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Figure 1:We propose a reduced spacemixed finite elementmethod (MFEM) built on a Skinning Eigenmode subspace andmaterial-
aware cubature scheme. Our solver is well-suited for simulating scenes with large material and geometric heterogeneities in
real-time. This mammoth geometry is composed of 98,175 vertices and 531,565 tetrahedral elements and with a heterogenous
composition of widely varying materials of muscles (𝐸 = 5 × 105 Pa), joints (𝐸 = 1 × 105 Pa), and bone (𝐸 = 1 × 1010 Pa). The
resulting simulation runs at 120 frames per second (FPS).
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ABSTRACT
Real-time elastodynamic solvers are well-suited for the rapid simu-
lation of homogeneous elastic materials, with high-rates generally
enabled by aggressive early termination of timestep solves. Unfortu-
nately, the introduction of strong domain heterogeneities can make
these solvers slow to converge. Stopping the solve short creates
visible damping artifacts and rotational errors. To address these
challenges we develop a reduced mixed finite element solver that
preserves rich rotational motion, even at low-iteration regimes.
Specifically, this solver augments time-step solve optimizations
with auxillary stretch degrees of freedom at mesh elements, and
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maintains consistency with the primary positional degrees of free-
doms at mesh nodes via explicit constraints. We make use of a
Skinning Eigenmode subspace for our positional degrees of free-
dom. We accelerate integration of non-linear elastic energies with
a cubature approximation, placing stretch degrees of freedom at
cubature points. Across a wide range of examples we demonstrate
that this subspace is particularly well suited for heterogeneous ma-
terial simulation. Our resulting method is a subspace mixed finite
element method completely decoupled from the resolution of the
mesh that is well-suited for real-time simulation of heterogeneous
domains.
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1 INTRODUCTION
All elastic objects in the real world are heterogeneous. Yet many of
our elastodynamic simulations, especially in the real-time regime,
are evaluated on homogeneous materials. Applying them to hetero-
geneous materials makes these solvers slow to converge, leading
to visual artifacts such as artifical damping. These convergence
artifacts are exacerbated by a strict compute-time budget; a slowly
converging solve will have to be cut short as new simulation frames
are demanded. The mixed finite element method (MFEM) intro-
duced by Trusty et al. [2022] shows success in preserving energetic
motion for full space heterogeneous simulations. Unfortunately,
their method scales in complexity with the full mesh resolution;
larger meshes quickly become unavailable for real-time simulations.
For example, the mammoth example shown in Fig. 1 runs at 263
seconds per iteration (maximum 0.003 FPS), far from the common
real-time target of 60 FPS.

On the other hand, subspace methods have been popular in
graphics for accelerating optimization problems since Pentland and
Williams [1989]. However, subspace methods have very well known
weaknesses in representing extreme rotational motion [Choi and
Ko 2005], which is made worse by material or geometric hetero-
geneities. Recently Benchekroun et al. [2023] introduce Skinning
Eigenmodes, a linear subspace that preserves rotation invariance
during subspace simulation, and can represent rotational motion.

With the goal of simulating heterogeneous elastodynamicmateri-
als in real-time, we propose a subspace MFEM solver that makes use
of a Skinning Eigenmode subspace and an accompanying heterogeneity-
aware cubature approximation scheme. This solver inherits both
the material-robust convergence benefits of its full space predeces-
sor as well as the speed and reduced dimensionality provided by
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Figure 2: A crab with a hard shell (E=1e10 Pa) and soft joints
(E=1e6 Pa) is simulated with our subspace MFEM and skin-
ning subspace FEM. With only 2 solver iterations MFEM
exhibits correct rotational and elastic behavior, whereas sub-
space FEM with 4 iterations – and consequently half the
frame rate – exhibits noticeable damping.

the subspace. The result is a convergent simulation for heteroge-
neous domains whose complexity is entirely decoupled from the
resolution of the underlying mesh.

