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Abstract

At a fundamental level most physical equations are time reversible.
In this paper we propose an integrator that preserves this property at
the discrete computational level. Our simulations can be run forward
and backwards and trace the same path exactly bitwise. We achieve
this by implementing theoretically reversible integrators using a mix of
fixed and floating point arithmetic. Our main application is in efficiently
implementing the reverse step in the adjoint method used in optimization.
Our integrator has applications in differential simulations and machine
learning (backpropagation).

1 Introduction
Most fundamental physical equations are time reversible. Simulations of these
equations running forward in time are indistinguishable from those running in
reverse. However, our intuition tells us that this is not the case in real life.
Rarely do we see bits of shards of broken glass reverse to form a bottle resting on
a table. However, we are familiar with bottles falling off a table and smashing on
the floor into many shards of glass. This is the so called “paradox of the arrow
of time.” How can time reversible fundamental equations give rise to seemingly
irreversible phenomena? We will not dwell on these philosophical considerations,
see for example [3]. An easy way out of this conundrum is to consider that all
phenomena satisfying the reversible physical laws are possible but that some are
very improbable. The ones with high probability to occur are the ones we observe
in practice.
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Examples of reversible processes include molecular dynamics, the Euler equa-
tions of fluid motion, planetary systems, and so forth. Although these systems
are ideal cases they are nonetheless ubiquitous in simulation. Or at least until
dissipative effects are introduced.

In computers, physical processes are discretized and integrated using a time
step h. The state of the system (particle positions and velocities for example) is
some finite quantity S. Both h and S are not represented as idealized (mathe-
matical) real numbers but using finite representations. Basically bits, strings of
ones and zeros. For example a time step of h = π is represented in 32 bit IEEE
754 float standard as the following string of bits:

0 10000000 10010010000111111011011,

or alternatively in hex notation: 40420FDB [1]. Below we will show another way
of discretizing reals like π using fixed point numbers.

In this paper, we discuss a class of reversible integrators for Hamiltonian
systems. The most common example are Newton’s equations with conservative
forces that are the gradient of a potential field. When using floating point num-
bers these integrators are only approximately reversible. By using fixed numbers
which basically amounts to integrating with integers, we obtain exact bitwise re-
versible simulations. This means that if we integrate the equations forward for an
arbitrary number of time steps h and then decide to integrate backwards with −h
we recover any previous state exactly at a bitwise level. Like 1200045 = 1200045
not approximately like 1200045 ≈ 1200044.

Many applications can benefit from reversible integrators. Here we list a few.

• Animators can browse back and forth in time to refine a simulation’s results.
This is akin to how traditional animators flip through their sequence of
drawings using a flipbook.

• In Machine Learning and Optimization of physical systems a very popular
method is the adjoint method [7, 12, 4]. This technique requires the reverse
simulation of the physical system. Usually this is achieved by storing the
results of the forward solution. We will discuss this application in more
length below.

• Reversible simulations do not suffer from energy drift and are therefore
relatively stable for long term simulations. The energy is not exactly con-
served but bounded. They are however, not unconditionally stable and
have an upper bound on the time step h.
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This paper was mainly inspired by the seminal work of Levesque and Verlet [8].
This works fits into the class of Geometrical Integrators that preserve properties
of the underlying equations they simulate [5]. We are of course not the first ones
to use this technique. Rein and Tamayo apply it to simulating n-body systems
like our solar system [11]. This technique has also been applied to analyzing
complex statistical mechanical systems [6]. In this paper we clearly present how
to implement this technique, providing source code. We also provide a novel
application in computing gradients in the context of reversible neural ODEs.

2 Hamiltonian Systems

2.1 A Simple Spring
One of the simplest examples of a Hamiltonian system is that of a one-dimensional
spring. Not just any spring but one that has unit mass and unit stiffness. The
spring’s state is then defined at any point in time by two variables its position
q(t) and its velocity (momentum) p(t). The Hamiltonian (energy) in this case
is equal to the sum of kinetic and potential energies: H(q, p) = 1

2p
2 + 1

2q
2.

Energy conservation then directly implies that a solution lies on a circle in phase
space q − p that contains the initial condition (q(0), p(0))T . We know that the
spring satisfies Newton’s second order differential equation: q̈ = −q. Alterna-
tively, the equations can be written as a first order differential equation using the
Hamiltonian:

q̇ = ∂H

∂p
and ṗ = −∂H

∂q
. (1)

For our specific Hamiltonian we have that ∂H
∂q

= q and ∂H
∂p

= p. Introducing the
complex number z(t) = q(t) + ip(t), Eq. 1 becomes ż = −iz and its solution is
a rotation of the initial state

z(t) = e−it z(0) (2)

and lies on a circle. Obviously, the solution is exactly reversible.

