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Fig. 1. This composite image shows how our model can compute realistic boat wakes for a slow sailboat (left) and a fast motorboat (middle), dispersive
reflections, and flooding behaviors (right). This scene covers 512m in each direction and is simulated and rendered in real time.

This paper introduces a novel method for simulating large bodies of water as
a height field. At the start of each time step, we partition the waves into a bulk
flow (which approximately satisfies the assumptions of the shallow water
equations) and surface waves (which approximately satisfy the assumptions
of Airy wave theory). We then solve the two wave regimes separately using
appropriate state-of-the-art techniques, and re-combine the resulting wave
velocities at the end of each step. This strategy leads to the first heightfield
wave model capable of simulating complex interactions between both deep
and shallow water effects, like the waves from a boat wake sloshing up
onto a beach, or a dam break producing wave interference patterns and
eddies. We also analyze the numerical dispersion created by our method and
derive an exact correction factor for waves at a constant water depth, giving
us a numerically perfect re-creation of theoretical water wave dispersion
patterns.
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1 INTRODUCTION
The motion of water is well-described by the incompressible Euler
equations

𝐷u
𝐷𝑡

= − 1
𝜌
∇𝑝 + g (1)

∇ · u = 0

where u is the water velocity, 𝐷u/𝐷𝑡 is the material derivative, 𝜌
is water density, 𝑝 is pressure, and 𝑔 is acceleration due to gravity.
Numerically approximating this equation is prohibitively expensive
for the animation of large bodies of water, so researchers reduce the
complexity by assuming the water surface takes the form of a height
field, where the water height and velocity are both just functions of
2D spatial coordinates, instead of 3D. The most common reductions
of these equations used in computer graphics are Airy wave theory
and shallow water approximations.
Airy wave theory [Airy 1841] assumes that the motion is a po-

tential flow (velocity is the gradient of some potential, u = ∇𝜙)
and that the wave amplitude 𝑎 is small relative to the wavelength _

(𝑎 ≪ _, or equivalently 𝑘𝑎 ≪ 1 for wavenumber 𝑘 = 2𝜋/_). These
assumptions produce linearized water wave equations which are
used extensively throughout the computer graphics literature [Can-
abal et al. 2016; Tessendorf 2004a]. This linear wave theory produces
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waves with an angular frequency 𝜔 depending on wavenumber 𝑘
and water depth ℎ

𝜔 (𝑘, ℎ) =
√︁
𝑔𝑘 tanh(𝑘ℎ). (2)

This particular dependence of 𝜔 on 𝑘 is called the dispersion re-
lationship, and it tells us how the frequency varies with different
wavelengths. It also effectively prescribes the surface wavespeed,
which is equal to 𝜔/𝑘 . Accurately reproducing this dispersion rela-
tion is essential for many water-related phenomena like raindrop
ripples and particular interference patterns in the wake behind boats,
as illustrated in Figure 1. One drawback to this approach, however, is
that its 𝑘𝑎 ≪ 1 assumption prevents the wave heights from having a
major effect on the fluid domain boundaries. For example, it cannot
model water waves sloshing up a sloped beach, or spilling over a
dam and filling a basin, because these scenarios require the water
domain to change shape depending on the motion of the surface
waves.

Another popular technique for simplifying water dynamics is
to assume that the depth of the water ℎ is much smaller than the
wavelength (ℎ ≪ _, or equivalently 𝑘ℎ ≪ 1). This assumption gives
rise to the shallow water equations (SWE), which do allow waves to
slosh around and spill over terrain. However, this long wavelength
/ shallow depth assumption is only appropriate in exceptionally
limited scenarios, because SWE produces a dispersion relationship

𝜔 (𝑘, ℎ) = 𝑘
√︁
𝑔ℎ, (3)

which is drastically different from Equation 2 when ℎ 3 _. Notably,
SWE is unable to produce the signature water wave interference
patterns described above, and instead produces ripples similar to
acoustic shock waves.
Although both of these methods for animating water are the-

oretically sound and offer robust and efficient implementations,
they both have restrictive assumptions that lead to visually obvious
breakdowns in common scenarios: Airy wave simulators have to
avoid flooding scenarios and gently sloped solid obstacles; shallow
water solvers either add procedural textures to approximate a more
appropriate dispersion relation for deeper water [Chentanez and
Müller 2010], or they fail to convincingly animate short wavelengths
altogether.
Interestingly, both of these simulation techniques excel where

the other fails. The purpose of this paper is to introduce a principled
unification of the two fluid regimes together into a single model
that lacks all of the failure modes described above. We do this by
decomposing the water into two regimes of water motion: a bulk
flow that is best described by the shallow water assumption ℎ ≪ _,
and the remaining surface waves that fail the shallow water test but
still obey Airy wave theory. The bulk flow naturally includes most
of the fluid’s mass and momentum (it includes the biggest waves
with the longest wavelengths), and so we simulate it using a shallow
water solver capable of simulating flooding and convective eddies.
Conversely, the surface waves contain all of the surface details
and high frequencies that are essential for producing convincing
water wave animations, so we simulate them with a highly detailed
Airy wave solver. Re-computing the decomposition at each timestep
allows water motion to continuously shift between shallow and deep

regimes and furthermore it permits the fluid domain to significantly
change over time.

In summary this paper offers the following contributions:

• The first height field method capable of simulating both Airy
wave interference patterns and large bulk motions like flood-
ing and 2D convective eddies in the same simulation;

• A practical algorithm for producing a spatially-varying de-
composition of shallow and surface flows;

• A derivation of surface wave numerical dispersion errors,
and a novel scheme for canceling them exactly in a constant
depth;

• Exact volume conservation and real-time performance appro-
priate for games and other interactive scenarios.

The remainder of this paper is organized as follows: Section 2 dis-
cusses related work, and Section 3 provides additional background
from fluid dynamics and introduces the theoretical framework be-
hind our method. Section 4 describes our algorithm in detail, in-
cluding the decomposition, the shallow water solver, the modified
Airy solver, and implementation details. Section 5 evaluates our
method and discusses results and future work, Section 6 concludes
the paper.

2 RELATED WORK

2.1 Linearized water surface waves
Airy [1841] noted that the surface of an inviscid, irrotational, and in-
compressible fluid under the influence of gravity will exhibit waves
according to the very specific dispersion relation in Equation 2. Lord
Kelvin noted that the interference between these waves traveling
at different speeds completely explains the visually recognizable
patterns we see in wakes behind boats [Thomson 1887].

Computer graphics researchers devised numerous ways to mimic
these dispersive water waves. Peachey [1986] and other researchers
[Fournier and Reeves 1986; Hinsinger et al. 2002; Mastin et al. 1987]
animate waves by directly computing the inverse Fourier transform
of Equation 2. Tessendorf [2004a] use convolutions of specially-
designed kernel functions on a regular grid. Subsequent research
simplified the kernel computation by modifying the dispersion re-
lation [Loviscach 2002, 2003], increased performance and stability
with an exponential integrator [Tessendorf 2014], and increased its
accuracy in the presence of boundaries and obstacles [Canabal et al.
2016].
Airy wave theory exhibits a convenient mathematical structure

that benefits from numerous techniques from the analysis of partial
differential equations. The irrotational and incompressible assump-
tions of Airy wave theory imply that the velocity is the gradient of
a harmonic potential function 𝜙 , further explained in Section 3. Re-
searchers exploit this harmonicity using boundary integral [Keeler
and Bridson 2014] and surface-only [Da et al. 2016] models for
moving vertices on the liquid surface. Other researchers use funda-
mental solutions of this potential [Schreck et al. 2019] to analyti-
cally compute dispersive waves in open domains. Researchers have
also exploited mathematical properties of the waves themselves by
computing the evolution of wavefronts [Jeschke and Wojtan 2015],
moving packets of wave energy [Jeschke and Wojtan 2017], and
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stationary surface wavelets [Jeschke et al. 2018] to animate water
waves interactively.