2 RELATEDWORK
2.1 Subspaces for Heterogeneous Materials
Subspace simulation has been of interest in graphics since Pentland
andWilliams [1989], where a subspace is commonly formed via Lin-
earModal Analysis (LMA) of the elastic energyHessian. These types
of modes have well known drawbacks when used for accelerating
elastodynamic simulation. Specifically, they struggle representing
large non-linear deformations, such as rotations, which are a salient
feature of heterogeneous material simulation.

Barbič and James [2005] use modal derivatives, whose aim is to
supplement primary LMA modes with higher quality derivative
modes to help the subspace stay up to date with the current de-
formation. Unfortunately, modal derivatives do not perfectly span
rotations (See Fig. 5). Modal warping [Choi and Ko 2005], Rotation
Strain coordinates [Huang et al. 2011], sub-structuring [Barbič and
Zhao 2011; Kim and James 2011] and rigid-frame embedding [James
and Pai 2002; Terzopoulos and Witkin 1988] all mitigate this issue
by factoring out rotational motion and keeping track of it separately.
These methods unfortunately scale in complexity with the number
of rotations to be tracked, of which there may be many in a large-
scale heterogeneous material. While non-linear subspaces via Deep
Neural Networks have also been proposed [Shen et al. 2021], the
resulting complexity of the subspace requires many optimization
steps in order to reach a solution [Sharp et al. 2023].

Another option is to use linear skinning subspaces, which can
represent rotations implicitly upon their construction. Many skin-
ning subspaces are chosen to represent smooth, local deformations
[Brandt et al. 2018; Jacobson et al. 2012; Lan et al. 2020; Wang et al.
2015]. Smoothness, however, is not an optimal prior when a ma-
terial has sharp transitions in material properties (See Fig. 8 and
Fig. 3). Faure et al. [2011] describe a local, material-sensitive set of
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skinning weights. Their construction rely on additional user param-
eters to control the smoothness of the subspace. Benchekroun et al.
[2023] propose Skinning Eigenmodes, a method of constructing
globally supported skinning weights that reflect material properties
from an eigendecomposition of the elastic energy Laplacian. The
globality of this subspace allows for a compact representation of
fine scale motion. While material aware, Skinning Eigenmodes in
standard finite element solvers still suffer degraded convergence
with large heterogeneities. We show that the combination of this
subspace with a mixed finite element method is the key to robust
real-time heterogenous simulation.

2.2 Fast Elastic Solvers for Heterogeneous
Materials

Standard discretizations struggle when applied to heterogeneous
elastodynamics problems which motivates our use of a mixed dis-
cretization [Trusty et al. 2022]. Typically, work on efficient simula-
tion of heterogenous materials is centered around homogenization
or numerical coarsening [Chen et al. 2017, 2015; Kharevych et al.
2009] which uses a coarse (lower than material assignment resolu-
tion) mesh as a reduced space and homogenizes material properties
within each coarse element. However these methods only simu-
late aggregate material behavior – by construction they cannot
accurately represent the heterogeneous strains induced by material
or geometric heterogeneity as the shape functions themselves are
typically polynomial within each element. While Chen et al. [2018]
derive material-adaptive multi-resolution basis functions, their ap-
proach depends on a non-physical Rotation-Strain post-warping
effect using Rotation Strain coordinates, which they show produces
artifacts. Rather, our material-aware skinning weights allow more
visually exacting reconstruction of animated motion using fewer
degrees-of-freedom.

Another common method for accelerating non-linear elastic
PDEs discretized via Finite Elements is by a cubature approxima-
tion [An et al. 2008; von Tycowicz et al. 2013] of the elastic energy.
This approximates the total elastic energy with reweighed contribu-
tions from a set of sparsely sampled representative tetrahedra. The
computation of these cubature points and weights is done in an
expensive offline training phase, requiring the user to provide data
with prior knowledge of the deformations they expect to encounter
at run-time. Instead, Jacobson et al. [2012] accelerate an elastostatic
solver by allowing tetrahedra to share strain quantities with other
tetrahedra in their cluster. These clusters are found efficiently via a
𝑘-means clustering on the skinning weights, allowing the clusters
to reflect the properties of the skinning weights. We combine both
approaches: we find a strong set of cubature points as the centroid
of the 𝑘-means clusters without requiring a training phase.

