts from spa-
tiotemporal resampling.

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

Decorrelating ReSTIR Samplers via MCMC Mutations • 10:3

— Showing how to adjust the RIS contribution weight of mu-
tated samples in an unbiased fashion for further resampling.

— Situating ReSTIR in the broader family of techniques that
jointly apply resampling and mutations to sampling problems,
such as MLT, SMC, and PMC (see Table 2).

Though mutations can help produce images with better visual
fidelity, we observe that, similar to blue-noise sampling [Mitchell
1987; Georgiev and Fajardo 2016; Heitz and Belcour 2019], they
do not necessarily reduce error (Figure 9). This is true both
in scenes with difficult-to-sample lighting (Figure 12, top row),
as well as in scenes with ample lighting and diffuse materials
where resampling easily finds important samples (Figure 13). More-
over, despite the effectiveness of mutations in scenes with strong
correlations, we show in the supplemental document that with
our current approach, even infinite mutations cannot eliminate
correlations entirely.

We start with the key building blocks of our approach in the next
section, and postpone discussion about related work to Section 6
for better context when comparing with our method.

2 BACKGROUND

The rendering equation [Kajiya 1986] gives the outgoing radiance
Lout leaving a point y in the direction ω. Expressed as an integral
over directions, it is

Lout (y,ω) = Le (y,ω) +

∫
S 2

Lin (y,ωi) ρ (y,ω,ωi) |cos θi | dωi . (1)

Here Le is the emitted radiance, Lin (y,ωi) is the incoming radi-
ance from the direction ωi , ρ (y,ω,ωi) is the BSDF and θi is the
angle between ωi and the surface normal at y. Absent partici-
pating media, the incident radiance Lin is defined recursively as
Lin (y,ωi) = Lout (t (y,ωi),−ωi); the function t (y,ωi) returns the
point on the closest surface fromy in directionωi . Integrating over
the sphere of directions S2 then gives the total radiance scattered
toward ω; the rendering equation can be estimated with Monte
Carlo as

Lout (y,ω) ≈ Le (y,ω) +
1

N

N∑
i=1

Lin (y,ωi) ρ (y,ω,ωi) |cos θi |
p (ωi)

, (2)

where p (ωi) is the probability density function (PDF) with re-
spect to solid angle used to sample incident directions ωi .

As in Kajiya’s formulation, sometimes it is more convenient
to reformulate Equation (1) over surfaces. To keep the discussion
independent of the choice of formulation, we use

∫
Ω
f (x) dx to

generically represent the integral we want to evaluate with Ω as
its domain. This integral can likewise be estimated using

ÎMC �
1

N

N∑
i=1

f (xi)

p (xi)
, (3)

where xi are independent random samples drawn from any source

PDF p that is non-zero on the support of f . In rendering, one often
draws samples proportional to individual terms of the rendering
equation to reduce variance (e.g., the BSDF ρ). To perform even
better importance sampling, ReSTIR instead uses RIS to draw sam-
ples approximately proportional to the product of multiple terms
in the integrand (e.g., Lin · ρ · |cos θ |).

We review RIS and generalized RIS next (Sections 2.1 and
2.2); Section 2.3 discusses a streaming RIS implementation via
reservoir sampling. Section 2.4 then describes how correlations
arise within ReSTIR due to resampling. Section 2.5 reviews the
Metropolis–Hastings algorithm we use in Section 3 to resolve
correlation artifacts.

2.1 Resampled Importance Sampling (RIS)

RIS [Talbot et al. 2005; Lin et al. 2022] enables unbiased estimation
and sample generation from a non-negative target function p̂ with
an unknown normalization factor

∫
Ω
p̂ (y) dy. It does so by rewrit-

ing the standard Monte Carlo estimator from Equation (3) as

1

N

N∑
i=1

f (xi)

p̂ (xi)

(∫
Ω
p̂ (y) dy

)
. (4)

The normalization factor is estimated by generating M ≥ 1 candi-
date samples y = {y1, . . . ,yM } from a source PDF q that may be
suboptimal but easy to sample from (e.g., q ∝ ρ), yielding

1

N

N∑
i=1

f (xi)

p̂ (xi)
���

1

M

M∑
j=1

p̂ (yj)

q(yj)
��� . (5)

The samples x = {x1, . . . ,xN } in turn are selected by randomly
choosing an index j ∈ {1, . . . ,M }, N times, from the candidate
pool y with discrete probabilities:

P(j | y) =
w (yj)∑M

k=1
w (yk)

. (6)

Here the resampling weight w for each candidate yj is given by

w (yj) =
1

M
p̂ (yj)W (yj), (7)

whereW � 1/q(yj) is called the (unbiased) contribution weight for
yj . The selected samples xi are likewise given contribution weights

Ŵ (xi) �
1

p̂ (xi)
���

M∑
j=1

w (yj)��� , (8)

that assume the role of a reciprocal PDF, though these weights
are only unbiased estimates for elements of the resampled set x.
This is because the parenthesized term for the normalization factor
of p̂ is itself an estimator that has variance. Each xi ∈ x is also
distributed only approximately in proportion to p̂ (i.e., p̂ is sampled
perfectly only in the limit as M → ∞). Since we resample with

replacement, the set x can contain duplicate samples, which reflects
that samples are selected in proportion to p̂. With this setup, Talbot
[2005] shows that the RIS estimator

ÎRIS �
1

N

N∑
i=1

f (xi)Ŵ (xi), (9)

is unbiased as long as p̂ and q are non-zero on the support of f , i.e.,

E[̂IRIS] =

∫
Ω
f (x) dx . (10)

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

10:4 • R. Sawhney et al.

Combining with Multiple Importance Sampling (MIS). There are
often several reasonable sampling strategies available in ren-
dering, e.g., BSDF or light sampling. MIS [Veach and Guibas
1995b] allows multiple strategies to be combined robustly within
RIS [Talbot 2005]. When each candidate yj has its own source
PDF qj , then MIS weights generalize the parenthesized term in
Equation (5) with

M∑
j=1

mj (yj)
p̂ (yj)

qj (yj)
. (11)

Here, mj ≥ 0 is the MIS weight for the jth sampling tech-

nique. These weights must form a partition of unity, i.e.,
∑M

j=1
mj (y) = 1. A common choice is the balance heuristic mj (y) =

qj (y)/
∑M

k=1
qk (y) [Veach and Guibas 1995b]. With MIS, the resam-

pling weight in Equation (7) becomes:

w (yj) =mj (yj)p̂ (yj)W (yj), where W (yj) =
1

qj (yj)
. (12)

Notice we recover mj = 1/M when source PDFs are the same for
each sample yj . MIS weights play an important role in ReSTIR—
beyond reducing noise in the resampling weights, they also re-
move bias when the supports of the source and target distributions
do not match integrand f ’s support (see Section 4 in Bitterli et al.
[2020] and Section 5 in Lin et al. [2022] for further details).

In practice, using RIS with the balance heuristic is costly, as all
sampling strategies (i.e., the source PDFs) must be evaluated for
each candidate sample yj . Bitterli [2022, Chapter 9.1.3] provides
a similarly robust but more efficient heuristic called Pairwise MIS,
which only requires O (M) PDF evaluations over the entire can-
didate pool. We use pairwise MIS when the number of sampling
strategies M is greater than 2 (e.g., during spatial resampling in
ReSTIR; see Section 2.4); otherwise we use the balance heuristic.

2.2 Generalized Resampled Importance Sampling (GRIS)

So far we assumed the resampling inputs yj ∼ qj share a com-
mon integration domain Ω with integrand f . This assumption may
no longer hold when reusing spatially or temporally across an im-
age (as in ReSTIR), and depends on the integral formulation used
for the rendering equation. For instance, ReSTIR applied to global
illumination [Ouyang et al. 2021; Lin et al. 2022] generates sam-
ples from PDFs with respect to solid angle. Reuse across pixels
therefore requires a change of integration domain, necessitating
a correction term in the resampling weights [Ouyang et al. 2021,
Equation (11)]. ReSTIR for direct lighting [Bitterli et al. 2020] in-
stead integrates over the surface of all lights, ensuring Ω is fixed
across samples.

Recent work by Lin et al. [2022] generalizes RIS to use candi-
date samples yj originating from different domains Ωj . It achieves
this via shift mapping, i.e., a bijective transformation of sam-
ples from one pixel to corresponding samples on another pixel
[Lehtinen et al. 2013]. In particular, if Ω denotes the domain of
integration for f , and Sj : Ωj → Ω are shifts that map yj ∈
Ωj to the modified sample y′j ∈ Ω, then the resampling weight

for yj becomes

w (yj) =mj (y′j)p̂ (y′j)W (yj) ·
						
∂y′j
∂yj

						 , (13)

ALGORITHM 1: Weighted reservoir sampling (N = 1)

1: class Reservoir
2: x ← ∅ �output sample

3: wsum ← 0 �sum of resampling weights

4: M ← 0 �number of samples seen so far

5: Ŵ ← 0 �contribution weight (set in Algorithm 2)

6: function update(y, w)
7: wsum ← wsum +w

8: M ← M + 1
9: if rand() < (w/wsum) then

10: x ← y

where the Jacobian determinant |∂y′j/∂yj | accounts for the change

of integration domain from Ωj to Ω. (Jacobians also appear in
MIS weights mj ; see Appendix B). The rest of the RIS procedure
in Section 2.1 remains unchanged—substituting these resampling
weights to Equation (8) provides the contribution weight for the
selected y′j .