2.2 Non-linear water surface waves
Airy theory is sufficient for animating visually striking interference
patterns, and its linearity gives rise to several computationally con-
venient mathematical transformations. However, this simplicity also
prevents it from being useful for animating non-linear effects, like
surface eddies, the fluid domain depending on wave height (waves
sloshing up onto a beach), and the wave speed depending on wave
height.
Direct simulation of 3D liquids is one way to achieve these non-

linear effects, but they are prohibitively complex for simple scenarios
where a heightfield simulation is sufficient. Thus we consider the
rich literature of 3D fluid simulation in computer graphics out of
scope for this discussion, and we will discuss only theoretical sim-
plifications of the fluid equations which give rise to 2D equations.
Boussinesq [1872] developed non-linear 2D equations with a poly-
nomial expansion of the wave height, giving rise to a non-linear
dependence between wave speed and wave height. While these
equations are commonly used in coastal modeling, they are only
applicable for very long wavelengths and are not commonly used
in computer graphics.
Saint-Venant [1871] developed a 1D version of what we now

consider the shallow water equations (SWE). These equations are
non-dispersive, but they allow turbulence in the form of swirling
eddies, and their computation easily allows for a changing domain
in flooding scenarios. Presumably for these reasons and for their
ease of computation, SWE are popular in computer animation. Kass
&Miller [1990] introduced a linearized SWE to graphics, and Layton
& Van de Panne [2002] introduced a version of SWE with non-linear
convective terms. Researchers subsequently refined SWE simulation
with improved numerical integration and GPU implementation [Ha-
gen et al. 2005], simulation on surface meshes [Wang et al. 2007],
increased stability and non-reflecting boundary conditions [Chen-
tanez and Müller 2010], and enhanced convection [Pan et al. 2012].
Azencot [2018] introduced a structure-preserving integrator for the
Euler-Poincaré (EPDiff) equation, a particular class of SWE that
does not exhibit the linear superposition of Airy wave theory.
All of these non-linear wave equations feature more interesting

wave motions than simple linear Airy theory. However, they are
either too computationally expensive to solve at large scales, or they
are limited to a narrow range of phenomena (like only modeling
shallow water).

2.3 Extended and combined methods
We are not the first to try to extend the capabilities of the Airy and
SWE models beyond their original restrictive constraints. While
the original Airy theory assumes that the steepness of the wave
𝑘ℎ is small, Trochoidal waves [Gerstner 1809; Rankine 1863] allow
for steeper waves by allowing points on the surface to follow a
circular path, and Biesel waves [Biesel 1952] approximate breaking
waves by expanding these circular motions into ellipses. Both of
these models have found use in computer graphics [Fournier and
Reeves 1986; Tessendorf 2004b], where applications require visually

interesting choppy waves. Unfortunately, while these modifications
increase the visual appeal of surface waves in open water, they
exacerbate the problems that Airy waves have with boundaries.
Techniques like Wave Cages [Jeschke et al. 2020] can effectively
prevent these waves from penetrating walls and sea floors, but until
now no technique allows Airy waves to change their simulation
domain (e.g., by flooding into a new region).
The work of Yu et al. [2011] is noteworthy in that it advects

strips of Airy interference patterns on top of a SWE simulation. The
detailed surface waves utilize closed-form Airy wave interference
patterns [Fedorov and Melville 1998], but the wave motion is gov-
erned by non-dispersive SWE and is limited to the special case of
standing shock waves near an obstacle.
Several researchers aimed to compensate for the restrictions of

2D wave simulations by combining them with fully 3D liquid simu-
lations. Thuerey et al. [2006] and Chentanez et al. [2015] coupled
a liquid simulation with the shallow water equations, Huang et
al. [2021] coupled 3D liquid to a quasi-2D surface-only water simu-
lation [Da et al. 2016], and Schreck et al. [2022] coupled 3D liquid to
an Airy wave solver based on fundamental solutions [Schreck et al.
2019]. These methods couple the 3D and 2D solvers using domain
decomposition; some regions are simulated in 3D, while different
regions (presumably further away or in areas requiring less detail)
are limited to 2D simulation.
More recently, researchers used a different coupling strategy to

add a 2D Airy solver directly on top of another fluid simulation
solved with a different technique. Kim et al. [2013] added dispersive
waves to a 3D fluid solver by one-way coupling a convolution-based
solver with the closest-point method, and Skrivan et al. [2020] sim-
ulated the motion of Lagrangian wave packets [Jeschke and Wojtan
2017] on the 3D surface. These 2D/3D coupling techniques work
exceptionally well when one can afford the computational demand
of a fully 3D solver, but they are overkill for height field-based wa-
ter dynamics. In addition, their one-way coupling strategy limits
surface waves essentially to high-frequency textures, instead of a
means to transport water into new domains. This paper addresses
precisely these limitations.
Although methods like eWave [Tessendorf 2014] make it look

easy, animating wake patterns is extremely difficult in general. SWE
cannot create wake patterns, because all wavelengths travel at the
same speed. 3D solvers are too dissipative and low-resolution for
interference patterns to appear, so specialized 2D surface wavemeth-
ods are the only way to create wake patterns in practice. Thus, our
work is the only practical method for animating two-way coupling
effects like those in Figure 3 (wakes interacting with vortices) and
Figure 1 (wakes interacting with the shore), and it does so in real
time.

3 THEORETICAL FRAMEWORK
Here we provide additional fluid mechanics background in Sections
3.1, 3.3, and 3.2, then introduce theoretical concepts behind our
method in Sections 3.4 and 3.5.
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Fig. 2. SWE vs. Airy wave theory. The shallow water equations (SWE) are
capable of complex non-linear wave behaviors, but are limited to constant
wave speeds in shallow depths. Airywave theorymodels waves at all possible
depths, but they are restricted to small-amplitude linear waves. Our method
combines both, significantly expanding the range of behaviors possible
within a single heightfield method.

3.1 Notation
For the remainder of this paper we assume the water is a height field
ℎ(x) over 2D space x = (𝑥,𝑦) with surface velocity u = (𝑢, 𝑣). Wave
theory often decomposes the wave height function into an average
water depth ℎ̄ and a perturbed height function ℎ̃, such that ℎ = ℎ̄ + ℎ̃,
where most of the interesting wave dynamics happens to ℎ̃, while ℎ̄
is relatively static. We will use similar notation to decompose other
functions, with a − over averaged quantities and ∼ over perturbed
quantities.
When discussing waves, k is the wavevector with wavenumber

𝑘 = ∥k∥, wavelength _ = 2𝜋/𝑘 , angular frequency 𝜔 , and ampli-
tude 𝑎. Airy theory assumes a velocity potential 𝜙 such that u = ∇𝜙 .