3 FULL SPACE MIXED FEM
Our starting point is the mixed finite element method (MFEM) of
Trusty et al. [2022]. We discretize the domain with a tetrahedral
mesh with |V| vertices and |T | elements.

We store positions as the coefficients 𝒙 ∈ R3 |V |×1 of Lagrange fi-
nite elements. We then introduce stretch degrees of freedom (DOFs)
𝒔 ∈ R6 | T |×1, corresponding to the symmetric stretch component
of the polar decomposition of the deformation gradient (𝐹 = 𝑅𝑆).

Wang et al. [2015]
Homogeneous 

Skinning Eigenmodes
Heterogeneous 

Skinning Eigenmodes

106Pa404Pa

2m36s

Figure 3: Material sensitive skinning modes directly lead to
richer motion for heterogeneous materials.

We maintain consistency between our positional and stretch
DOFs 𝒄 (𝒙, 𝒔) = 𝑫 (𝒔 (𝒙) − 𝒔), where 𝒔 evaluates the stretch at each
element as a function of 𝒙 . We make use of 𝐷 = diag( [1 1 1 2 2 2])
and 𝑫 = 𝑰 | T | ⊗ 𝐷 to account for the symmetric off-diagonal terms
in 𝑆 .

This leads to the MFEM elastodynamic optimization problem,

𝒙∗, 𝒔∗,𝝀∗ = argmin
𝒙,𝒔

max
𝝀

Ψ𝑥 (𝑥) + Ψ𝑠 (𝑠) + 𝝀𝑇 𝒄 (𝒙, 𝒔) (1)

where Ψ𝒙 (𝒙) is the quadratic component of the elastodynamic
energy that depends only on positional DOFs, Ψ𝒔 (𝒔) is the elastic
strain energy written in terms of the stretch DOFs and the last
term enforces the consistency constraint with Lagrange multipliers
𝝀 ∈ R6 | T | . The solution is characterized by the KKT optimality
conditions, which can be solved via a Newton-type method [Trusty
et al. 2022].

4 SUBSPACE MIXED FEM
We introduce a linear subspace 𝑩 ∈ R3 |V |×𝑟 for our positional
DOFs, and approximate them with 𝒙 ≈ 𝑩𝒖, where 𝒖 ∈ R𝑟 , 𝑟 ≪
3|V|, are subspace coefficients. With some precomputations, this
subspace can be used to evaluate the quadratic Ψ𝑥 (·) at run-time ex-
plicitly in terms of reduced dimensions. By contrast, fast evaluation
of the non-linear stretch energy, Ψ𝑠 (·), and the consistency con-
straint term requires the use of numerical cubature [An et al. 2008].
Evaluating these corresponding energy densities over a subset of
all tetrahedra, C, and reweighing their contributions according to
a precomputed cubature weight yields

Ψ𝑠 (𝒔) ≈
| C |∑︁
𝑐

𝑤𝑐𝜓𝑧 (𝒛𝑐 ) = Ψ𝑧 (𝒛), (2)

𝝀𝑇 𝒄 (𝒙, 𝒔) ≈
| C |∑︁
𝑐

𝑤𝑐𝝁
𝑇
𝑐 𝐷 (𝒛𝑐 (𝒖) − 𝒛𝑐 ) = 𝝁𝑇𝒈(𝒖, 𝒛) (3)

where we have introduced 𝒛 ∈ R6 | C | , the stretch DOFs at the
cubature tetrahedra, and 𝝁 ∈ R6 | C | , the Lagrange multipliers en-
forcing the consistency constraint at the cubature points.