Various shift mappings have been proposed to maximize the sim-
ilarity between y′j and yj such that |∂y′j/∂yj | ≈ 1 [Hua et al. 2019,

Section 3]. We describe the shift mappings we use in Section 4.

2.3 Weighted Reservoir Sampling (WRS)

WRS [Chao 1982] facilitates efficient RIS implementations using a
single pass over elements in a stream {y1, . . . ,yM } to select a ran-
dom sample. As in Section 2.1, each stream element has an associ-
ated resampling weight w . The basic idea is to process the stream
one element at a time, and to select—from the m < M elements
processed so far—a sample yj with probabilityw (yj)/

∑m
k=1

w (yk).
The next stream element ym+1 then replaces yj with probability
w (ym+1)/

∑m+1
k=1

w (yk). The stream length M need not be known
ahead of time, and WRS can be used to select N > 1 samples if
needed [Wyman 2021, Chapter 22.6].

WRS reduces the storage needed for resampling to O (N). A
lightweight data structure called a reservoir is typically used to pro-
cess the stream and store the selected samples, the stream length
M and the weight sum

∑M
j=1w (yj); see Algorithm 1.

2.4 Reservoir-based Spatiotemporal Resampling

ReSTIR applies RIS and WRS in a chained fashion within and across
pixels of an image. The first key idea is to approximately impor-
tance sample multiple terms in the rendering equation’s integrand
through a per-pixel target function p̂. The second is to reuse sam-
ples from neighboring pixels to exploit the similarity between their
target functions. The algorithm performs four steps every frame:

(1) (Initial resampling) Select N samples from a candidate pool of
M samples at each pixel. Equations (12) and (8) provide the
resampling and contribution weights for the candidate and
selected samples respectively. A reservoir stores the selected
samples and their estimated contribution weights.

(2) (Temporal resampling) Use Algorithm 2 to reuse samples
across two corresponding pixels in consecutive frames t and
t−1. The resampling weight for each sample is computed using
the contribution weight already stored in its reservoir.

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

Decorrelating ReSTIR Samplers via MCMC Mutations • 10:5

ALGORITHM 2: Combining two reservoirs for temporal reuse (N = 1)

Input: Reservoirs ri and r j for pixels i and j from frames t and t − 1
(resp.), and a cap for the sample count in r j

Output: A combined reservoir s for frame t

1: function combineTemporalReservoirs(i, j, ri , r j , Mcap)
2: �Cap confidence weight for r j

3: r j .M ← min(r j .M, Mcap)
4: �Compute resampling weight for sample in ri

5: xi ← ri .x

6: mi ← computeMis(xi , p̂i , ri .M, p̂j , r j .M) �Equation (31)

7: wi ←mi · p̂i (xi) · ri .Ŵ �Equation (12)

8: �Shift sample in r j to pixel i and compute its resampling weight

9: x ′
j
, |∂x ′

j
/∂x j | ← shiftMap(r j .x, j, i) �Section 4

10: mj ← computeMis(x ′
j
, p̂j , r j .M, p̂i , ri .M) �Equation (32)

11: w j ←mj · p̂i (x ′
j
) · r j .Ŵ · |∂x ′

j
/∂x j | �Equation (13)

12: �Combine weighted samples into a single reservoir

13: Reservoir s

14: s .update(xi , wi)
15: s .update(x ′

j
, w j)

16: s .M ← ri .M + r j .M

17: s .Ŵ ← 1
p̂i (s .x)

s .wsum �Equation (8)

18: return s

(3) (Spatial resampling) For each pixel, selectK random reservoirs
from a small spatial neighborhood and merge them into the
pixel’s reservoir. This is similar to Algorithm 2 and can be
repeated multiple times; for reference see Bitterli et al. [2020,
Algorithm 4] and Ouyang et al. [2021, Algorithm 2].

(4) (Final shading) Use Equation (9) to compute each pixel’s color.

Spatiotemporal reuse gives each pixel access to a large popula-
tion of samples from its local neighborhood. As a result, ReSTIR
quickly finds samples that make large contributions to pixels, us-
ing MIS weights and shift mappings to ensure unbiased estimation
within the pixel where samples are reused. Nonetheless, gains from
sharing samples are not indefinite, and correlation artifacts may
arise from undersampling, imperfect shift mappings, and wrongly
set parameters. For instance, performing multiple rounds of spa-
tial resampling with too small a pixel radius can lead to blotchy
artifacts. This happens when RIS identifies too few samples to ef-
fectively importance sample the integrand, e.g., due to difficult-to-
sample lighting. Likewise, inadequately designed shift mappings
may introduce geometric singularities into a sample’s resampling
weight via the Jacobian determinant, causing the sample to be
widely reused.

During temporal resampling, one must cap the stream length
M of a temporally reused sample (Algorithm 2, line 3) to guaran-
tee convergence—not doing so results in convergence to a wrong
result [Lin et al. 2022, Section 6.4]. Unfortunately, the ideal Mcap

cannot always be determined in a scene-agnostic way—small caps
inadequately utilize the temporal history and result in higher vari-
ance (Lin et al. [2022, Figure 9]), while large caps increase corre-
lation. In particular, increasing Mcap decreases the relative weight
and hence selection probability of newly proposed samples, while
artificially inflating a reservoir sample’s importance. As a result,
an outlier reservoir sample’s estimated contribution weight must
first decay to match a pixel’s actual value. Unfortunately, the

Fig. 4. Parameters for ReSTIR sample reuse can be difficult to set in a scene

agnostic way. For instance, a small Mcap inadequately exploits prior sam-

ples, leading to noise (left), while a large Mcap value introduces correlations

(right). Our approach offers greater leeway in setting parameter values that

trade noise for correlation (see Figures 11 and 12).

outlier may be spread between neighboring pixels before it is re-
placed. This can lead to visible correlation artifacts and sample
impoverishment over multiple frames (see Figure 4). We use the
Metropolis-Hastings algorithm, described next, to address these
issues in ReSTIR.

2.5 Metropolis–Hastings (MH)

Like RIS, the MH [Metropolis et al. 1953; Hastings 1970] algo-
rithm generates a set of samples distributed proportionally to a
non-negative and possibly unnormalized target function p̂. While
RIS uses resampling to achieve this goal, MH instead constructs a
Markov chain that has a stationary distribution proportional to p̂.
In more detail, given an initial sample x0 ∈ Ω, MH incrementally
constructs a sequence of random samples x0,x1,x2, ... as follows:

(1) For k ≥ 0, generate a candidate sample zk by applying a ran-
dom mutation to the current sample xk in the chain, i.e., sam-
ple zk from a proposal density T (xk → zk).

(2) Compute an acceptance probability for the candidate zk :

a(xk → zk) � min ��1,
p̂ (zk) T (zk → xk)

p̂ (xk) T (xk → zk)
�� . (14)

(3) Set xk+1 = zk with probability a; otherwise set xk+1 = xk .

The acceptance probability a(xk → zk) ensures that samples
are distributed proportional to the target function p̂. The detailed

balance condition guarantees the existence of the Markov chain’s
stationary distribution by requiring the transition density between
any two sample values to be equal:

p̂ (xk)T (xk → zk)a(xk → zk) = p̂ (zk)T (zk → xk)a(zk → xk).
(15)

To generate the correct distribution from all inputs, Markov chains
must be ergodic. This can be guaranteed easily with mutations that
always propose candidate samples over the entire support of p̂, i.e.,
T (xk → zk) > 0 for all xk and zk where p̂ (xk) > 0 and p̂ (zk) > 0.
Even with this constraint, there is still much freedom in choosing
mutation strategies—Section 4 describes the strategies we use.

Unlike RIS, MH does not estimate the value of integrals. It does
however produce valid samples from its target function which

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

10:6 • R. Sawhney et al.

Fig. 5. Our approach introduces Metropolis-Hastings mutations as an ad-

ditional block into the larger ReSTIR algorithm for spatiotemporal sample

reuse. Samples are mutated within each pixel after temporal resampling

(Algorithm 2) to mitigate correlation artifacts and sample impoverishment.

can be used by a secondary estimator such as RIS for estimation
(Section 3).

Eliminating start-up bias. MH assumes the initial sample x0 is
generated with probability density proportional to p̂; using a sam-
ple not from this distribution results in start-up bias. A typical so-
lution runs the Markov chain for several iterations until the ini-
tial state is “forgotten”, i.e., discarding several early samples gen-
erated by MH. Sadly, the length of this burn-in period is tricky to
determine as it depends on the initial sample value and its actual
distribution. Veach [1998, Chapter 11.3.1] instead proposed resam-
pling x0 from M candidate samples y = {y1, . . . ,yM } generated
using an easy-to-sample source PDF (much like Section 2.1). Equa-
tions (6) and (7) then provide the discrete probabilities and resam-
pling weights (resp.) needed to select a candidate, i.e., x0 = yj for
some j ∈ {1, . . . ,M }. Contributions of mutated samples initialized
from x0 are weighted by Equation (8) to guarantee unbiasedness.
Our mutations likewise leverage ReSTIR’s built-in resampling to
avoid start-up bias.