2.2 General Case
The general case is multi-dimensional. Our state consists of n generalized co-
ordinates q and n generalized momenta p. We assume that the Hamiltonian
depends solely on the state H(q,p) satisfying Eq. 1 with q and p in boldface.
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Consider any property A(q,p), its evolution over time is implicitly given by its
dependence on the state (q,p)T . Indeed, using the chain rule of differentiation
and Eq. 1, we get that:

Ȧ = q̇
∂A

∂q
+ ṗ

∂A

∂p
= ∂H

∂p
∂A

∂q
− ∂H

∂q
∂A

∂p
= iL A, (3)

where
iL = ∂H

∂p
∂

∂q
− ∂H

∂q
∂

∂p
= iLq + iLp. (4)

is called the Liouville operator. Note that by convention the imaginary number
i is there to emphasize that this operator is Hermitian. Eq. 3 can formally be
solved as follows:

A(t) = eiLt A(0). (5)
Similarly to the simple spring example, we can introduce a 2n-dimensional vari-
able z = (q,p)T and plug it into Eq. 5 for each of its components (A = zi) to
get an equation for the evolution of our state:

z(t) = eiLt z(0). (6)

We can regard this equation as a "rotation" (unitary transformation) of the initial
state over time. The evolution is therefore exactly reversible and preserves energy
analogously to the one dimensional spring case above. We can verify that this is
indeed a special case iLz = p∂z

∂q
− q ∂z

∂p
= p− iq = −i(q + ip) = −iz.

2.3 Discretization
We now derive a reversible discrete integrator from the theoretical considerations.
We follow the work of Tuckerman et al. [13]. The idea is to discretize Eq. 6 by
replacing the Liouvillian by its decomposition (Eq. 4) and replace the continuous
time variable t with its discrete counterpart h.

z(h) = e(iLq+iLp)h z(0) = eiLqh eiLph z(0) +O(h2). (7)

The last equality is exact only when iLq and iLp commute which in general is not
the case. The propagation operator on the left hand side is also non reversible.
The clever idea is to replace the propagator with an equivalent symmetrical one:

z(h) = eiLq h/2 eiLp h eiLq h/2 z(0) +O(h3). (8)
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This integrator is unitary and invertible as desired and of order two. This is suffi-
cient for our bitwise-accurate integrator below. However, higher order integrators
can be constructed similarly if needed [5].

Now using first order approximations of the integrators in Eq. 8 becomes the
well known Position Verlet integration step:

q(h/2) = q(0) + h/2 ∂Ĥ(0)
∂p

p(h) = p(0) + h

(
−∂Ĥ(h/2)

∂q

)

q(h) = q(h/2) + h/2 ∂Ĥ(h)
∂p

,

where Ĥ(t) = H(q(t),p(t)). We point out that by exchanging the roles of q
and p in Eq. 8 we get the Velocity Verlet integrator which is also time reversible.
This method is also more commonly referred to as Leap Frog.

In most application the Hamiltonian is the sum of kinetic energy and a po-
tential V : H = 1

2 |p|
2 + V (q). In this case we can introduce the conservative

force f(t) = −∂V (q(t))
∂q which results in the following Position Verlet integrator:

q(h/2) = q(0) + h/2 p(0)
p(h) = p(0) + h f(h/2) (9)
q(h) = q(h/2) + h/2 p(h).

This Position Verlet formulation will be our go to reversible integrator in the
rest of the paper. We note that these integrators are not unconditionally stable.
A strict stability bound is hard to establish because the forces can be non-linear.
A linear stability analysis however suggest the bound hω < 1, where ω is the
highest “frequency” of the linear system. Before we present our implementation
we discuss how real numbers are represented in computers.

3 Float versus Fixed
Once we have our reversible integrator our job seems to be done. Usually we
implement the integrator in some programming language that has some built in
floating point data type. We run the simulation forward in time for N steps and
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then run it backwards (h ← −h) for N steps. Ideally, we should return to the
initial state exactly. This is usually not the case. As James Gosling the creator
of Java once famously said “95% of folks out there are completely clueless about
floating-point.” Floats are tricky. They do not behave like the ideal real numbers
they try to represent. They have the advantage that they can handle a wide
range of magnitudes as they are based on scientific notation. However, the basic
properties of real numbers are often not satisfied, for example 0.1 + 0.2 6= 0.3.
Integers do not suffer from this problem as they are discrete.