3.2 Linear surface waves
According to Airy wave theory [Johnson 1997], the vertical displace-
ment ℎ̃ from a reference surface with water depth ℎ is

ℎ̃ = 𝑎 cos(k · x − 𝜔𝑡) (4)

with 𝜔 defined in Equation 2. The velocity potential 𝜙 is defined as

𝜙 = 𝑎
𝜔

𝑘

cosh(𝑘 (𝑧 + ℎ))
sinh(𝑘ℎ) sin(k · x − 𝜔𝑡) (5)

where 𝑧 is the depth coordinate. The horizontal velocity at any water
depth 𝑧 is defined as

𝜕𝜙

𝜕x
= 𝑎𝜔

k
𝑘

cosh(𝑘 (𝑧 + ℎ))
sinh(𝑘ℎ) cos(k · x − 𝜔𝑡) . (6)

Integrating this velocity along the water depth gives us the horizon-
tal volumetric flow rate in linear wave terms:

𝑞 =

∫ ℎ̃

𝑧=−ℎ

𝜕𝜙

𝜕x
𝑑𝑧 ≈

∫ 0

𝑧=−ℎ

𝜕𝜙

𝜕x
𝑑𝑧 = 𝑎

𝜔

𝑘
cos(k · x − 𝜔𝑡). (7)

Integrating along depth to 0 instead of ℎ̃ simplifies the terms and
makes q̃ independent of water depth. This approximation is consis-
tent with the 𝑘𝑎 ≪ 1 assumption of Airy theory.

3.3 Shallow water equations
In the shallow water regime (ℎ ≪ _), the water surface is assumed
to be so close to the sea floor that the velocity is roughly constant

Fig. 3. Flow past a cylinder. Our method combines surface waves with fea-
tures from the bulk flow. Here, a disturbance in the flow creates a turbulent
wake featuring both wave interference patterns and a vortex street. The
lower image visualizes the 2D vorticity in grayscale.

throughout an entire column of water. The shallow water equations
in conservative form are:

𝜕ℎ

𝜕𝑡
+ ∇ · q = 0 (8)

𝜕q
𝜕𝑡

+ ∇ · (q ⊗ u) = −∇
(

1
2𝑔ℎ

2
)

(9)

where q = ℎu is the horizontal flow rate, and ⊗ is the dyadic product.
In our implementation, q is the amount of liquid flowing from one
grid cell to another, through a rectangle of height ℎ and width Δ𝑥 .
These equations have transport terms which are non-linear in u,
q, and ℎ. If we linearize these equations, we arrive at the popular
“pipe” model [Kass and Miller 1990], which is a wave equation with
dispersion relation 𝜔 = 𝑘

√︁
𝑔ℎ. As an interesting aside, these linear

waves are actually a subset of Airy wave theory, which prescribes
𝜔 =

√︁
𝑔𝑘 tanh(𝑘ℎ), because tanh(𝑘ℎ) ≈ 𝑘ℎ for small values of 𝑘ℎ.

SWE and Airy theory overlap exactly in the linearized shallowwater
regime, but SWE is better for non-linear behaviors, and Airy theory
is better for deeper water. This range of behaviors is conceptually
illustrated in Figure 2. Figure 3 shows how our method can simulate
both non-linear and Airy effects together.

3.4 Dynamics of decomposed waves
We generalize these wave dynamics by incorporating two different
types of waves together in the same mathematical model. We first
decompose the water height ℎ = ℎ̄ + ℎ̃ as mentioned earlier. As
before, ℎ̃ is a height field with relatively high frequencies compared
to ℎ̄: it models small ripples on top of ℎ̄, and it obeys Airy theory.
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Then, instead of assuming that ℎ̄ is a static average water depth,
we consider it a more general low-frequency water height function
modeling the “bulk” of the fluid. ℎ̄ is allowed to move over time
according to fluid dynamics. To tractably model these dynamics, we
assume that the low-frequency ℎ̄ function consists of wavelengths
so long that ℎ ≪ _ and it obeys shallow water dynamics. We then
seek to know how the dynamics of ℎ̄ affect ℎ̃ and vice-versa.
We first note that linear wave dynamics obey the superposition

principle: if ℎ̄ and ℎ̃ are both Airy waves, then so is ℎ = ℎ̄ + ℎ̃, and
the two waves have no influence on each other. In other words, it
is trivial to combine these two flows together when ℎ̄ is calm and
obeys linearized SWE.
Although we restrict ℎ̃ to linear wave theory, we allow ℎ̄ to be

nonlinear.We can estimate the effect of non-linear terms by plugging
ℎ = ℎ̄ + ℎ̃ and u = ū + ũ into the continuity equation (Equation 8):

𝜕ℎ

𝜕𝑡
= −∇ · (ℎu)

= −∇ ·
(
(ℎ̄ + ℎ̃) (ū + ũ)

)
= −∇ · (ℎ̄ū)︸   ︷︷   ︸

bulk

−∇ · (ℎ̃ũ)︸   ︷︷   ︸
surface

−∇ · (ℎ̃ū)︸   ︷︷   ︸
transport

−

�
�
��∇ · (ℎ̄ũ).︸    ︷︷    ︸

non-linear

(10)

The first term represents advection through the bulk flow, which
we model directly by solving the shallow water equations for ℎ̄ and
ū. The second term is the evolution of perturbed variables, which
we model with Airy wave theory. The third term is the transport
of high-frequency surface displacements ℎ̃ through the smooth
bulk velocity field ū, which we explicitly model with an additional
advection step. Finally, the fourth term is the influence of the surface
wave velocity ũ across the entire water depth ℎ̄; this term is zero
by our assumption that ũ obeys Airy wave theory and cannot have
large enough amplitudes to affect the entire depth ℎ̄. We therefore
do not model it in this work. In the end, we are left with 3 terms
that model bulk flow, surface waves, and transport.
Although this discussion focused on the evolution of ℎ, similar

reasoning applies for the transport of flow rates q (left-hand side
of Equation 9), giving us three analogous terms for the update of q.
Henceforth, we use − to denote “bulk” terms, ∼ to denote “surface”
terms, and ≃ to denote “transport” terms.

3.5 Decomposing waves
We want to decompose ℎ and q such that their low-frequency com-
ponents ℎ̄ and q̄ satisfy the shallow water assumption ℎ ≪ _. There
is no exact wavelength cut-off for this property to hold, but we know
that it should scale monotonically with water depth ℎ. This will
allow, for example, long waves to still obey pure Airy theory in deep
water, and short waves to obey SWE if the water is shallow enough.
We also wish to prevent extremely steep waves from appearing in ℎ̃,
as they violate the small amplitude 𝑘𝑎 ≪ 1 assumption of Airy wave
theory, and they are better treated as shock waves in the non-linear
SWE via ℎ̄.
Rather than filter the raw water depth function ℎ, we consider

the height field 𝐻 = ℎ + 𝜏 , which combines the depth and terrain
height 𝜏 . We do this because a smooth 𝐻 will give us a physically
reasonable water surface, regardless of what the terrain looks like

Fig. 4. Triple dam break. Simulated wakes, reflections, and eddies form
naturally as the flow accelerates through narrow channels and expands
again afterward. The lower image shows a SWE simulation for comparison.

below. We use a diffusion equation as a low-pass filter [Hamming
1998]:

𝜕𝐻

𝜕𝑇
= ∇ · (𝛼∇𝐻 ) (11)

where 𝛼 is a spatially-varying diffusion coefficient, and𝑇 is the ficti-
tious time over which we integrate the diffusion. Fourier analysis of
this equation reveals that it filters out high frequencies proportional
to the diffusion coefficient 𝛼 , the wavenumber squared, and the
integrated time 𝑡 :

�̂� (𝑘,𝑇0 +𝑇 ) = �̂� (𝑘,𝑇0)𝑒−𝑘
2𝛼𝑇 (12)

where �̂� (𝑘,𝑇 ) is the Fourier component of 𝐻 corresponding to
wavenumber 𝑘 at fictitious time 𝑇 . Thus diffusion acts as a filter
which removes the high-frequency components �̃� from 𝐻 to get a
low-frequency 𝐻 . We then recompose ℎ̄ = 𝐻 − 𝜏 and ℎ̃ = ℎ − ℎ̄ from
the filtered height field. The filter strength depends on 𝛼𝑇 , which
should increase monotonically with water depth and decay with
wave steepness. We use the same technique to compute q = q̄ + q̃.

We choose to decompose the ℎ and q variables (and reconstruct
them again) every simulation step, because the wave frequencies
may dramatically change over time. By recomputing the wave de-
composition, we allow waves to adapt their behaviors as they move
around, change frequencies, and change water depth.

4 OUR GENERALIZED WAVE MODEL
Following Chentanez and Müller and others [Chentanez and Müller
2010; Stelling and Duinmeijer 2003], we use a staggered grid dis-
cretization of the water heightfield, withℎ stored on grid cell centers,
and components of velocity and flow rate stored on cell bound-
aries. The water heights are time-integrated with the explicit Verlet
leapfrog scheme, so ℎ is evaluated one half time step later than
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Algorithm 1: Overview for one time step
Input q𝑡 and ℎ𝑡+Δ𝑡/2{
q̄𝑡 , q̃𝑡 , ℎ̄𝑡+Δ𝑡/2, ℎ̃𝑡+Δ𝑡/2

}
B Decompose qt and ℎ𝑡+Δ𝑡/2

q̄𝑡+Δ𝑡 B Simulate bulk fluid flow
q̃𝑡+Δ𝑡 B Simulate Airy waves
˜̄qt+∆t B Transport surface flow rate q̃𝑡+Δ𝑡 through ū
˜̄ℎ𝑡+3Δ𝑡/2 B Transport surface height ℎ̃𝑡+Δ𝑡/2 through ū
q𝑡+Δ𝑡 B Compute flow rate from

{
q̄𝑡+Δ𝑡 , ˜̄qt+∆t}

ℎ𝑡+3Δ𝑡/2 B Compute wave height from
{
q𝑡+Δ𝑡 , ˜̄ℎ𝑡+3Δ𝑡/2

}

q. This staggered discretization represents a finite volume scheme
which enhances simulation stability and guarantees volume conser-
vation; each substep of the algorithm accumulates the flow rates q
needed to update the wave heightsℎ = ℎ̄+ℎ̃ and the fluid momentum
encoded as q = q̄ + q̃. At the end of each time step, we reconstruct
the final ℎ from these integrated flow rates, guaranteeing volume
preservation, and resulting in complex flows like Figure 4.

This section is divided into sub-sections representing major sub-
steps of our algorithm, which is also outlined in Algorithm 1. We
first decompose ℎ and q into their bulk and surface components
(Section 4.1), then simulate the bulk components via the shallow
water equations (Section 4.2), and simulate the surface components
with an Airy wave solver (Section 4.3). We transport the surface
variables to account for the third term in Equation 10 (Section 4.4),
and finally integrate the overall height ℎ through time at the end of
the time step (Section 4.5).

4.1 Wave decomposition
To decompose ℎ and q into bulk and surface components, we follow
Section 3.5 by implementing a forward-in-time centered-in-space
explicit diffusion solver on the GPU. This operation converts ℎ and
q into ℎ̄ and q̄, which we use for the bulk flow. We use ℎ̃ = ℎ − ℎ̄

and q̃ = q − q̄ for computing surface waves. By increasing the
integration time and diffusion strength 𝛼 , we remove more and
more high frequencies from ℎ̄ and q̄ — no diffusion produces a pure
SWE simulation with ℎ = ℎ̄, and diffusing all the way to a steady
state produces a pure Airy wave simulation with ℎ = ℎ̃.

In theory, waves should always travel slower in shallowwater, but
blindly applying SWE in deep water makes them travel impossibly
fast. We employ a frequency filter to minimize this nonphysical
behavior: for a given water depth, there exists a wavelength where
the shallow water wave speed exactly equals the deep water wave
speed, _cutoff = 2𝜋ℎ. Wavelengths shorter than _cutoff should not be
treated with SWE. We employ diffusion as a classical Gaussian filter
with “cutoff wavelength” (where power is reduced by 3db) equal
to _cutoff, giving us a diffusion coefficient 𝛼 = ℎ2

64 , as derived in
Appendix C. Setting 𝛼 to this function of depth turns the diffusion
equation into a low pass filter, preventing short wavelengths in deep
water from being modeled with SWE.

To discourage very large, steep waves from being mis-classified
as high-frequency surface ripples, we add another penalty term

Fig. 5. Gradient penalty evaluation. This example started with an extremely
steep wave (a step-function). Without the gradient penalty term in Equation
13 (left), the surface explodes into a large number of steep high-frequency
surface waves. Enabling that term (right) gives results that look more like a
SWE simulation (center) with enriched details.

𝑒−𝑑 |∇ℎ |
2 to get

𝛼 =
ℎ2

64 · 𝑒−𝑑 |∇ℎ |
2

(13)

with tuning parameter 𝑑 = 1
100 . This heuristic discourages steep

gradients in surface waves and otherwise achieves monotonic depth-
dependent decomposition.We find that the gradient penalty 𝑒−𝑑 |∇ℎ |2

is only needed in extreme situations in practice, like dam breaks
where the height field is a step function with arbitrarily high fre-
quencies. The effect of penalizing steep waves in the decomposition
is visualized in Figure 5.
To simulate this diffusion, we sample 𝛼 on a staggered grid be-

tween ℎ samples. This diffusion scheme is an effective filter for our
purposes, but its implementation has practical limitations. Although
our system runs in real-time, this decomposition is the most expen-
sive part of our algorithm. Explicit integration requires small time
steps (128 sub-steps during each time step of wave simulation) and
we explicitly clamp Δ𝑇 to its maximum stable value to avoid instabil-
ity in arbitrarily deep water. A more efficient decomposition (better
diffusion solver or different filtering operation) should accelerate
computation further.