3 METHOD

Sample selection with RIS from a target distribution improves with
larger populations of candidate samples. ReSTIR provides access
to a sizable candidate pool for resampling through spatiotemporal
reuse, enabling it to quickly identify high-contribution samples via
RIS. However, at times ReSTIR extensively reuses a few samples
over multiple frames due to imperfect importance sampling and
suboptimal parameters, with no mechanism to easily diversify an
existing population of high-contribution samples.

Inspired by Sequential and Population Monte Carlo techniques
(Section 6), we interleave reservoir resampling with MCMC muta-
tions to mitigate correlations and sample impoverishment caused
by spatiotemporal reuse. Our key observation is that mutating
reservoir samples with the same per-pixel target function as RIS
helps to quickly decorrelate the resampled population, especially
when it contains outliers. In Algorithm 3, we use Metropolis-
Hastings to locally perturb temporal reservoir samples selected by
Algorithm 2; interleaving with resampling then diversifies the sam-
ples ReSTIR shares between pixels. We discuss key aspects of our
work next, starting with how to modify mutated samples’ contri-
bution weights to guarantee unbiased results.

Modified contribution weights. A contribution weight Ŵ (Equa-
tion (8)) estimates the reciprocal value of the target PDF p̂/

∫
Ω
p̂

ALGORITHM 3: Mutate sample via Metropolis-Hastings

Input: Pixel i, reservoir ri from Algorithm 2, and iteration count
Output: Reservoir ri with its sample mutated in proportion to p̂i

1: function mutateSample(i, ri , iters)
2: z ← metropolisHastings(ri .x, p̂i , iters) �Section 2.5

3: ri .Ŵ ← p̂i (ri .x)
p̂i (z)

· ri .Ŵ �Equation (16)

4: ri .x ← z

5: return ri

that a sample is approximately distributed according to. Ŵ is
needed to compute resampling weights for combining reservoirs
(Algorithm 2, lines 7 and 11) and to estimate per-pixel shading
(Equation (9)).

Contribution weights are sample dependent. Thus, a sample that
undergoes mutation cannot reuse the weight associated with its
original state, i.e., a mutated sample’s contribution weight should
provide an unbiased estimate for the sample’s reciprocal target
PDF. Our key contribution is to show that the unbiased contri-
bution weight for any mutated sample xk , from a Markov chain
x0, . . . ,xk , . . ., can be computed via the relation

Ŵ (xk) =
p̂ (x0)

p̂ (xk)
Ŵ (x0). (16)

Equation (16) does not depend on samples between x0 and xk

in the Markov chain and imposes no constraints on computing

Ŵ (x0), which can arise from prior resampling, runs of MH, or a
mix of the two. This provides flexibility in where and when to mu-
tate samples during ReSTIR (as long as mutations are confined to
a given pixel).

One can get an intuitive feel for Equation (16) by substituting in

the expression for Ŵ (x0) from Equation (8):

Ŵ (xk) =
���p̂ (x0)

p̂ (xk)
· 1
���p̂ (x0)

���
M∑

j=1

w (yj)��� =
1

p̂ (xk)

���
M∑

j=1

w (yj)��� . (17)

Notice that the estimated normalization factor for p̂, i.e., the sum
of weights w , remains unchanged for both the initial and mutated
samples x0 and xk . This normalization factor arises via RIS prior to

performing mutations (e.g., Algorithm 2, lines 14–15). Meanwhile,
MH treats the resampling weights as fixed, simply redistributing a
reservoir’s sample population proportionally to the per-pixel tar-
get function p̂. Equation (16) then encodes any required correc-
tion to a sample’s contribution weight to account for the sam-
ple mutation—unlike temporal and spatial resampling which reuse
samples across different pixels, this equation does not contain any
MIS weight or shift mapping as there is no change of integration
domain, with samples only mutated within p̂’s support.

Start-up bias. Algorithm 3 does not require a burn-in period
for mutations, even though the samples used to initialize MH are
not distributed exactly according to p̂. This is because we use
the unbiased contribution weights of mutated samples for subse-
quent steps in ReSTIR, including when computing shading and
resampling weights for further reuse. This approach eliminates
start-up bias completely for any mutated sample xk and function

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

Decorrelating ReSTIR Samplers via MCMC Mutations • 10:7

f by ensuring

E[f (xk)Ŵ (xk)] =

∫
Ω
f (x) dx . (18)

Appendix A provides a formal proof. Note that avoiding start-
up bias does not imply samples generated using MH are well-
distributed according to p̂. However, since we initialize MH us-
ing reservoir samples that are already distributed roughly propor-
tional to the target function from resampling, our method does
not rely on MH to find important samples (see Figure 13)—rather
it decorrelates and diversifies outlier samples by mutating them lo-
cally in proportion to p̂ and adjusting their estimated contribution
weight accordingly.

When to perform mutations? Temporal reservoirs often contain
stale samples, as ReSTIR assigns higher relative importance to
existing samples. We therefore mutate samples output by Algo-
rithm 2 within each pixel (Figure 5), using the same per-pixel target
function as RIS for the current frame. Mutating samples randomly
after temporal resampling diversifies the inputs to spatial resam-
pling, protecting against possibly escalating amounts of sample
impoverishment caused by repeated reuse.

Applying Algorithm 3 within each pixel to mutate samples af-
ter the initial or spatial resampling steps in ReSTIR (Section 2.4) is
possible but not required. Like mutations, initial resampling serves
to rejuvenate the sample population every frame (by introducing
new independent samples into the population). Samples from spa-
tial resampling are stored for future reuse; mutating them pro-
portional to the current target function would cause them to lag
by one frame.

Finally, Algorithm 3 places no restrictions on MH iteration
count. To improve runtime performance, one could adaptively
specify mutation counts per pixel (including no mutations) using,
for instance, local correlation estimates. We leave development of
such heuristics to future work and use a fixed, user-specified num-
ber of iterations.

4 IMPLEMENTATION DETAILS

We perform mutations for both direct and indirect illumination
in ReSTIR using Kelemen et al. [2002]’s primary sample space

(PSS) parameterization. This conveniently allows applying muta-
tions directly to random number sequences used to generate light-
carrying paths, while constraining path vertices to remain on the
scene manifold. Moreover, it simplifies the use of certain shift map-
pings in ReSTIR PT, e.g., the random replay shift [Lin et al. 2022,
Section 7.2].

In this section, we represent samples with a path vertex nota-
tion x̄ = [x0, x1, . . . , xk] ∈ Ωk (M), with Ωk (M) the space of all
paths of length k on the scene manifoldM (e.g., k = 2 for direct
lighting). Each path x̄ is uniquely determined2 by a vector of ran-
dom numbers ū = [u0,u1 . . .] ∈ [0, 1]O (k) . We use S to denote a
shift mapping from a base path x̄ in one pixel to an offset path ȳ in
another pixel, i.e., S ([x0, x1, . . . , xk]) = [y0, y1, . . . , yk]. Mutated
paths and random numbers are represented using z̄ and v̄ (resp.).

2As in Bitterli et al. [2017], we bijectively map between paths and their random num-
bers by padding paths with extra dimensions.

Fig. 6. During temporal resampling, the hybrid shift in ReSTIR PT con-

nects the offset path for frame t to the base path from frame t − 1 when

it encounters two consecutive diffuse vertices x3, x4; prior to that it reuses

random numbers from the base path to trace rays. Our reconnection vertex

mutation then perturbs the reconnection vertex y4 in the offset path.

4.1 Primary Sample Space

The PSS parameterization reformulates the acceptance probability
in Equation (14) in terms of a contribution function C as follows:

a(ū→ v̄) � min

(
1,
C (v̄) T (v̄→ ū)

C (ū) T (ū→ v̄)

)
. (19)

For us C (ū) � p̂ (ȳ(ū))/q(ȳ(ū)), where p̂ is the per-pixel target
function (also used for resampling) and q is the sampling PDF for
generating ȳ from the random numbers ū

3 (with mutated path z̄

likewise generated from v̄). As suggested by Kelemen et al. [2002],
we compute v̄ by perturbing each element of ū with Gaussian noise.
We use s = s2 exp(− log(s2/s1)U) as our perturbation amount with
U ∼ [0, 1) and s ∈ (s1, s2].

4.2 Direct Lighting

Our ReSTIR DI mutations perturb the directions of reservoir sam-
ples via their random numbers. For direct lighting, path ȳ =

[y0, y1, y2] and its PDF q(ȳ) equals pρ (ω) |cos θ |/|y2 − y1 |2, where
pρ is the PDF for importance sampling the BSDF ρ, ω is the unit
vector from y1 to y2, and θ is the angle between ω and the geo-
metric surface normal at y2. The PDF q(z̄) is defined analogously
as pρ (ν) |cos ϕ |/|z2 − y1 |2 with direction ν pointing from y1 to mu-
tated vertex z2; ϕ is the angle between ν and the surface normal at
z2. Random numbers for the starting MH sample y2 are recovered
by inverting the sampling procedure for direction ω [Bitterli et al.
2017]. Since this mutation is symmetric, the transition kernels in
Equation (19) cancel.