We can finally rewrite the optimization problem entirely in terms
of reduced space DOFs:

𝒖∗, 𝒛∗, 𝝁∗ = argmin
𝒖,𝒛

max
𝝁

Ψ𝑢 (𝒖) + Ψ𝑧 (𝒛) + 𝝁𝑇𝒈(𝒖, 𝒛) (4)
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Figure 4: The skinning weights we get from Skinning Eigenmodes are naturally material aware. High frequency modes are
concentrated on soft parts of the snail, which are more likely to exhibit rich deformation. In contrast, the stiff shell only
has access to a constant skinning weight (shared by all parts of the snail), allowing rigid motion to be producible within our
skinning subspace.

We solve this optimization using Sequential Quadratic Program-
ming (SQP), where search directions for the (𝑘 + 1)-th iteration are
found by solving the KKT system

𝑯𝑢 0 𝑮𝑇
𝑢

0 𝑯𝑧 𝑮𝑧

𝑮𝑢 𝑮𝑧 0



𝒅𝒖
𝒅𝒛
𝝁

 = −

𝒇𝑢
𝒇𝑧
𝒇 𝜇

 , (5)

where all quantities are evaluated using DOFs from the previous
iteration, {𝒖𝑘 , 𝒛𝑘 }. 𝑯𝑢 = 𝑩𝑇𝑯𝑥𝑩 ∈ R𝑟×𝑟 and 𝑯𝑧 =

𝜕2Ψ𝑧
𝜕2𝒛

∈
R6 | C |×6 | C | are the reduced Hessians (with 𝑯𝑥 being the full-
space Hessian); 𝒇𝑢 = 𝑩𝑇𝒇𝑥 ∈ R𝑟 , 𝒇𝑧 =

𝜕Ψ𝑧
𝜕𝒛 ∈ R

6 | C | , and 𝒇 𝜇 =

𝒈(𝒖𝑘 , 𝒛𝑘 ) ∈ R6 | C | are the reduced forces (with 𝒇𝑥 being the full-
space force); 𝑮𝑢 =

𝜕𝒈
𝜕𝒖 ∈ R

6 | C |×𝑟 and 𝑮𝑧 =
𝜕𝒈
𝜕𝒛 ∈ R

6 | C |×6 | C | are
the reduced space constraint Jacobians. The transpose is omitted
from 𝑮𝑧 since it is a diagonal matrix of cubature weights.

We condense this system by applying a series of Schur comple-
ments so that for 𝒅𝒖 we instead solve

(𝑯𝑢 + 𝑲 )𝒅𝒖 = −𝒇𝑢 + 𝑮𝑇
𝑢𝑮
−1
𝑧 (𝒇𝑧 − 𝑯𝑧𝑮

−1
𝑧 𝒇 𝜇 ), (6)

where 𝑲 = 𝑮𝑢𝑮−1
𝑧 𝑯𝑧𝑮−1

𝑧 𝑮𝑇
𝑢 , and for 𝒅𝒛 and 𝝁 we solve

𝒅𝒛 = −𝑮−1
𝑧 (𝒇 𝜇 + 𝑮𝑢𝒅𝒖), (7)

𝝁 = −𝑮−1
𝑧 (𝒇𝑧 + 𝑯𝑧𝒅𝒛) . (8)

The updates for the next SQP iteration are then 𝒖𝑘+1 = 𝒖𝑘 +𝛼𝒅𝒖 and
𝒛𝑘+1 = 𝒛𝑘 + 𝛼𝒅𝒛, where 𝛼 is a step size given by backtracking line
search over the Lagrangian, L(𝒖, 𝒛, 𝝁) = Ψ𝑢 (𝒖) +Ψ𝑧 (𝒛) +𝝁𝑇𝒈(𝒖, 𝒛).
In this final form, none of the terms depend on a full space quantity,
so the update for 𝒅𝒖 is efficiently solved with a direct dense linear
solver, and the updates for 𝒅𝒛 and 𝝁 are local and performed in
parallel, making their cost negligible.