4.2 Simulating bulk fluid flow

Given our newly decomposed q̄𝑡 along with ℎ̄𝑡−Δ𝑡/2 from the previ-
ous time step, we compute ū𝑡 = q̄𝑡/ℎ̄𝑡−Δ𝑡/2; this ℎ̄ is stored in cell
centers while q̄ is stored on cell boundaries, so we use first-order
up-winding to select the most appropriate ℎ̄. We then numerically
integrate the shallow water equations to update ū𝑡+Δ𝑡 ; for this pur-
pose, we adopt the conservative finite-volume scheme of Stelling
and Duinmeijer [2003]. This method gives explicit time stepping
rules for updating ℎ̄ and ū, which we reproduce in Appendix A.
Please see Section 5 of [Stelling and Duinmeijer 2003] for full im-
plementation details.
At the end of this operation, we have new ū𝑡+Δ𝑡 values evalu-

ated at the boundaries of grid cells. We convert back to q̄𝑡+Δ𝑡 =

ū𝑡+Δ𝑡 ℎ̄𝑡+Δ𝑡/2, with the most recent ℎ̄ given by the surface decom-
position in the previous section, again using first order up-winding
to evaluate it on the staggered grid. Our decision to use ℎ̄ and q̄
from different steps is done such that it exactly reproduces the
leapfrogged SWE simulation of [Stelling and Duinmeijer 2003] in

6



Generalizing Shallow Water Simulations with Dispersive Surface Waves Siggraph ’23, August 06–10, 2023, Virtual

the simplified case of pure shallow water. After this operation, we
have computed the flow rates q̄𝑡+Δ𝑡 corresponding to the “bulk”
term in Equation 10.

4.3 Simulating Airy waves
We use the exponential integrator of eWave [2014] to update the
flow rates q̃ using the derivatives of surface wave heights ℎ̃. We
present pseudocode for this step in Algorithm 2, where 𝐹𝐹𝑇 is the
fast Fourier transform computed globally over the whole domain,
with 𝑖𝐹𝐹𝑇 as its inverse; the hatˆnotation indicates that the function
exists in Fourier space.
At the start of Algorithm 2, the exponential integrator expects

both ℎ̃ and 𝑞 to be sampled at the same time 𝑡 , but the SWE solver
from the previous section uses Leapfrog integration, leaving ℎ̃ and 𝑞
staggered in time. We re-sample ℎ̃ at time 𝑡 via linear interpolation,
then compute its Fourier transform to get ˆ̃

ℎ𝑡 .
In the third step of Algorithm 2, 𝜔 is the dispersion relation from

Equation 2. We use the decomposed smooth water depth ℎ̄ from
Section 4.1 for this purpose, so that 𝜔 =

√︃
𝑔𝑘 tanh

(
𝑘ℎ̄

)
. However,

the spatially varying water depth ℎ̄ is not available in Fourier space,
so we approximate the behavior of waves at different water depths
by calculating q̃𝑡+Δ𝑡

𝑖
for 𝑁 different water depths (𝑁 = 4 in our

implementation with ℎ̄𝑖 ∈ {1𝑚, 4𝑚, 16𝑚, 64𝑚}, refer to Figure 8 for
an error analysis), evaluating q̃𝑡+Δ𝑡

𝑖
for each value of ℎ̄𝑖 , and linearly

interpolating the q̃𝑡+Δ𝑡
𝑖

corresponding to the two closest depths.

The calculation of q̃𝑡+Δ𝑡
𝑖

needs the derivative 𝜕
ˆ̃
ℎ𝑡

𝜕x , which we
compute directly in Fourier space [Johnson 2011]. Because it is
sampled on a staggered grid compared to q̃, we off-set 𝜕

ˆ̃
ℎ𝑡

𝜕x by half a
grid cell in Fourier space via the Fourier shift theorem (multiplying
ˆ̃
ℎ by 𝑒−𝑖𝑘Δ𝑥/2).

4.3.1 Eliminating numerical dispersion. We mentioned at the start
of this section that the final wave heights ℎ will be reconstructed
in a volume-preserving manner from the flow rates q at the end
of the time step. This finite-volume reconstruction is based on a
numerical approximation of the divergence operator in Equation
8, and it causes numerical dispersion. Consequently, our surface
waves do not actually obey the desired dispersion relation if we
set 𝜔 =

√︃
𝑔𝑘 tanh

(
𝑘ℎ̄

)
. In Appendix B we derive the numerical

dispersion and a correction factor 𝛽 , so that we achieve perfectly
accurate wave speeds when we set 𝜔 = 1

𝛽

√︃
𝑔𝑘 tanh

(
𝑘ℎ̄

)
in Algo-

rithm 2. Figure 6 illustrates the impact of this correction where
we measure wavespeed with standing waves in a rectangular pool
similar to [Schreck and Wojtan 2022] at a water depth of 4 m, a
gridcell size of 1 m, and a timestep Δ𝑡 = 1

60𝑠 .

Algorithm 2: Simulate Airy Waves
ˆ̃
ℎ𝑡 B 𝐹𝐹𝑇

[
ℎ̃𝑡−Δ𝑡/2+ℎ̃𝑡+Δ𝑡/2

2

]
ˆ̃q𝑡 B 𝐹𝐹𝑇 [q̃𝑡 ]
q̃𝑡+Δ𝑡 B 𝑖𝐹𝐹𝑇 [cos(𝜔Δ𝑡) ˆ̃q𝑡 − sin(𝜔Δ𝑡) 𝜔

𝑘2
𝜕

ˆ̃
ℎ𝑡

𝜕𝑥 ]
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Fig. 6. Surface wave dispersion error.We plot the measured wavespeed 𝜔
𝑘

relative to the exact value; a value less than 1 indicates artificially slow
waves, while a value greater than 1 means the waves are too fast. The
uncorrected simulation (orange) exhibits numerical dispersion, while our
corrected method (blue) is practically perfect even down to the Nyquist
limit of _ = 2Δ𝑥 .

At the end of this step, we have updated flow rates q̃𝑡+Δ𝑡 corre-
sponding to the “surface” term in Equation 10.

4.4 Transporting surface waves

Next we transport the surface flow rates q̃ and wave heights ℎ̃
through the bulk velocity ū:

𝜕ℎ̃

𝜕𝑡
= −∇ · (ℎ̃ū) = −ū · ∇ℎ̃ − ℎ̃(∇ · ū) (14)

𝜕q̃
𝜕𝑡

= −∇ · (q̃ ⊗ ū) = −ū · ∇q̃ − q̃(∇ · ū) . (15)

We choose to apply operator splitting to these equations and numeri-
cally integrate each term separately, and we evaluate the derivatives
at the midpoint of the timestep, in the style of a “leapfrog” integrator.
The ∇ · ū term amplifies or damps waves based on the convergence
or divergence of the underlying bulk flow. By holding ū constant
over the time step, this becomes a linear ODE that we integrate in
closed form using exponential integration. In nature, this term is
responsible for wave shoaling — the sharp steepening, and eventual
tumbling, of surface waves when they enter shallower water with
slower flows. Our model cannot handle breaking effects, so we fol-
low previous works (which artificially damp steep waves [Jeschke
and Wojtan 2015] or omit the growth term altogether [Tessendorf
2017]) by adding an optional user-tunable factor 𝛾 that damps this
term only when it amplifies the wave in a converging background
flow. We compute the ū · ∇ terms using Semi-Lagrangian advection
with cubic spatial interpolation [Fedkiw et al. 2001] and avoid over-
shooting by clamping the interpolated value to lie within the range
of the four neighboring values.
For convenience, we transport the most up-to-date version of ˜̄𝑞