4.3 Indirect Illumination

For ReSTIR PT, our mutation strategies are build on shift maps. Un-
like a mutation, a shift mapping deterministically perturbs a base
path x̄ through one pixel into an offset path ȳ through another
pixel during resampling (e.g., Algorithm 2, line 9). For instance, a
random replay (RR) shift reuses the random numbers that gen-
erate x̄ to trace ȳ. Since tracing a full path is expensive, a recon-
nection is often used to connect the offset path to the base path at

3The starting unmutated path ȳ for MH could have been generated in ReSTIR from
one of many sampling schemes (e.g., light or BSDF sampling), or over multiple rounds
of resampling. Here, we do not require the random numbers ū that originally gener-
ated ȳ; Sections 4.2 and 4.3 discuss the ū we use for mutations.

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

10:8 • R. Sawhney et al.

a given index i , i.e., yj = xj for j ≥ i . Connecting paths immedi-
ately with i = 2 is called the reconnection (R) shift. Compared to
random replay, reconnections are often better at producing paths
with similar contributions for diffuse surfaces. But reconnecting
yi−2, yi−1 to xi on a glossy surface can introduce paths with near-
zero throughput, or introduce geometric singularities when yi−1
and xi are too close.

We use Lin et al.’s [2022] hybrid (H) shift strategy (see Figure 6)
to evaluate mutations in ReSTIR PT for all our results except
Figure 8 where we use random replay. This shift mapping
postpones reconnection using random replay until certain con-
nectability conditions are met (e.g., surface roughness and distance
between vertices).

Mutation strategies. As with direct lighting, one way to mutate
a path is to perturb the random numbers used to generate it. Like a
random replay shift, this approach expensively requires tracing a
full path for each proposed mutation (which may be rejected). We
refer to this mutation as a full path (FP) mutation.

A more computationally efficient approach mutates the offset
path with random replay up to the reconnection vertex yi = xi ,
and then connects to the base path starting at xi+1 instead (the full
path is mutated if a reconnection is not possible). We observe that
this partial path (PP) mutation strategy is not only faster, but also
has higher acceptance (70% vs. 40% on the scene from Figure 1) as
it minimizes changes to the geometry of high-contribution paths
selected via resampling. Moreover, its paths have similar contribu-
tions to the offset paths it mutates. Note that mutating path ver-
tices with random replay until the reconnection to xi+1 can cause
connectability conditions for the hybrid shift to fail. We reject such
mutated samples by defining their transition PDF to be 0.

Taking a step further, our final strategy mutates only the recon-
nection vertex yi (Figure 6) while keeping the rest of the offset path
unchanged, i.e., [z0, . . . , zk] = [y0, y1, . . . , yi−1, zi , xi+1, . . . , xk],
where yi−1 connects to zi with mutated random numbers. We
found this reconnection vertex (RV) mutation only slightly less
effective at reducing correlations. It is, however, significantly faster
when performing multiple mutations, as only rays from yi−1 to zi

and zi to xi+1 need to be traced. We use this mutation to generate
results in Section 5, unless noted otherwise. Figure 10 compares
the effectiveness of these mutation strategies.

Finally, note that the transition kernelsT (v̄→ ū) andT (ū→ v̄)
are no longer symmetric when offset paths contain a reconnection
vertex. In Appendix C, we show that their ratio equals:

T (v̄→ ū)

T (ū→ v̄)
=
|cos ϕ |
|cos θ |

|yi+1 − yi |2

|yi+1 − zi |2
p (νi−1,νi)

p (ωi−1,ωi)

p (νi ,ωi+1)

p (ωi ,ωi+1)
, (20)

where ωi−1,ωi , and ωi+1 are unit vectors from yi−1 to yi , yi to
yi+1 (= xi+1) and yi+1 to yi+2 (= xi+2) respectively, νi−1 and νi are
unit vectors from yi−1 to zi and zi to yi+1, θ is the angle between
ωi and the surface normal at yi+1,ϕ is the angle between νi and the
surface normal at yi+1, and p is the solid angle PDF used to sample
an outgoing direction. Any mutations applied to random numbers
for the subpath [y0, y1, . . . , yi−1] do not factor in the ratio as they
are symmetric.

Reservoir storage. Lin et al. [2022, Section 8.2] note ReSTIR
PT stores additional data in the reservoir from Algorithm 1,

Fig. 7. Correlation artifacts often do not disappear simply by using more

samples, justifying the overhead of performing mutations.

specifically a seed for random replay and the resampled path’s re-
connection vertex. For the full and partial path mutation strategies,
we need the path’s entire random number sequence since PSS mu-
tations transform this sequence—as a result, the sequence cannot
be regenerated from its original seed. This increases the reservoir
size as path length grows. Luckily, the reconnection vertex mu-
tation avoids this overhead, only mutating random numbers that
sample zi from the fixed offset vertex yi−1. As in ReSTIR DI, we
recover random numbers for yi by inverting the sampling of di-
rection yi − yi−1. The only additional information we store is the
offset vertex yi+1 (which connects to mutated vertex zi).

5 RESULTS AND DISCUSSION

We prototyped our method in the open-source Falcor rendering
framework [Kallweit et al. 2022]. All results use a GeForce RTX
3090 GPU at 1920 × 1080 resolution. Our direct lighting implemen-
tation uses the same settings as Bitterli et al. [2020], i.e., initial
candidate samples M = 32, spatial reuse radius of 30 pixels from
the current pixel, and Mcap = 20. For indirect illumination, we
set M = 32 and the spatial reuse radius to 20 similar to Lin et al.
[2022], but use a longer temporal history with Mcap = 50 (unless
noted otherwise). Our supplementary video shows 1 spp results
for all our scenes; Table 1 gives single frame timings.

As we show in Figure 1 and Figures 7–12, short-range correla-
tion artifacts are noticeably reduced in scenes with glossy materi-
als and difficult lighting with just 1–5 mutations; further mutations
have diminishing returns in improving image quality (Figures 9
and 10). Mutation cost overhead is generally less than simply in-
creasing sample count (Figure 7), and recent denoisers [NVIDIA
2017] provide considerably better results with our decorrelated
samples (Figure 1). Figure 8 shows mutations greatly reduce

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

Decorrelating ReSTIR Samplers via MCMC Mutations • 10:9

Fig. 8. Mutations mitigate sample impoverishment in ReSTIR by diversi-

fying the sample population. The bottom row visualizes duplicate samples

in 20 × 20 pixel neighborhoods on the scene from Figure 3. The supple-

mental video shows improvements in an animation as the door’s angle is

decreased.

sample impoverishment, with fewer reservoirs sharing the exact
same sample realizations.

Compared to standard path tracing, ReSTIR is much faster
at achieving equal-error via correlated sampling for real-time
direct [Bitterli et al. 2020, Figure 8] and global illumination [Lin
et al. 2022, Figure 13]. Mutations however provide only mar-
ginal improvements in mean squared error in ReSTIR samplers
(Figures 9 and 13), without ever negatively impacting results.
Akin to blue-noise dithering [Georgiev and Fajardo 2016; Heitz
and Belcour 2019], our image quality improves despite errors
having similar magnitudes. The reason is mutating within a pixel
leaves the sum of resampling weight unchanged in Equation (17),
and these weights ultimately control RIS estimator variance
(Equation (9)). Mutations do slightly reduce variance, as they
indirectly alter resampling weights of future samples thanks to
spatiotemporal reuse of the new, more diverse sample population;
the supplementary document has more details. In Figures 11 and
12 we also ablate Mcap values to show the greater leeway our
approach offers for this parameter, allowing the use of larger
values to trade noise for correlation.

Since ReSTIR often suffers from correlation artifacts, we quan-
tify improvements in correlation by computing sample covariance
between pixels, which naturally generalizes sample variance. This
metric measures the joint variability of two random variables (e.g.,
whether the error in two pixels varies similarly). For pixels i and j
in image I , sample covariance Cov(i, j) between i and j is given by

Cov(i, j) =
1

K − 1

K∑
k=1

(Iki − Īi) (Ik j − Īj), (21)

where K is the number of images used to estimate covariance (we
use K = 100), and Ī is the average of K images. To capture the

Fig. 9. Sample mutations reduce short-range correlation artifacts pro-

duced by ReSTIR, with even 1-5 mutations providing noticeable improve-

ments in image quality (measured in the bottom left using average radial

covariance). Mutations typically have little impact on mean squared er-

ror (shown in the bottom right at equal spp), as we perturb samples only

within each pixel.

Fig. 10. Reduction in covariance depends on the mutation strategy, as in

any MCMC technique. Left: On the Kitchen (Figure 9), we get smaller co-

variance using the hybrid shift with partial path or reconnection vertex mu-

tations as they minimize changes to paths selected by resampling. Right:

In the Victorian house (Figure 12, bottom row), reconnection vertex mu-

tations are less effective as fewer paths are reconnected due to a lack of

consecutive diffuse vertices, whereas partial path mutations just perturb

the entire path.

joint variability of a pixel with its local neighborhood, in our ex-
periments, we average covariance estimates over boxes of a given
radius centered at each pixel. We then further average over the en-
tire image to get a single number. Figure 9 (bottom left) shows aver-
age radial covariance decreases with increasing spatial radius. This
is expected as ReSTIR only reuses samples in local neighborhoods
(so small-scale correlation artifacts are more pronounced); muta-
tions reduce covariance in these short ranges.