5 SUBSPACE CONSTRUCTION
5.1 Skinning Eigenmode Subspace
There are many ways to construct our positional subspace 𝑩. We
opt for using a skinning subspace [Brandt et al. 2018; Hahn et al.
2012]. As discussed by Benchekroun et al. [2023], these subspaces
span rotations (as shown in Fig. 5), a particularly salient feature for
heterogeneous stiff materials.

Other linear subspaces, such as modal derivatives [Barbič and
James 2005], do not generally span rotations [Benchekroun et al.
2023]. For free flying motion, this limitation may be addressed by
embedding a rigid frame that is tracked explicitly during the simu-
lation [Terzopoulos and Witkin 1988]. For heterogeneous materials
with multiple independent stiff components that do not necessarily

reconstruction target

modal derivatives

skinning modes

90°0° 180°

Figure 5: Modal derivatives are not suited for reconstructing
rotations on the input shape. Fixing these artifacts typically
requires explicitly tracking a rigid frame [Terzopoulos and
Witkin 1988].

rotate in unison (such as the bar in Fig. 5), keeping track of poten-
tially many rigid frames becomes increasingly inconvenient, and
scales in complexity with the heterogeneity of the material.

We opt to build our skinning subspace using Skinning Eigen-
modes [Benchekroun et al. 2023], which span rotations and further-
more provide a straightforward automatic method to generating
material-aware skinning weights (see Fig. 4). Specifically, we obtain
a set of skinning weights𝑾 ∈ R |V |×𝑚 by solving the weight space
generalized eigenvalue problem,

𝑯𝑤𝑾 = 𝑴𝑤𝑾𝚪. (9)

Above, 𝑯𝑤 = 𝜕2Ψ
𝜕2𝒙1
+ 𝜕2Ψ

𝜕2𝒙2
+ 𝜕2Ψ

𝜕2𝒙3
∈ R |V |× |V | is the elastic energy

Laplacian (subscripts {1, 2, 3} denote each of the 3 dimensions) and
𝑴𝑤 ∈ R |V |× |V | is the scalar mass matrix. The use of the elastic
energy Laplacian is what provides this subspace with its material-
aware properties.

The decomposition provides us with eigenvalues 𝚪 and eigen-
vectors𝑾 , the latter of which correspond to linear blend skinning
weights. The use of the elastic energy Laplacian is what provides
this subspace with its material-aware properties. These skinning
weights𝑾 can then be used to construct our subspace basis 𝑩 using
the standard linear blend skinning Jacobian formula,

𝑩 = 𝑰 3 ⊗ ((1𝑇𝑚 ⊗ �̄� ) ⊙ (𝑾 ⊗ 1𝑇4 )), (10)

where �̄� ∈ R |V |×4 are the rest positions in homogeneous coor-
dinates. We can relate𝑚, the number of skinning weights to our
subspace DOFs via 𝑟 = 12𝑚.
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Young’s Modulus Clusters Cubature Points

Figure 6: Our cubature points are found as the centroids of
each k-means cluster. Note that our centroids are sensitive
to the heterogeneity of the Young’s modulus. Stiffer regions
can have their strain be approximated with fewer cubature
points.

5.2 Cubature Construction
A cubature scheme is characterized by a set of cubature points, and
their corresponding cubature weights. A good cubature scheme
is crucial for the quality of our subspace approximation. Under-
sampling leads to spurious deformations [McAdams et al. 2011],
whereas excessive sampling introduces unnecessary cost.

A cubature scheme can be optimized to fit a training dataset [An
et al. 2008]. Cubature weights are computed via a Non-Negative
Least Squares (NNLS) fitting of the forces observed in the training
set. Cubature points are then greedily added at elements where
the current cubature fitting most poorly reconstructs the training
forces. This approach is well suited for scenarios where the user
knows a priori the types of deformation they want to approximate.
However, for scenarios where a user is exploring deformations for
potentially many meshes at a time, the requirement of building a
good cubature training set as well as the time it takes to iteratively
solve a large NNLS problem for the cubature weights can overly
constrain the creative process. Yang et al. [2015] propose an avenue
for acceleration based on a Preconditioned Conjugate Gradient
method.