Enter the Fixed Point numbers. This format was popular before floats were
implemented in hardware. They work well if your data is bounded. Since our inte-
grators are bounded for reasonable time step sizes h we can assume without loss
of generality that our reals lie in the interval [1,−1]. We can then approximate
a real number R by the following integer I:

I = bR × BIG_INTc, (10)

where BIG_INT is a large integer and b·c is the integer part of a real number.
The only operation needed in our integration algorithm is addition as shown
below in the implementation. To get a real number from a fixed number, we
simply “invert” Eq. 10:

R = I / BIG_INT.
Actually, our implementation is hybrid and uses floating points to compute forces
and fixed points when integrating.

4 Implementation
In the following C++ code only the integration steps use the fixed format. Both
the coordinates and the velocities are represented in fixed format. The time
step can be any arbitrary float. The simulation is completely controlled by the
force function which uses only floats. Existing simulations can therefore easily be
implemented in this framework. We represent our fixed points as 64 bit integers
“int64_t”, a type standardized since C++11.

t y p ed e f in t64_t f i x e d ;
con s t f i x e d c_max_fixed = 0x1000000000000000 ;

s t a t i c f l o a t x2 f ( con s t f i x e d i_f ){
r e t u r n i_f / ( f l o a t ) c_max_fixed ;
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}
s t a t i c f i x e d f 2x ( con s t f l o a t i_f ) {

r e t u r n ( f i x e d ) ( i_f ∗ c_max_fixed ) ;
}

s t a t i c f i x e d ∗ x , ∗ v ;
s t a t i c i n t s i z e ;
// d e f i n e your f a v o r i t e f o r c e f i e l d he r e .
s t a t i c f l o a t f o r c e ( con s t i n t i , c on s t f l o a t i_x ) ;

v o i d i n t e g r a t e ( con s t f l o a t h ) {
con s t f l o a t h2 = 0 .5 f ∗ h ;

f o r ( i n t i = 0 ; i < s i z e ; i++) {
x [ i ] += f2x ( h2 ∗ x2 f ( v [ i ] ) ) ;

}
f o r ( i n t i = 0 ; i < s i z e ; i++) {

f l o a t f = f o r c e ( i , x 2 f ( x [ i ] ) ) ;
v [ i ] += f2x ( h ∗ f ) ;

}
f o r ( i n t i = 0 ; i < s i z e ; i++) {

x [ i ] += f2x ( h2 ∗ x2 f ( v [ i ] ) ) ;
}

}

We also implemented the integrator in JavaScript (JS) to create a web based
demo that is easily shared. Ironically, we were faced with the problem that
JS does not differentiate between integers and float numbers. It only has the
monolithic Number type. We found a solution by treating fixed point numbers
as strings. We lost some efficiency of course. The implementation is as follows:

va r XN = 1000000000;
f u n c t i o n X2F( x ) { r e t u r n (+x ) / XN; }
f u n c t i o n F2X( f ) { ( ( f ∗XN) | 0 ) . t o S t r i n g ( ) ; }
f u n c t i o n XADD( x1 , x2 ) { (+x1 + +x2 ) . t o S t r i n g ( ) ; }

The code is a bit obfuscated but JS programmers will recognize the hack to
get an integer from a Number by taking the bitwise “or” with zero. The “+”
operator transforms a string into a Number. See the accompanying HTML file
from the link given below for the entire implementation. We would like to hear
from readers who have a better solution. Note that this is just a quirk of the
JS language. For most typed languages, like in our C++ implementation above,
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Figure 1: Gravitational collapse of a ring and back.

there is no performance hit.

5 Results
We implemented the exact bitwise integrator for various forces. In each example
we run the simulation forward in time and then reverse the time step h and
observe that the initial state is exactly recovered. Figure 1 shows 5 frames of a
particle system which evolves under pair-wise gravitational-like forces. The initial
ring configuration first collapses and after a time reversal exactly returns to its
initial state.

We also implemented a chaotic pendulum simulation in JavaScript so it can
easily be shared on the internet. You can find the demo on the following web
page: josstam.com/reversible. The html source is self-contained and includes all
the JS code. The readers should feel free to experiment with the code.