Table 1 lists the reduction in average covariance (with pixel
radius equal to 8) and the FLIP weighted median score [Andersson
et al. 2020] we observe on our scenes—FLIP tends to be marginally

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

10:10 • R. Sawhney et al.

Fig. 11. By reducing correlation artifacts, mutations allow for use of larger

Mcap values in ReSTIR to trade noise for correlation, yielding lower error in

scenes with difficult to sample light-carrying paths (see Figure 4 for results

with smaller Mcap values).

more sensitive to short range correlations than mean squared
error. As correlations are typically localized, the reduction is even
larger for the image insets in our figures compared to the results in
Table 1. Ineffective shift mappings in ReSTIR often result in in-
creased correlations; mutations compensate for this shortcoming.
For instance, mutations typically have fewer correlation artifacts
to resolve with a hybrid shift in ReSTIR PT compared to, e.g.,
random replay (Figures 13 and 8 respectively), which highlights
the benefit of using good shift mappings. In contrast, mutations
provide greater covariance reduction in the scenes rendered
with ReSTIR DI (Figure 7), where higher covariance stems from
vertex reconnections failing to preserve path contributions for
low roughness surfaces.

Why mutations help? The supplemental document details why
mutations reduce covariance, simplifying down to the following,
somewhat unintuitive, phenomenon: without mutations, covari-
ance between pixels i and j stems from the mismatch between the
distributions of input samples and the target functions at i and j
(Equation (16) in the supplemental). However, in the limit of in-
finite mutations, covariance is determined by each sample’s mis-
match with its own pixel’s target function (Equation (10) in the
supplemental) due to the ratio p̂ (x0)/p̂ (xk) in the mutated contri-
bution weight (Equation (16)); this mismatch tends to be smaller.
Though our analysis predicts that covariance does not vanish com-
pletely even with infinite mutations, our results show covariance
is often reduced with just one mutation.

6 RELATED WORK

Our method builds directly on the recent ReSTIR family of
algorithms for real-time direct [Bitterli et al. 2020] and global
illumination [Ouyang et al. 2021; Lin et al. 2021, 2022]. We
augment spatiotemporal reservoir resampling in ReSTIR with
sample mutations, and demonstrate the complementary strengths
of resampling and mutations in this framework. In graphics, our
approach is most closely related to Metropolis Light Transport

(MLT) [Veach and Guibas 1997] and associated techniques [Kele-
men et al. 2002; Jakob and Marschner 2012; Lehtinen et al. 2013;
Hachisuka et al. 2014; Otsu et al. 2018; Cline et al. 2005; Lai et al.

Fig. 12. ReSTIR PT excessively reuses a few paths and suffers from “boil-

ing” in scenes with difficult-to-sample indirect lighting such as the Victo-

rian house where paths must be reflected in through the windows (top left).

Our mutations do not resolve this boiling by finding better paths (top right),

but increasing Mcap does due to greater temporal reuse (bottom left). Mu-

tations mitigate correlation artifacts caused by a large Mcap (bottom right).

Fig. 13. Mutations typically do not reduce mean squared error, shown

here on the Veach Ajar scene rendered using ReSTIR PT with the hybrid

shift. This suggests that unlike Metropolis Light Transport, resampling

(and not mutations) finds important light-carrying paths in ReSTIR.

Compared to the random replay shift in Figure 8, resampling with the

superior hybrid shift also introduces fewer correlations in this scene for

mutations to resolve.

2007, 2009; Bashford-Rogers et al. 2021]. In the broader Monte
Carlo landscape, our approach belongs to the class of algorithms
that jointly use resampling and mutations for sampling problems,
such as SMC [Doucet et al. 2001] and PMC [Cappé et al. 2004]. We
discuss the relation to MLT, SMC and PMC in more detail next;
Table 2 provides a summary. We refer the reader to Bitterli et al.
[2020, Section 7] and Lin et al. [2022, Section 9.3] for comparisons
between ReSTIR and other rendering algorithms that exploit path
reuse and spatial correlations.

Metropolis Light Transport. MLT uses statistically correlated
samples generated by Metropolis–Hastings to solve the render-
ing equation. Unlike algorithms using independent samples, MLT
is effective at finding difficult light paths by locally exploring
the path space. It reuses samples by mutating high-contribution
paths over the image. Algorithmically, our method resembles MLT
in various ways. Both techniques require secondary estimators,

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

Decorrelating ReSTIR Samplers via MCMC Mutations • 10:11

Table 1. Relative Reduction in Covariance and FLIP Scores from Mutations at 1 spp. We first average covariances over boxes of pixel radius 8, and then

over the entire image. The ReSTIR DI scenes use Mcap = 20 while the ReSTIR PT scenes use Mcap = 50, except for the Victorian house where Mcap = 1000.

Forest (Fig. 7)

Relative Cov/FLIP
1 vs. 0 mutations

Kitchen (Fig. 1)

Kitchen (Fig. 2)

Veach Egg (Fig. 10)

Veach Ajar (Fig. 13)

Time (ms)
1 mutation

Time (ms)
5 mutations

Time (ms)
0 mutations

Method
ReSTIR/Shi/Mutation

DI / - / BSDF

PT / H / RV

Scene

PT / H / RV

PT / H / RV

PT / H / RV

Relative Cov/FLIP
5 vs. 0 mutations

30 37 43

32 39 47

11 15 17

26 33 37

11 12.5 160.017 / 0.871 0.060 / 0.909

0.733 / 0.9250.824 / 0.956

0.697 / 0.9680.764 / 0.977

0.668 / 0.8740.737 / 0.886

0.881 / 0.9770.922 / 0.988

Veach Ajar (Fig. 8) PT / RR / FP 44 64 900.608 / 0.9530.692 / 0.964

Bistro Exterior (Fig. 7)

Lego city (Fig. 7)

DI / - /BSDF

DI / - / BSDF

Victorian House (Fig. 12)

Victorian House (Fig. 12)

PT / H / RV

PT / H / PP

0.027 / 0.9050.039 / 0.919

0.258 / 0.8940.386 / 0.928

7.1 7.5 8.6

12.5 14.2 18.5

0.340 / 0.879 0.287 / 0.848 34 58 78

34 40 460.934 / 0.953 0.817 / 0.930

respectively RIS and bidirectional path tracing (BDPT) [Lafor-
tune and Willems 1993; Veach and Guibas 1995a], to normalize the
MH target function. Samples used by these estimators are resam-
pled into a smaller set to initialize MH (our Section 3 and Veach
[1998, Chapter 11.3.1]), and contributions of mutated samples are
effectively weighted by the same weights (Equation (17)) to remain
unbiased (our Appendix A and Veach [1998, Appendix 11. A]).

The crucial difference between our work and MLT lies in
how samples are reused across pixels. MLT latches onto high-
contribution paths and mutates them over the entire image while
resampling just to eliminate start-up bias. Thus, MLT results often
contain correlation artifacts caused by mutations, applying MH to
both find important samples and redistribute them between pix-
els. In contrast, ReSTIR derives spatiotemporal reuse exclusively

from resampling; in this article, we mutate samples within each
pixel to mitigate correlations and sample impoverishment from
spatiotemporal resampling. As a result, our method does not re-
quire numerous MH iterations, as the primary purpose of muta-
tions is not finding important paths (Figures 12 and 13). Further,
our approach suits real-time rendering as it integrates seamlessly
into ReSTIR. MLT can be adapted to mutate temporally, but un-
like our work, the entire animated sequence must be available in
advance [Van de Woestijne et al. 2017].

Several features have recently been added to MLT, including
sample stratification [Cline et al. 2005; Gruson et al. 2020], MIS
[Hachisuka et al. 2014] and enhanced mutation strategies [Jakob
and Marschner 2012; Kaplanyan et al. 2014; Bitterli et al. 2017;
Otsu et al. 2018; Luan et al. 2020]. Though we mostly employ
simple PSS mutations [Kelemen et al. 2002], many of these
improvements can also be incorporated into our approach to
reduce correlations faster.

Sequential Monte Car-

lo. SMC is a family of
Monte Carlo methods
used for filtering and
tracking problems in
Bayesian inference and
signal processing
[Doucet et al. 2001].

As shown in the inset, the goal is maintaining a population of
weighted samples distributed roughly proportional to an evolving
target distribution (with unknown normalization factor). Sample
weights are adjusted every iteration to reflect each sample’s
importance to the most recent distribution. Resampling discards
samples with low weights and duplicates those with high weights.
Mutations ensure the population does not contain identical sam-
ples. Unlike ReSTIR, which uses RIS, SMC methods use weighted

importance sampling (WIS) to estimate correlated integrals
in a chained fashion, i.e., the current step’s sample weights
and normalization factors are defined incrementally based on
corresponding quantities from earlier steps [Del Moral et al. 2006].
This allows temporally reusing samples for estimation, instead of
generating new samples every frame.

SMC methods have found limited use in rendering: Hedman et al.
[2016] maintain a temporally coherent distribution of VPLs for in-
direct illumination via a sampling method that moves as few of
the VPLs between frames as possible. This work is only loosely in-
spired by SMC, in that it does not perform any sample mutations
and generates biased results as it discards VPLs heuristically.