We propose an alternative, fast and simpler method for construct-
ing our cubature approximation that is well suited for heteroge-
neous materials, inspired by the clustering scheme of Jacobson et al.
[2012]. To sample cubature tetrahedra, we cluster our domain and
choose the tetrahedra closest to the centroid of each cluster. We
construct these clusters from a 𝑘-means clustering on our skinning
weights.

𝑙 = kmeans(𝑾 T𝚪−2, |C|), (11)

where 𝑾 T are our skinning weights averaged from the vertices
to the elements. We weigh each skinning weight by its inverse
squared eigenvalue 𝚪−2 in order to favor weights that correspond
to low energy deformations, which are more likely to occur at run-
time. We then compute cluster centroids and choose our cubature
points as the tets closest to each centroid. The cubature weights
are then trivially computed as the mass of each cluster. Using the
skinning weights as our clustering features allows the cubature
scheme to reflect the properties of our skinning weights, such as

1x1010Pa
5x105Pa
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Figure 7: Our subspace MFEM solver almost perfectly re-
produces the angular motion of the sword over the first 25
simulation timesteps, whereas FEM consistently underesti-
mates it.
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Figure 8: Smooth local skinning weights (left), such as
Bounded Biharmonic Weights [Jacobson et al. 2011] are not
optimal for modeling materials with sharp heterogeneities.
Skinning Eigenmodes (right) are material sensitive and lead
to a sharp resolution of extreme twisting motions. Both sim-
ulations use MFEM.

material and geometric heterogeneity, or any pinning constraints
that may have been imposed on our skinning weights. In particular,
note from Fig. 6 and Fig. 16 that our cubature sampling parallels the
anticipated strain heterogeneity of the domain: regions more likely
to deform, such as soft regions or thin regions, will be sampled
relatively densely; regions less likely to deform, such as stiff or thick
regions, will be sampled relatively sparsely, as shown in Fig. 16.

6 IMPLEMENTATION
We implement our method in both Matlab and C++, with geometry
processing utilities provided by libigl [Jacobson et al. 2018] and
gptoolbox [Jacobson et al. 2021] and physics utilities provided by
Bartels [Levin 2018]. Our C++ code is parallelized with OpenMP
[Chandra et al. 2001]. For modelling and rendering we use Blender
[R Core Team 2013]. To solve the Generalized Eigenvalue Problem
in Eq. (9), as well as the 𝑘-means clustering, we use Matlab’s eigs()
and kmeans() functions. To solve for the search direction (Eq. (6))
in each Newton iteration we use Eigen’s [Guennebaud et al. 2010]
SimplicialLLT direct solver.

Algorithm 1 provides pseudocode for a single simulation step of
our subspace Mixed-FEM solver.
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Matrices coloured in blue remain constant throughout the simu-
lation, whereas matrices in red change every timestep, but remain
fixed throughout Newton iterations.

At the end of each simulation step, mesh geometry is usually
queried for visualization purposes. Standard subspaces require full
space projection, 𝒙 = 𝑩𝒖, to in order to capture the deformed mesh
geometry. This is a full space operation that can easily become the
bottleneck for any subspace simulation application. Instead, we
perform this step entirely on the GPU [Barbič and James 2005]. As
our subspace is a skinning subspace, it’s especially convenient to
perform this step in the vertex shader [Benchekroun et al. 2023]: we
pass the skinning weights forming our subspace𝑾 to our vertex
shader as vertex attributes in a preprocessing step, and send our
reduced space coordinates 𝒖 as uniforms each draw call. As Table
1 shows, this effectively makes the computation time for this step
negligible compared to the other stages of our pipeline.