(after simulating Airy waves in Algorithm 2), so the resulting term
˜̄q encodes both the “surface” and “transport” terms of the flow-rate
version of Equation 10. In contrast, ℎ̃ is not directly updated in
Algorithm 2, so it is not available to be combined with the transport
term. Thus, ˜̄ℎ encodes only the “transport” term in Equation 10. The
detailed steps for transporting surface flow rates q̃ and heights ℎ̃
are written in Algorithms 3 and 4.
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Algorithm 3: Transport surface flow rate q̃ through ū

Input q̃𝑡+Δ𝑡 , ū𝑡 , and ū𝑡+Δ𝑡

Input wave amplification damping factor 𝛾 = 1/4
ū𝑡+Δ𝑡/2 B

(
ū𝑡 + ū𝑡+Δ𝑡

)
/2

𝐺𝑡+Δ𝑡/2 B min
[
−(∇ · ū𝑡+Δ𝑡/2),−𝛾 (∇ · ū𝑡+Δ𝑡/2)

]
˜̄q𝑡+Δ𝑡 B q̃𝑡+Δ𝑡 exp

(
𝐺𝑡+Δ𝑡/2Δ𝑡

)
˜̄q𝑡+Δ𝑡 B Semi-Lagrangian advect ˜̄q𝑡+Δ𝑡 through ū𝑡+Δ𝑡/2

Algorithm 4: Transport surface height ℎ̃ through ū

Input ℎ̃𝑡+Δ𝑡/2 and ū𝑡+Δ𝑡

Input wave amplification damping factor 𝛾 = 1/4
𝐺𝑡+Δ𝑡 B min

[
−(∇ · ū𝑡+Δ𝑡 ),−𝛾 (∇ · ū𝑡+Δ𝑡 )

]
˜̄ℎ𝑡+3Δ𝑡/2 B ℎ̃𝑡+Δ𝑡/2exp

(
𝐺𝑡+Δ𝑡Δ𝑡

)
˜̄ℎ𝑡+3Δ𝑡/2 B Semi-Lagrangian advect ˜̄ℎ𝑡+3Δ𝑡/2 through ū𝑡+Δ𝑡

4.5 Merging bulk and surface flow components
At this point in the time step we have computed all of the bulk,
surface, and transport terms needed to update ℎ and q according to
Equation 10. The integrated bulk flow rate is stored in q̄𝑡+Δ𝑡 , and
the surface wave flow rates were first updated then transported and
stored in ˜̄qt+∆t. The final q value is simply the sum of these terms:

q𝑡+Δ𝑡 = q̄𝑡+Δ𝑡 + ˜̄qt+∆t . (16)

Next we wish to compute the final height ℎ. To guarantee volume
conservation during this process, we construct ℎ from the diver-
gence of flow rates (Equation 8) rather than updating it directly. The
flow rates corresponding to the bulk and surface terms in Equation
10 have just recently been collected and stored in q𝑡+Δ𝑡 , so all that
remains is to compute a new flow rate q̆ corresponding to the “trans-
port” term for updating ℎ. We do this by multiplying the transported
height by the bulk velocity: q̆ = ˜̄ℎū. Recall that q and u are sampled
at time 𝑡 + Δ𝑡 and are located on a staggered grid, so we need to
re-sample ˜̄ℎ𝑡+3Δ𝑡/2 in space and time to make it coincide with ū𝑡+Δ𝑡 .
To perform this re-sampling, we re-purpose our semi-Lagrangian
advection algorithm to transport ˜̄ℎ𝑡+3Δ𝑡/2 backward in time by Δ𝑡/2,
to get a ˜̄ℎ𝑡+Δ𝑡 which is stored on the boundaries between grid cells.
We then compute 𝑞𝑡+Δ𝑡 = ℎ̃𝑡+Δ𝑡 ū𝑡+Δ𝑡 .

We plug these flow rates into Equation 8 to produce the final
wave heights:

ℎ𝑡+3Δ𝑡/2 = ℎ𝑡+Δ𝑡/2 + Δ𝑡∇ ·
(
q𝑡+Δ𝑡 + q̆𝑡+Δ𝑡

)
. (17)

The time step is now finished, and these q and ℎ variables will
now feed into the next time step, where they will get decomposed
into bulk and surface components and updated all over again.

4.6 Additional implementation details
To interact with dry regions, our algorithm prescribes solid bound-
ary conditions as in [Chentanez and Müller 2010]: terrain that is
higher than the water level sets the flow rate q to zero (effectively

creating reflecting boundary conditions); flow rates in dry regions
can otherwise be overwritten by the shallow water solver, in order
to flood into new terrain. We perform this update once per time
step, so the maximum flood rate is limited by the CFL condition.
Using these boundary conditions allow us to compute the FFT in
Algorithm 2 over the entire square domain (including both wet and
dry regions), without any further special treatment for irregular
water domains.

To avoid instabilities in the presence of fast flows, we use the CFL
condition to clamp velocities and flow rates to their maximum stable
values |u|max = Δ𝑥/(4Δ𝑡) and |q|max = ℎΔ𝑥/(4Δ𝑡). We apply this
limiter wherever any velocity and flow rate variables are updated:
after SWE integration, after transport of ℎ̃ and q̃, and after summing
flow rates in Equation 16. This limiter guarantees SWE stability at
the expense of incorrect flow speeds at large time steps. This is not
a problem in our experience, though it can cause two small visual
artifacts: slower flooding than normal, and an artificially large wave
height in places where the water would spread out quickly if it was
not throttled.
For extra visual effect in Figure 1, we add a small amount of

normal-mapped “texture” to the wave surfaces by computing low-
amplitude deep water waves via FFT [Mastin et al. 1987], and adding
the resulting surface normal to our water surface. We also use the
technique of Tessendorf [2017] to add horizontal displacements to
our waves in this example, in addition to the vertical wave displace-
ment ℎ. We render the waves with a transparency that scales with
depth, so the water becomes more transparent in shallow depths.
To produce boat wakes in our examples, we add point distur-

bances in q at every time step beneath the path of the boat. We
also move the boat’s vertical position to lie on the water level ℎ. We
leave more thorough solid-fluid coupling to future work.

5 RESULTS AND DISCUSSION
We implemented our wave simulation algorithm in CUDA on an
NVIDIA RTX2080 Max-Q Laptop. Our examples run in real-time
(comfortably over 40fps), including the cost of rendering. Without
rendering, our simulation runs around 100fps. The wave decompo-
sition algorithm (explicit integration of a diffusion equation) takes
87% of the simulation time and is the clear bottleneck of our solver.
For our results we set Δ𝑥 to 1m and the grid size to 512× 512; we set
Δ𝑡 to 1/60s for Figures 1 and 3 and to 1/30s for our other examples.

Figure 1 shows how our algorithm computes both deep water and
shallow water effects in the same scene. Two boats travel at different
speeds through deeper water, producing significantly different wake
patterns. An incoming wave floods onto the shore and creates a new
pool of water.
Figure 4 features a dam break scenario, where a wall with three

open slots separates a wet domain from a dry one. The water floods
through the narrow channels, creating standing wake patterns, vor-
tices, and numerous reflected waves on the water surface. Our
method uses the bulk flow to model the flooding, and the Airy
waves simulate the surface details.