Ghosh et al. [2006] instead sample a sequence of per-pixel target
functions for direct illumination of dynamic environment maps.
Unlike ReSTIR, which derives its samples from spatiotemporally
neighboring pixels, Ghosh et al. [2006] maintain a fixed sample
population per pixel that is resampled and mutated to be updated
for each frame. Large populations are needed for effective impor-
tance sampling, as high-contribution samples are not shared spa-
tially between pixels; in contrast, ReSTIR often stores just a sin-
gle sample per reservoir. SMC methods likely require MIS weights
and shift mappings (like ReSTIR) to resolve bias and correctly
derive effective spatiotemporal reuse from neighbors. Similar to
our work, mutations mitigate sample impoverishment but do not
provide reuse.

Population Monte Carlo. PMC methods also couple resampling
and mutations to distribute weighted samples in proportion to
a sequence of target functions [Cappé et al. 2004]. The main
added feature is they sample using parametric mixture models
with simple source PDFs. Mixture probabilities are tuned for

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

10:12 • R. Sawhney et al.

Table 2. Overview of the Role of Resampling and Mutations in MLT, PMC, SMC, and ReSTIR

MLT SMC ReSTIR (Ours)PMC (ERPT)

Estimator

Role of
resampling

Role of
mutations

Standard Monte Carlo Standard Monte Carlo Weighted Importance Sampling Resampled Importance Sampling

Contribution
weights

Estimate integrated
luminance using BDPT*

(value is constant over image)

Estimate per-pixel target
distribution for current frame

Defined incrementally using
weights from previous frame

Estimate per-pixel reciprocal target
distribution for current frame

Defined incrementally using
weights from neighboring

(spatial and temporal) pixels

Eliminate start-up bias in MH

*For animated sequences, luminance is integrated over all images, and samples are mutated spatiotemporally

Introduce new samples into
population each frame, discard

low-contribution samples

Eliminate start-up bias in MH

Temporal reuse of sample
population within a pixel

Discard low-contribution samples

Eliminate start-up bias in MH

Spatiotemporal reuse of sample
populations across pixels

Introduce new samples into
population each frame, discard

low-contribution samples

Eliminate start-up bias in MH

Mitigate sample impoverishment
due to resampling

Mitigate correlations and
sample impoverishment

due to resampling

Share samples spatially
across the image*

Share samples spatially
across the image*

Sample reuse derived from resamplingSample “reuse” derived from mutations

Estimate integrated
luminance using BDPT*

(value is constant over image)

each target function using previously generated samples and their
importance.

In rendering, the PMC framework has been used for direct light-
ing [Fan et al. 2007; Lai et al. 2015], global illumination [Lai and
Dyer 2007; Lai et al. 2007], and animation [Lai et al. 2009]. Lai et
al.’s [2009] work is most relevant to ours: they derive sample reuse
by mutating samples spatially and temporally across the image
plane using Energy Redistribution Path Tracing (ERPT) [Cline
et al. 2005]. Resampling serves to select high-contribution samples
while discarding those with small weights; it is also used to refresh
the sample population (much like initial resampling in ReSTIR) and
eliminate start-up bias from mutations. Unlike our method, they
require knowing animated sequences in advance, precluding most
real-time applications.

7 LIMITATIONS AND FUTURE WORK

In this article, we provide an unbiased mechanism leveraging
MCMC mutations to diversify ReSTIR’s sample population. Often,
just a single mutation per pixel effectively mitigates correlation
artifacts in glossy scenes with complex lighting. However, as in
most MCMC schemes, we cannot accurately predict the number
of Metropolis–Hastings iterations needed to reduce correlations
below a given threshold. Beyond the analysis in the supplemental
document, further investigation is also needed to understand how
mutations address sample impoverishment in ReSTIR—not just in
terms of the number of duplicate samples (Figure 8), but also the
discrepancy characteristics of the resulting sample population.

Mutations in ReSTIR have a non-negligible run-time overhead.
Though we demonstrate improvements on an equal-time covari-
ance metric with simple mutation strategies in both ReSTIR DI and
PT (Figure 7 and Table 1), more sophisticated mutations [Jakob and

Marschner 2012; Kaplanyan et al. 2014; Bitterli et al. 2017; Otsu
et al. 2018; Luan et al. 2020] could provide further gains. Our de-
cision to mutate only after temporal (but not spatial) resampling
is informed in part by run-time considerations. As mentioned in
Section 3, applying mutations selectively (i.e., not at each pixel ev-
ery frame) based on local correlation heuristics could improve per-
formance. As both mutations and ReSTIR’s initial path candidates
serve to rejuvenate the sample population, it may also be worth-
while to carefully balance costs of per-pixel mutations and new
path candidates.

Our proposed sample mutations reduce the correlation between
nearby pixels, leading to an error distribution (likely) closer to
white noise. But blue noise error distributions are often superior
with respect to human perception [Mitchell 1987]; perhaps our mu-
tations could be modified to more directly optimize for blue noise
characteristics. For example, when deciding mutation acceptance,
we might consider both the target function and the neighboring
pixel samples, preferring mutations that introduce differing sam-
ple values. A further improvement might apply the insights of
Heitz and Belcour [2019] to optimize the image-space distribution
of error rather than solely considering the sample values.

Like Metropolis Light Transport, mutating samples across pixels
potentially unlocks further amortization by sharing samples over
the entire image (e.g., using the expected values technique [Veach
1998, Section 11.5]). We leave such “cross-pixel” mutations to
future work as the change of integration domain from one pixel
to another requires a further adjustment to a mutated sample’s
contribution weight beyond Equation (16), i.e., as with temporal
and spatial resampling, MIS weights and shift mappings are likely
needed to correctly mutate a sample in proportion to the target
function of a neighboring pixel whose support does not coincide
entirely with its own. Alternatively, it is possible that the replica

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

Decorrelating ReSTIR Samplers via MCMC Mutations • 10:13

exchange approach adopted by Gruson et al. [2020] enables swap-
ping of independent Markov chains from separate pixels in our
framework as well.

Our mathematical presentation of resampling for ReSTIR in Sec-
tion 2 is essentially unchanged from that of Lin et al. [2021] for fast
volume rendering. Consequently, extending their approach to in-
corporate mutations from Section 3 likely requires no further mod-
ifications to the framework for volumes beyond the specific choice
of mutation strategies, such as the scattering and propagation per-
turbations proposed by Pauly et al. [2000, Section 5.1].

More generally, by augmenting ReSTIR with mutations, our
work establishes a closer correspondence between the RIS-based
resampling techniques developed in graphics, and those in the
broader statistics literature such as SMC and PMC. In particular,
our approach stands to benefit from techniques such as annealed
importance sampling [Neal 2001] used in SMC to reduce variance
in the resampling weights [Ghosh et al. 2006, Section 4], as well as
from adaptation strategies for mutation kernels developed in PMC
to increase acceptance rates [Lai et al. 2007, Section 4.2]. More-
over, as in these fields, mutations in ReSTIR open the door not
just to artifact-free integration (of the rendering equation), but
also to tracking and filtering problems—for instance using well-
distributed sample populations generated by our approach as train-
ing data for path guiding [Müller et al. 2017; Müller et al. 2019].

APPENDICES

A UNBIASED CONTRIBUTION WEIGHTS AND
ELIMINATION OF STARTUP BIAS

Equation (16) shows how to update the contribution weightŴ (xk)

of a mutated sample xk from the Markov chain x0, . . . ,xk , . . ., gen-
erated with target function p̂. Here we prove this rule yields an
unbiased contribution weight for any mutated sample xk , i.e., for
any f with the same or smaller support,

E[f (xk)Ŵ (xk)] =

∫
Ω
f (x) dx . (22)

We assume sample x0 initializing the chain has the same support
Ω as target function p̂. For us, this is guaranteed by chained appli-
cations of RIS with a valid shift map in Algorithm 2. Any x0 chosen
by RIS is not distributed exactly proportional to p̂ (unless we have

infinite samples), however, its contribution weight Ŵ (x0) is un-
biased and satisfies Equation (22) [Lin et al. 2022]. Next, we show

access toŴ (x0) is sufficient to eliminate any startup bias with MH.

Proof. To show Equation (22) holds, we first express the update

rule for contribution weight Ŵ (xk) (for k > 0) in terms of the
previous sample xk−1 in the chain, as follows:

Ŵ (xk) =
p̂ (xk−1)

p̂ (xk)
Ŵ (xk−1). (23)

This is equivalent to Equation (16), shown by recursively unfolding
this relationship for all prior samples xk−1 to x1 in the chain. As in
Section 2.5, we also assume a candidate mutation to xk−1 is gener-
ated using the proposal densityT (xk−1 → zk−1), with acceptance

probability for candidate zk−1 given by Equation (14):

a(xk−1 → zk−1) � min ��1,
p̂ (zk−1) T (zk−1 → xk−1)

p̂ (xk−1) T (xk−1 → zk−1)
�� . (24)

Metropolis–Hastings sets xk = zk−1 with probability a; otherwise
xk = xk−1. This lets us rewrite the expectation in Equation (22):

E[f (xk)Ŵ (xk)] = E
⎡⎢⎢⎢⎢⎣f (xk)

p̂ (xk−1)

p̂ (xk)
Ŵ (xk−1)

⎤⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎣f (zk−1)a(xk−1 → zk−1)
p̂ (xk−1)

p̂ (zk−1)
Ŵ (xk−1)

⎤⎥⎥⎥⎥⎦
+ E[f (xk−1) (1 − a(xk−1 → zk−1))Ŵ (xk−1)].