6 Application: Reversible Adjoint / Neural ODEs
Reversible integrators can play an important role in optimization and machine
learning. First, we have to introduce some ideas from optimization. We provide
a very concise derivation of the so called adjoint method and then apply it to
our Hamiltonian framework.

The goal in optimization and machine learning is to find an optimal set of
controls/weights θ that minimize/maximize some cost function J . The function
to optimize usually depends on a state u(θ) which satisfies some equation/con-
straint E(u, θ). This is a constrained optimization problem.

Find: θ∗ = argminθ J(u(θ)) such that E(u, θ) = 0. (11)
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Two important examples follow. (1) A Vanilla Neural Network computes an
output y = f(x, θ) from a set of node values x and weights θ, the state is
u = (x, y), the constraint is E = −y + f(x, θ) = 0 and J is the cost function.
(2) An Ordinary Differential Equation (ODE) also fits this framework. In this
case the state u(t, θ) is some continuous quantity that evolves over time and
depends on continuous controls θ(t) like external forces. The function J models
some goal we want to achieve, like matching a keyframe. The state u satisfies
an ODE: E = −u̇ + f(u, θ). The “Neural ODEs” paper combines these two
examples in a clever way [2].

Equation 11 can be solved for the controls θ by many optimization techniques
[10]. Usually they involve the gradient of the cost function with respect to the
controls.

δJ := dJ

dθ
= ∂J

∂u

du

dθ
=: Ju δu. (12)

The gradient depends on the differential δu for which we can derive an equation
by differentiating E = 0:

0 = δE = dE

dθ
= ∂E

∂u

du

dθ
+ ∂E

∂θ
or Eu δu = −Eθ. (13)

This is a linear equation for δu, whose solution we can then plug into Eq. 12 to
get our desired δJ . This equation becomes expensive to solve in the presence of
many controls like in deep learning which have many weights.

Fortunately, there is an alternative known as the adjoint method. Instead of
solving 13 we solve an adjoint equation involving a new variable a, known as a
Lagrange multiplier or adjoint variable.

(Eu)∗ a = −J∗u and δJ ′ = a∗Eθ. (14)

Where “∗” is the adjoint operation (transpose for vectors and matrices). The
adjoint equation is independent of the controls. The fact that δJ ′ = δJ can be
established in a one liner proof:

δJ = Juδu = − (E∗ua)∗ δu = −a∗Euδu = a∗Eθ = δJ ′. (15)

For the case of an ODE (d/dt∗ = −d/dt) we get in agreement with [2]:

−ȧ =
(
∂f(u, θ)
∂u

)∗
a+

(
∂J

∂u

)∗
.
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Figure 2: Chain controlled to hit the "S" target.

This is a linear ODE that runs in reverse. It depends on the values of u in the
forward simulation. Usually these states are stored like in neural networks or
dealt with using clever check-pointing techniques. For our reversable integrators
we do not have that problem since we can retrace our path along with the
adjoint equation. More concretely, let a = (q̂, p̂)T be the adjoint state to our
coordinate/momentum coordinates. Then the adjoint Position Verlet (Eq. 9) is:

p̂(−h/2) = p̂(−h)− h/2 q̂(−h)

q̂(0) = q̂(−h)− h
(
∂f
∂q

(−h/2)
)∗

p̂(−h/2) (16)

p̂(0) = p̂(−h/2)− h/2 q̂(0).

Interestingly, this is a Velocity Verlet integration for the adjoint. Similarly, if we
had started with a Velocity Verlet integration we would have obtained a Position
Verlet integration scheme for the adjoint.

We used this framework to keyframe control a chaotic pendulum to match a
keyframe similarly to [9, 14]. Our controls are the initial velocities of the chain.
A sequence of frames is shown in Figure 2. The controls are shown in red.

7 Conclusion and Future Work
In this paper we have introduced an exact reversible integrator for Hamiltonian
systems. Hopefully, we have given enough theoretical background and actual
code to make this technique understandable and useful. We also showed how
to use this solver to efficiently solve a class of optimization problems using the
adjoint method.

In future work we would like to explore applications in machine learning, e.g.
reversible neural networks. Also we would like to extend this integrator to non-
Hamiltonian reversible systems. Another challenge is to derive an exact reversible
integrator for the Euler equations of fluid dynamics.
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In general we hope to inspire people to explore the interchange between
techniques in machine learning and simulation.
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