Figure 3 models a cylindrical pillar in a steady background flow
of moving at 0.45 pillar diameters per second. The pillar sheds vor-
tices/whirlpools and forms a von Kármán vortex street, as well as
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Fig. 7. Varying Δ𝑡 . Smaller time steps resolve more high-frequency waves,
with a more accurate flooding speed.

a Kelvin wake pattern. The whirlpools and surface waves interact
with each other. In our model, the bulk flow simulates (shallow
water) vortices, and the Airy wave model creates the wake interfer-
ence patterns. Finally, Figure 10 features waves spilling in from the
boundaries of a square pool and interacting with complex obstacles
that dynamically grow and change over time.

5.1 Stability and validation
Tomake ourmethod robust enough for real-time simulation, we take
care to keep each of the substeps of our algorithm as numerically
stable as possible. The SWE solver enforces stability by clamping
flow rates to their maximum stable value, which can be inaccurate
for large time steps. The Airy solver and wave transport algorithms
(Semi-Lagrangian advection and closed-form wave amplification)
are each unconditionally stable when taken in isolation. The final
wave height integration guarantees volume conservation exactly
by construction. We merge these various methods together using
operator splitting, which is generally first order accurate and not
guaranteed to be stable.
We analyze the effect of varying the time step size in Figure 7,

using Δ𝑡 = 1/120s and 1/15s. Simulations with smaller timesteps
produce smaller wavelength waves which endure longer, implying
that our method exhibits some numerical damping for large Δ𝑡 .
Conversely, the large wavelengths can amplify in the simulations
with larger time steps, because artificially clamping 𝑢 for stability
can cause velocity to slow down, potentially reducing ∇ · 𝑢 and
increasing 𝜕ℎ̄/𝜕𝑡 .
Section 4.3 uses a piecewise linear function to sample surface

wave behaviors at different water depths. Figure 8 shows that the
accuracy of this approach depends on how many samples we use:
using more samples makes for more accurate wave speeds, at the

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e 
w

av
es

pe
ed

Water depth  (m)

Fig. 8. Error from discretizing water depth.We plot the measured wavespeed
𝜔
𝑘
of a wave with wavelength _ = 4𝑚 relative to the exact value for different

water depths. The orange curve shows the error from a simulation which
samples𝜔 at only two depths (1m, 16m), and the blue curve at three depths,
respectively (1m, 4m, 16m).

expense of additional surface wave simulations. Our simulations use
four depth samples, giving a maximum of 8% error (less in practice,
because most surface waves do not depend much on water depth).
One could further optimize these discrete values to minimize the
error on all relevant water depth and wavelength combinations, but
we did not deem this necessary for satisfactory visual results.

Figure 9 shows the relationship between the accuracy of the
surface wave speed and the wave decomposition (Section 4.1). The
different curves represent different numbers of iterations in the
diffusion solver each time step. Diffusing by a larger amount makes
a more effective frequency filter, so we see a relationship between
the number of explicit diffusion steps and the accuracy of the wave
speeds. Less diffusion causes a larger proportion of waves to be
treated as shallow water with a faster wave speed; a larger diffusion
lowers this error, turning most of the simulation into Airy waves.
To measure the accuracy of our method’s effective dispersion

relation in Figures 6, 8, and 9, we measured 𝜔 by counting the
period of standing waves at different wavelengths, just like Schreck
& Wojtan [2022].
Lastly, we note that our framework generalizes both SWE and

Airy wave solvers; if we force our wave decomposition to set ℎ̄ = ℎ

and q̄ = q, then we get a SWE simulator identical to that of [Stelling
and Duinmeijer 2003]. Conversely, if we set ℎ̄ constant and q̄ = 0, we
get an Airy wave solver indistinguishable from [Tessendorf 2014].

5.2 Limitations and future work
To create realistic wake patterns, we take care that our method
exhibits the correct wave dispersion. Our surface waves obey the
exact dispersion relation of gravity waves, as discussed in Section
4.3.1 and illustrated in Figure 6. However, because our bulk flow
simulator [Stelling and Duinmeijer 2003] uses a numerical discretiza-
tion of spatial derivatives, it does show some unrealistic numerical
dispersion in the presence of very steep waves (like in dam break
scenarios).
We note that our model — and most other practical methods

used in computer graphics — is based on theories that assume small
wave amplitudes, so we cannot expect it to behave accurately in
the presence of steep waves. Also, the choice of whether a given

9



Siggraph ’23, August 06–10, 2023, Virtual Jeschke and Wojtan

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e 
w

av
es

pe
ed

 

Wavelength  (m)

Fig. 9. Effect of wave decomposition on wave speed.We plot the measured
wavespeed 𝜔

𝑘
relative to the theoretical surface wave speed for simulations

with varying diffusion times in our wave decomposition at a water depth of
4m. The yellow, gray, orange, and blue curves correspond to 8, 16, 32, 128
diffusion iterations, respectively.

wave is considered “bulk flow” or “surface wave” depends on our
decomposition algorithm.
Our model derives its efficiency by discarding the potentially

complicated wave behaviors associated with the non-linear ∇ ·
(
ℎ̄ũ

)
term in Equation 10. Neglecting this term implies that velocity per-
turbations caused by surface waves ũ do not reach all the way down
to the sea floor — coupled interactions between the water surface
and sea floor are associated with vortex shedding and wave breaking
in nature. Linear theory suffices for interference patterns (Kelvin
derived the wake pattern using linear theory), but is insufficient for
these rotational effects.
Our surface wave solver operates in frequency space with an

exponential integrator that assumes waves do not intersect bound-
aries over the course of a single time step. Consequently, depending
on the time step and wave speed, waves may travel through thin
boundaries. We could use the shadow kernels of Canabal et al. [2016]
to prevent waves passing through boundaries in the future.
The decomposition in Section 4.1 uses an easy-to-implement

explicit integration of a spatially inhomogeneous diffusion equation
as a proof-of-concept. While it is already effective, this algorithm
could be made more precise and efficient in the future, perhaps
by using implicit integration, a spectral method, or any number of
techniques from the digital signal processing literature. We look
forward to refining this method in the future.
Our method assumes that the bulk and surface waves consist of

low- and high-frequency height fields, respectively. This implies,
because the bulk flow ℎ̄ interacts with the ocean floor (and because
the surface waves ℎ̃ do not), that the ocean floor is also a low-
frequency height field. To make our method work well with high-
frequency ocean floors, we would have to take the ocean floor into
account in the decomposition. Our current implementation does
not do this, so extra work is needed to exhibit correct behavior with
high-frequency terrain.

Equation 9 adds gravity as an external force. Although real water
also experiences surface tension and viscosity forces, we did not
include them in our implementation. Surface tension waves should
be straightforward to add if we modify the dispersion relationship,
though it might add an additional time step restriction on the bulk
flow solver due to the high speed of capillary waves. Many explicit

Fig. 10. Flooding into detailed, dynamically changing terrain.

solvers add artificial damping to ensure stability, so we intentionally
left it out to demonstrate robustness. In reality, viscosity damps
shorter wavelengths faster than longer ones — a property that is
currently missing from our simulator apart from numerical viscosity
caused by Semi-Lagrangian transport of surface waves. In the future,
we could add damping by approximating viscosity.

Our method also currently assumes that gravity 𝑔 is aligned with
our height field direction. More work would be needed to simu-
late strong tangential forces or water droplets on vertical surfaces,
perhaps by building upon the work of Wang et al. [2007].
Our shallow water solver can produce flows with significant

vorticity, but our surface wave solver obeys linear wave theory,
which assumes that q̃ is curl-free. Our decomposition in Section
4.1 does not make this distinction, and transfers high-frequency
vorticity to the surface wave solver, where it is ignored. If desired,
one could try to prevent the transfer of this high-frequency vorticity
or add a vorticity solver to the surface wave simulation.