(25)

Rearranging the terms slightly yields

E[f (xk)Ŵ (xk)] = E[f (xk−1)Ŵ (xk−1)]

+ E

⎡⎢⎢⎢⎢⎣f (zk−1)a(xk−1 → zk−1)
p̂ (xk−1)

p̂ (zk−1)
Ŵ (xk−1)

⎤⎥⎥⎥⎥⎦
− E[f (xk−1)a(xk−1 → zk−1)Ŵ (xk−1)]. (26)

We now write each expectation as an integral. First, assume an

inductive hypothesis E[f (xk−1)Ŵ (xk−1)] =
∫

Ω
f (x) dx for the

k−1st MH iteration. Base case k =1 holds trivially, as Ŵ (x0) is an
unbiased contribution weight. Next, note that for any integrable

function д(xk−1, zk−1), its expectation E[д(xk−1, zk−1)Ŵ (xk−1)]
can be rewritten as a conditional expectation over
candidate mutations:

E[д(xk−1, zk−1)Ŵ (xk−1)] = E[E[д(xk−1, zk−1) | xk−1] Ŵ (xk−1)]

= E

[(∫
Ω
д(xk−1, z)T (xk−1 → z) dz

)
Ŵ (xk−1)

]
, (27)

where T is the proposal density used for mutations. This lets us
expand out Equation (26) as follows:

E[f (xk)Ŵ (xk)] =

∫
Ω
f (x) dx

+

∫
Ω

∫
Ω
f (z)a(x → z)

p̂ (x)

p̂ (z)
T (x → z) dz dx

−
∫

Ω

∫
Ω
f (x)a(x → z)T (x → z) dz dx . (28)

Finally, we show that the two double integrals cancel each other

out (resulting in E[f (xk)Ŵ (xk)] =
∫

Ω
f (x) dx) by invoking the

detailed balance condition from Equation (15):

p̂ (x)T (x → z)a(x → z) = p̂ (z)T (z → x)a(z → x) (29)

and rewriting it as

T (x → z)a(x → z) =
p̂ (z)

p̂ (x)
T (z → x)a(z → x). (30)

Substituting for T (x → z)a(x → z) in the third line of
Equation (28) yields the same integral as the second line, but
with integration variables x and z swapped. Renaming x and
z and swapping the integration order in the third line allows
cancellation, simplifying to

∫
Ω
f (x) dx , yielding Equation (22),

and giving a proof by induction.

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

10:14 • R. Sawhney et al.

B MIS WEIGHTS FOR TEMPORAL REUSE

ReSTIR uses MIS weights during resampling (Equations (12) and
(13)) to mitigate noise and bias from reusing samples across pix-
els. We provide explicit expressions for the MIS weights used
in Algorithm 2 here; Lin et al. [2022, Equations (37)–(38)] pro-
vide similar expressions for Pairwise MIS weights needed for
spatial resampling.

Let Sj : Ωj→Ωi denote the shift map from pixel j to pixel i . Let
xi and x j further represent the corresponding samples for these
pixels, and Sj (x j)=x ′j and S−1

j (xi)=x ′i the respective shift mapped

values. The MIS weights for xi and x ′j are then given by

mi (xi) =
Mi p̂i (xi)

Mi p̂i (xi) +Mj p̂j (x ′i) |∂x ′i /∂xi |
, (31)

mj (x ′j) =
Mj p̂j (x j) |∂x j/∂x

′
j |

Mj p̂j (x j) |∂x j/∂x ′j | +Mi p̂i (x ′j)
. (32)

We setmi (xi) = 1 andmj (x ′j) = 0 when valid shifts do not exist for

xi and x j (resp.); Lin et al. [2022, Section 5.6] discusses properties
of these MIS weights in detail.

C TRANSITION KERNEL FOR MUTATING A
RECONNECTION VERTEX

A mutation involving a reconnection vertex yi requires modifying
random numbers not just for yi , but also for the non-mutated ver-
tices yi+1 and yi+2. This is because the solid angle PDFs used to
sample outgoing directions νi and ωi+1 in Section 4.3 depend on
the mutated incoming directions νi−1 and νi (resp.). Here we derive
Equation (20) by first noting the joint PDF for connecting the mu-
tated reconnection vertex zi to zi+1 and zi+1 to zi+2 in the surface
area measure is:

p (zi+2, zi+1 |[z0, z1, . . . , zi]) = δ (zi+2 − yi+2)δ (zi+1 − yi+1).

This is a product of delta functions as zi+1 = yi+1 and zi+2 =

yi+2 are the only valid vertex positions. In the PSS to path
space mapping, the joint PDF for the mutated random num-
bers v̄i+1 and v̄i+2 (for vertices yi+1 and yi+2) is related to
p (zi+2, zi+1 | [z0, z1, . . . , zi]) via a Jacobian determinant:

p (v̄i+2, v̄i+1 |[v̄0, v̄1, . . . , v̄i]) = p (zi+2, zi+1 |[z0, z1, . . . , zi])
					 ∂z̄∂v̄

					
This PDF serves as our proposal density T (ū → v̄) for mutations,
which then yields:

T (v̄→ ū)

T (ū→ v̄)
=
					 ∂v̄∂z̄

					
					 ∂ȳ∂ū

					 δ (yi+2 − zi+2)δ (yi+1 − zi+1)

δ (zi+2 − yi+2)δ (zi+1 − yi+1)

=
					 ∂v̄∂ν̄

					
					 ∂ν̄∂z̄

					
					 ∂ȳ∂ω̄

					
					 ∂ω̄∂ū

					
=
					 ∂ν̄∂z̄

					
					 ∂ȳ∂ω̄

					 p (νi−1,νi)

p (ωi−1,ωi)

p (νi ,ωi+1)

p (ωi ,ωi+1)

=
|cos ϕ |
|cos θ |

|yi+1 − yi |2

|yi+1 − zi |2
p (νi−1,νi)

p (ωi−1,ωi)

p (νi ,ωi+1)

p (ωi ,ωi+1)
. (33)

The delta functions in the first line cancel since they are symmetric.
In the third line, we use the fact that the Jacobian determinant of
a sampling scheme is the same as its inverse PDF [Kelemen et al.
2002, Section 2]. The final step substitutes in the definition of the
Jacobians relating the solid angle and area measures.

ACKNOWLEDGMENTS

The authors thank Aaron Lefhon, Bill Dally and Keenan Crane for
supporting this work. This work was generously supported by an
NVIDIA Graduate Fellowship for the first author during his grad-
uate studies at Carnegie Mellon University.

REFERENCES
Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle

Åström, and Mark D. Fairchild. 2020. FLIP: A difference evaluator for alternat-
ing images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020), 23 pages. https:
//doi.org/10.1145/3406183

Thomas Bashford-Rogers, Luís Paulo Santos, Demetris Marnerides, and Kurt Debat-
tista. 2021. Ensemble metropolis light transport. ACM Transactions on Graphics
41, 1 (2021), 1–15.

Benedikt Bitterli. 2022. Correlations and Reuse for Fast and Accurate Physically Based
Light Transport. Dartmouth College Ph.D Dissertations. Retrieved from https://
digitalcommons.dartmouth.edu/dissertations/77

Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2017. Reversible
jump Metropolis light transport using inverse mappings. ACM Transactions on
Graphics 37, 1 (2017), 1–12.

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Woj-
ciech Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing
with dynamic direct lighting. ACM Transactions on Graphics 39, 4 (2020), 148–1.

Olivier Cappé, Arnaud Guillin, Jean-Michel Marin, and Christian P. Robert. 2004. Pop-
ulation Monte Carlo. Journal of Computational and Graphical Statistics 13, 4 (2004),
907–929.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive recon-
struction of Monte Carlo image sequences using a recurrent denoising autoen-
coder. ACM Transactions on Graphics 36, 4 (2017), 1–12.

Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika
69, 3 (1982), 653–656.

David Cline, Justin Talbot, and Parris Egbert. 2005. Energy redistribution path tracing.
ACM Transactions on Graphics 24, 3 (2005), 1186–1195.

Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter,
and Jan Novák. 2014. Scalable realistic rendering with many-light methods. In
Proceedings of the Computer Graphics Forum. Wiley Online Library, 88–104.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo sam-
plers. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68,
3 (2006), 411–436.

Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. 2001. Sequential Monte
Carlo Methods in Practice. Springer.

ShaoHua Fan, Yu-Chi Lai, Stephen Chenney, and Charles Dyer. 2007. Population Monte
Carlo Samplers for Rendering. Technical Report. University of Wisconsin-Madison
Department of Computer Sciences.

Iliyan Georgiev and Marcos Fajardo. 2016. Blue-noise dithered sampling. In Proceed-
ings of the ACM SIGGRAPH 2016 Talks. 1–1.

Abhijeet Ghosh, Arnaud Doucet, and Wolfgang Heidrich. 2006. Sequential sampling
for dynamic environment map illumination. In Proceedings of the Rendering Tech-
niques. 115–126.