Algorithm 1: Performs one simulation step of our subspace
Mixed-FEM solver
Function simulationStep(𝒖, 𝒛):

while not converged do
𝑯𝑧 ,𝑯𝑢 ← hessians(𝒖, 𝒛)
𝒇𝑧 ,𝒇𝑢 ,𝒇 𝜇 ← gradients(𝒖, 𝒛)
𝑮𝑧 , 𝑮𝑢 ← constraintGradients(𝒖, 𝒛)
𝑲 ← 𝑮𝑢𝑮−1

𝑧 𝑯𝑧𝑮−1
𝑧 𝑮𝑇

𝑢 // assemble stiffness matrix

// Global linear solve
𝒅𝒖 ← (𝑯𝑢 + 𝑲 )−1 (𝑮𝑇

𝑢𝑮
−1
𝑧 (𝒇𝑧 − 𝑯𝑧𝑮−1

𝑧 𝒇 𝜇 ) − 𝒇𝑢 )
// Local solves
𝒅𝒛 = −𝑮−1

𝑧 (𝒇 𝜇 + 𝑮𝑢𝒅𝒖)
𝝁 = −𝑮−1

𝑧 (𝒇𝑧 + 𝑯𝑧𝒅𝒛)

𝛼 ← lineSearch(𝑑𝒖, 𝑑𝒛, 𝝁)
𝒖 ← 𝒖 + 𝛼𝑑𝒖
𝒛 ← 𝒛 + 𝛼𝑑𝒛

return 𝒖, 𝒛

7 RESULTS & DISCUSSION
In the following examples, without loss of generality, we apply
implicit Euler time stepping and use the fixed corotational (FCR)
elasticity model [Stomakhin et al. 2012] (any hyperelastic model is
applicable Fig. 15). MFEM denotes our subspace MFEM solver and
FEM denotes a solver which uses the same skinning subspace, but
applied in standard FEM.

7.1 Iteration Ablation
The advantages of our subspace MFEM solver become especially
apparent for truncated real-time simulations with large hetero-
geneities. Fig. 2 shows a crab model with a stiff shell and soft joints
pinned at one of its hind legs and falling under gravity. The sub-
space simulation is carried out with 16 skinning modes and 342
cubature points. We allow only two solver iterations every timestep
and compare results between our subspace MFEM solver, and a
traditional subspace FEM solver. The FEM example manifests a very
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Figure 9: We start the octobot mesh in the deformed state
(bottom left). We then run 30 iterations of FEM and MFEM
iterations as we vary the Young’s modulus of the stiff region
(shown in purple). The soft region (shown in blue) remains
fixed at 1 × 105𝑃𝑎. For large material heterogeneities, FEM
takes much longer to converge than our MFEM.

common solver truncation artifact which heavily damps motion.
By contrast, our MFEM solver easily allows the crab to exhibit rich
rigid motion.

7.2 Complex Deformation
As shown in Fig. 8, our subspace solver can reproduce extreme
twisting motions for a heterogeneous candy with a hard middle
(1× 1010 Pa) and soft extremities (1× 106 Pa). The twist is enforced
via a spring force, and the whole simulation is carried out in a
subspace of 16 skinning weights and 192 cubature points. We com-
pare our subspace’s result to one created with bounded biharmonic
weights [Jacobson et al. 2011; Lan et al. 2020] with weight handles
located about samples found via farthest point sampling. While
bounded biharmonic weights provide a smooth basis for simulation,
this subspace is not aware of the heterogeneity present within the
candy’s domain, resulting in most of the modes locking their mo-
tions to ensure the stiff regions remain undeformed, leaving little
degrees of freedom available to accomodate the twist. By contrast,
our skinning eigenmode subspace is sensitive to the material prop-
erties of the candy, which allows our simulation to better capture
this sharp transition in the material properties of the domain.

7.3 Material Heterogeneity
Fig. 9 investigates how the extent of the heterogeneity affects the
convergence of our subspace Mixed-FEM solve and specifically
compares against the convergence of a traditional FEM simulation.

We start with the Octobot mesh in a deformed state and run
both subspace FEM and MFEM solvers for a single timestep. The
subspace used is composed of 16 skinning modes and 800 cubature
points. We perform this experiment for 3 different Young’s moduli
and plot the iteration progression of the Newton decrement for
each solve.