Finally, our algorithm for reconstructing the water surface should
be improved. Our bi-cubic surface reconstruction requires a two-
cell-thick extrapolation into the nearby solid boundaries, and we
apply a threshold on the water height to classify whether a surface
is wet or dry. This combination of extrapolation and thresholding
can cause the water surface to unrealistically flicker near steep walls
that are close to the wet/dry threshold.

6 CONCLUSION
We have presented a height field water simulation algorithm that
combines the benefits of shallow water simulation with those of
surface wave simulation. Our results produce useful effects like
flooding on variable terrain heights, wake patterns and ripples,
and combinations of both surface waves and vortices in the same
animation. We introduced a novel wave decomposition heuristic
and a principled approach to simulating each of the terms in the
decomposed fluid equations. Our method preserves surface wave
speed and volume exactly, and it is well suited for parallel GPU
implementation.
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A SWE INTEGRATION
Here we list the integration rules from Section 5 of [Stelling and
Duinmeijer 2003]. Note that we only implement their momentum-
conserving time integration, but not the energy-head conservation
algorithm. The wave heights are updated with

𝑑ℎ̄𝑖, 𝑗

𝑑𝑡
+
ℎ̄𝑖+1/2, 𝑗𝑢

→
𝑖+1/2, 𝑗 − ℎ̄𝑖−1/2, 𝑗𝑢

→
𝑖−1/2, 𝑗

Δ𝑥

+
ℎ̄𝑖, 𝑗+1/2𝑢

↑
𝑖, 𝑗+1/2 − ℎ̄𝑖, 𝑗−1/2𝑢

↑
𝑖, 𝑗−1/2

Δ𝑥
= 0 (18)

where the time derivative 𝑑/𝑑𝑡 uses first-order finite differences, the
arrows → and ↑ indicate the 𝑥- or 𝑦- component of velocity, and
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ℎ values with non-integer indices are evaluated using first order
up-winding. The velocity is updated with upwinding as well. For
positive flow directions 𝑢→ and 𝑢↑, the update equations are:

𝑑𝑢→
𝑖+1/2, 𝑗
𝑑𝑡

+
𝑞→
𝑖, 𝑗

ℎ̄𝑖+1/2, 𝑗

𝑢→
𝑖+1/2, 𝑗 − 𝑢→

𝑖−1/2, 𝑗
Δ𝑥

+
𝑞
↑
𝑖, 𝑗−1/2

ℎ̄𝑖+1/2, 𝑗

𝑢→
𝑖+1/2, 𝑗 − 𝑢→

𝑖+1/2, 𝑗−1
Δ𝑥

+ 𝑔
ℎ̄𝑖+1, 𝑗 − ℎ̄𝑖, 𝑗

Δ𝑥
= 0 (19)

𝑑𝑢
↑
𝑖, 𝑗+1/2
𝑑𝑡

+
𝑞→
𝑖−1/2, 𝑗

ℎ̄𝑖, 𝑗+1/2

𝑢
↑
𝑖, 𝑗+1/2 − 𝑢

↑
𝑖−1, 𝑗+1/2

Δ𝑥

+
𝑞
↑
𝑖, 𝑗

ℎ̄𝑖, 𝑗+1/2

𝑢
↑
𝑖, 𝑗+1/2 − 𝑢

↑
𝑖, 𝑗−1/2

Δ𝑥
+ 𝑔

ℎ̄𝑖, 𝑗+1 − ℎ̄𝑖, 𝑗

Δ𝑥
= 0. (20)

Again, arrows indicate the 𝑥- or 𝑦- component of the flow rate and
velocity. Integer indices of 𝑞 (which are sampled on a staggered grid)
indicate averaged values, e.g, 𝑞→

𝑖, 𝑗
= (𝑞→

𝑖−1/2, 𝑗 +𝑞
→
𝑖+1/2, 𝑗 )/2. Please see

[Stelling and Duinmeijer 2003] for more thorough implementation
details.

B CORRECTING NUMERICAL DISPERSION
Following [Marshall et al. 2004], we analyze the effect of our numer-
ical spatial derivative operator on the shallow water wave equation:

𝜕𝑡𝑞 = −𝑔 𝜕𝑥ℎ

𝜕𝑡ℎ = −𝐻 𝜕𝑥𝑞 (21)

where 𝑔 is gravity, 𝐻 is the nominal depth of the water, 𝑞 is the flow
and ℎ the free-surface displacement. 𝜕𝑡 and 𝜕𝑥 are partial deriva-
tives with respect to time and space, respectively. The theoretical
dispersion relationship of this system is 𝜔 =

√︁
𝑔𝐻 .

Our implementation uses a spectral derivative (in Fourier space)
to compute the first derivative, and a finite volume approximation on
a staggered grid 𝜕𝑥 ≈ 1

Δ𝑥 𝜕𝑖 when reconstructing the wave heights
from the divergence of flow rates in the second:

𝜕𝑡𝑞 = −𝑔 𝜕𝑥ℎ

𝜕𝑡ℎ = − 𝐻

Δ𝑥
𝜕𝑖𝑞. (22)

The operator matrix is[
𝜕𝑡 𝑔𝜕𝑥
𝐻
Δ𝑥 𝜕𝑖 𝜕𝑡

] [
𝑞

ℎ

]
= 0. (23)

To discover the effective dispersion of this operation, we plug in the
wave solution 𝑎𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) and compute the derivatives:[

−𝑖𝜔 𝑔𝑖𝑘

2𝑖𝐻
Δ𝑥 sin

(
𝑘Δ𝑥

2

)
−𝑖𝜔

] [
𝑞

ℎ

]
= 0. (24)

The determinant of this matrix gives us the numerical dispersion
relation

𝜔2 − 𝑔𝐻
2𝑘
Δ𝑥

sin
(
𝑘Δ𝑥

2

)
= 0

(25)

or

𝜔 =
√︁
𝑔𝐻

√︂
2𝑘
Δ𝑥

√︄
sin

(
𝑘Δ𝑥

2

)
= 0. (26)

Thus, the numerical dispersion of our scheme is equal to the original
dispersion

√︁
𝑔𝐻 multiplied by a factor of

𝛽 =

√︂
2𝑘
Δ𝑥

√︄
sin

(
𝑘Δ𝑥

2

)
. (27)

C DERIVATION OF DIFFUSION COEFFICIENT 𝛼

The diffusion equation (Equation 11) acts as a Gaussian filter with
a cutoff wavelength _cutoff = 2𝜋ℎ. Rounding the filter’s half-width
at half-maximum to 1 for simplicity, this gives us a heat kernel
with standard deviation equal to 𝜎 =

_cutoff
2𝜋 = 2𝜋ℎ

2𝜋 = ℎ and thus
𝛼 = 𝜎2

2𝑡 = ℎ2
2𝑡 . Fixing the diffusion timestep to the maximum stable

size Δ𝑇 = 0.25 and the number of diffusion iterations 𝑛 to a tolerable
128 iterations gives us a diffusion coefficient equal to ℎ2

2𝑛Δ𝑇 = ℎ2
64 .
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