Adrien Gruson, Rex West, and Toshiya Hachisuka. 2020. Stratified Markov Chain
Monte Carlo light transport. In Proceedings of the Computer Graphics Forum. Wi-
ley Online Library, 351–362.

Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic progressive photon
mapping. In ACM SIGGRAPH Asia 2009 papers. 1–8.

Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed
Metropolis light transport. ACM Transactions on Graphics 33, 4 (2014), 1–10.

W. K. Hastings. 1970. Monte carlo sampling methods using markov chains and their
applications. Biometrika 57, 1 (1970), 97–109. https://doi.org/10.2307/2334940

Peter Hedman, Tero Karras, and Jaakko Lehtinen. 2016. Sequential Monte Carlo in-
stant radiosity. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games. 121–128.

Eric Heitz and Laurent Belcour. 2019. Distributing Monte Carlo errors as a blue noise
in screen space by permuting pixel seeds between frames. In Proceedings of the
Computer Graphics Forum. Wiley Online Library, 149–158.

Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek
Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A survey
on gradient-domain rendering. In Proceedings of the Computer Graphics Forum.
Wiley Online Library, 455–472.

Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: A Markov chain
Monte Carlo technique for rendering scenes with difficult specular transport.
ACM Transactions on Graphics 31, 4 (2012), 1–13.

Henrik Wann Jensen. 1996. Global illumination using photon maps. In Proceedings of
the Eurographics Workshop on Rendering Techniques. Springer, 21–30.

James T. Kajiya. 1986. The rendering equation. In Proceedings of the 13th Annual Con-
ference on Computer Graphics and Interactive Techniques. 143–150.

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

https://doi.org/10.1145/3406183
https://digitalcommons.dartmouth.edu/dissertations/77
https://doi.org/10.2307/2334940

Decorrelating ReSTIR Samplers via MCMC Mutations • 10:15

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa
Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman,
Cyril Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. Retrieved
from https://github.com/NVIDIAGameWorks/Falcor#citation

Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The natural-
constraint representation of the path space for efficient light transport simulation.
ACM Transactions on Graphics 33, 4 (2014), 1–13.

Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A
simple and robust mutation strategy for the Metropolis light transport algo-
rithm. In Proceedings of the Computer Graphics Forum. Wiley Online Library,
531–540.

Alexander Keller. 1997. Instant Radiosity. In Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley
Publishing Co., 49–56. DOI:https://doi.org/10.1145/258734.258769

Emmett Kilgariff, Henry Moreton, Nick Stam, and Brandon Bell. 2018. NVIDIA turing
architecture in-depth. Retrieved from https://developer.nvidia.com/blog/nvidia-
turing-architecture-in-depth/ (visited on 2020-05-11) (2018).

Pawel Kozlowski and Tim Cheblokov. 2021. ReLAX: A denoiser tailored to
work with the ReSTIR algorithm. GPU Technology Conference (2021).
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/#:~:
text=ReLAX%20originates%20from%20SVGF%20but,special%20treatment%20of%
20disoccluded%20areas

Eric P. Lafortune and Yves D. Willems. 1993. Bi-directional path tracing. In Proceed-
ings of 3rd International Conference on Computational Graphics and Visualization
Techniques. 145–153.

Yu-Chi Lai, Hsuan-Ting Chou, Kuo-Wei Chen, and Shaohua Fan. 2015. Robust and
efficient adaptive direct lighting estimation. The Visual Computer 31, 1 (2015),
83–91.

Yu-Chi Lai and Charles Dyer. 2007. Population Monte Carlo Path Tracing. Technical
Report. University of Wisconsin-Madison Department of Computer Sciences.

Yu-Chi Lai, Shao Hua Fan, Stephen Chenney, and Charcle Dyer. 2007. Photore-
alistic image rendering with population Monte Carlo energy redistribution.
In Proceedings of the 18th Eurographics Conference on Rendering Techniques.
287–295.

Yu-Chi Lai, Feng Liu, and Charles Dyer. 2009. Physically-based Animation Render-
ing with Markov Chain Monte Carlo. Technical Report. University of Wisconsin-
Madison Department of Computer Sciences.

Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo
Aila. 2013. Gradient-domain Metropolis light transport. ACM Transactions on
Graphics 32, 4 (2013), 1–12.

Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuskel, and
Chris Wyman. 2022. Generalized resampled importance sampling: Foundations
of ReSTIR. ACM Transactions on Graphics 41 (2022), 75.

Daqi Lin, Chris Wyman, and Cem Yuksel. 2021. Fast volume rendering with spa-
tiotemporal reservoir resampling. ACM Transactions on Graphics Daqi Lin, Chris
Wyman, and Cem Yuksel. 2021. Fast Volume Rendering with Spatiotemporal
Reservoir Resampling. 40, 6 (December 2021), 1–18. DOI:https://doi.org/10.1145/
3478513.3480499

Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Langevin Monte
Carlo rendering with gradient-based adaptation. ACM Trans. Graph. 39, 4 (2020),
140.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. 1953. Equation of state calculations by fast computing
machines. The Journal of Chemical Physics 21, 6 (1953), 1087–1092.

Don P. Mitchell. 1987. Generating antialiased images at low sampling densities. In
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques. Association for Computing Machinery, New York, NY, 65–72. DOI:
https://doi.org/10.1145/37401.37410

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for effi-
cient light-transport simulation. In Proceedings of the Computer Graphics Forum.
Wiley Online Library, 91–100.

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural importance sampling. ACM Trans. Graph. 38, 5 (2019), 19 pages.
DOI:https://doi.org/10.1145/3341156

Radford M. Neal. 2001. Annealed importance sampling. Statistics and Computing 11,
2 (2001), 125–139.

NVIDIA. 2017. NVIDIA OptiX AI-Accelerated Denoiser. Retrieved from https://
developer.nvidia.com/optix-denoiser

NVIDIA. 2022. NVIDIA Real-time Denoisers (NRD). Retrieved from https://developer.
nvidia.com/rtx/ray-tracing/rt-denoisers

Hisanari Otsu, Johannes Hanika, Toshiya Hachisuka, and Carsten Dachsbacher. 2018.
Geometry-aware metropolis light transport. ACM Transactions on Graphics 37,
6 (2018), 1–11.

Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni.
2021. ReSTIR GI: Path resampling for real-time path tracing. In Proceedings of
the Computer Graphics Forum. Wiley Online Library, 17–29.

Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis light transport for
participating media. In Proceedings of the Rendering Techniques 2000: Proceedings
of the Eurographics Workshop in Brno. Springer, 11–22.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla
Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and
Marco Salvi. 2017. Spatiotemporal variance-guided filtering: Real-time recon-
struction for path-traced global illumination. In Proceedings of the High Perfor-
mance Graphics. 1–12.

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient estima-
tion for real-time adaptive temporal filtering. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1, 2 (2018), 1–16.

Justin Talbot, David Cline, and Parris Egbert. 2005. Importance resampling for global
illumination. In Proceedings of the Eurographics Symposium on Rendering (2005).
Kavita Bala and Philip Dutre (Eds.), The Eurographics Association. DOI:https:
//doi.org/10.2312/EGWR/EGSR05/139-146

Justin F. Talbot. 2005. Importance Resampling for Global Illumination. Brigham Young
University.

Joran Van de Woestijne, Roald Frederickx, Niels Billen, and Philip Dutré. 2017. Tem-
poral coherence for Metropolis light transport. In Proceedings of the Eurographics
Symposium on Rendering-Experimental Ideas & Implementations. Eurographics As-
sociation, 55–63.

Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Stanford
University.

Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light trans-
port. In Proceedings of the Photorealistic Rendering Techniques. Springer,
145–167.

Eric Veach and Leonidas J. Guibas. 1995b. Optimally combining sampling techniques
for Monte Carlo rendering. In Proceedings of the 22nd Annual Conference on Com-
puter Graphics and Interactive Techniques. 419–428.

Eric Veach and Leonidas J. Guibas. 1997. Metropolis light transport. In Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques.
65–76.

Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A ray tracing so-
lution for diffuse interreflection. In Proceedings of the 15th Annual Conference on
Computer Graphics and Interactive Techniques. 85–92.

Chris Wyman. 2021. Weighted reservoir sampling: Randomly sampling streams. In
Proceedings of the Ray Tracing Gems II. Springer, 345–349.

Chris Wyman and Alexey Panteleev. 2021. Rearchitecting spatiotemporal re-
sampling for production. High-Performance Graphics - Symposium Papers,
Nikolaus Binder and Tobias Ritschel (Eds.). The Eurographics Association.
DOI:10.2312/hpg.20211281

Received 6 October 2022; revised 20 September 2023; accepted 12 October
2023

ACM Transactions on Graphics, Vol. 43, No. 1, Article 10. Publication date: January 2024.

https://github.com/NVIDIAGameWorks/Falcor#citation
https://doi.org/10.1145/258734.258769
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/#:~:text=ReLAX%20originates%20from%20SVGF%20but,special%20treatment%20of%20disoccluded%20areas
https://doi.org/10.1145/3478513.3480499
https://doi.org/10.1145/37401.37410
https://doi.org/10.1145/3341156
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/rtx/ray-tracing/rt-denoisers
https://doi.org/10.2312/EGWR/EGSR05/139-146
https://doi.org/10.2312/hpg.20211281