Fig. 1 stress tests our solver’s ability to simulate large-scale mod-
els with a high number of material discontinuities. Here, a Mam-
moth with stiff skeleton bones (1 × 1010 Pa), soft joints (5 × 105

Pa), and softer muscle (1 × 105 Pa) is excited by an external peri-
odic force applied on its back bone, moving it up and down and
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Table 1: We report average times (in milliseconds) for one iteration of subspace MFEM/FEM and full-space simulations for
meshes of various complexity. MFEM corresponds to a simulation step time for our subspace mixed FEM solver, FEM is the
time for a subspace FEM solve step, and𝑚 and |C| are, respectively, the number of skinning modes and cubature points used in
both subspace solvers. Proj is the time for the full-space projection used in the subspace solvers. Lastly, Full MFEM is the time
for a full-space MFEM iteration (Trusty et al. [2022]).

Mesh |V| |T | m |C| MFEM (ms) FEM (ms) Proj (ms) Full MFEM (ms)
Octobot (Fig. 9) 32 591 132 124 5 227 1.19 1.10 0.42 3,099.1
Gatorman (Fig. 7) 54, 235 227, 035 10 192 2.01 2.04 0.41 11,442.7
Mammoth (Fig. 1) 98, 175 531, 565 16 581 7.37 7.56 0.54 263,545

Crab (Fig. 2) 57,529 223, 565 16 342 5.87 5.51 0.49 7,483.75

Octobot

Gatorman

Mammoth

Crab

Time (ms)
42 60

Gradient
Assembly
Linear solve
Local solve
Linesearch

Figure 10: A timing breakdown of the core components for a
single subspace MFEM simulation step of the Octobot (Fig. 9),
Gatorman (Fig. 7), Crab (Fig. 2), and Mammoth (Fig. 1) simu-
lations.

thrashing it around the scene. We observe energetic rag-doll ro-
tational motion of the limbs and body, a detail noticeably absent
from the unconverged subspace FEM simulation provided in the
supplemental video.

7.4 Geometric Heterogeneity
Heterogenity of elastic moduli is just one possible source of large
variations in elemental strains. Another possible source is the ge-
ometry of the domain; heterogeneous thickness, for instance, can
lead to comparatively small and large strains in slender and thick
regions, respectively (see Fig. 13).

In this example, we wind up a pendulum, twist it back a few
times, and release it, allowing it to unwind and come to rest. We
carry out the simulation in a subspace composed of 16 Skinning
Modes and 400 cubature points (Fig. 16). Starting both methods at
the twisted state, we simulate the unwinding with MFEM and FEM
with one iteration per timestep. We observe that MFEM maintains
the same energy preserving benefits, while FEM again exhibits ro-
tation damping artifacts. This example uses homogeneous material
properties, emphasizing that our method offers an advantage when
the strain is heterogeneous, whether induced by constitutive or
geometric properties.

7.5 Mode-Cubature Pareto Fronts
In Fig. 11, we investigate how both our subspace parameters, the
number of skinning modes and the number of cubature points,
affect both the accuracy of our subspace approximation as well
as the time it takes to run. With the octobot starting in the bent

position shown in Fig. 9 and allowing one simulation timestep
to occur. We carry out this experiment assuming a homogeneous
material with a Young’s Modulus of 105 Pa.

To measure the accuracy of the converged solution (Fig. 11,
left), we project our subspace solution back to the full space and
evaluate the gradient of the full space elastodynamic optimization
problem, which should be 0 for an accurate, converged result. In
particular, note that the top left part of the grid-search makes use of
many skinning modes, but still incurs a lot of error. This may seem
unintuitive, but in fact stems from the introduction of a null space
in our cubature approximation. Because we have so few cubature
points in this regime, but many degrees of freedom for motion,
spurious 0-energy oscillations manifest, a known cubature pitfall
[McAdams et al. 2011]. In practice, we’ve found that setting the
number of cubature points to 20× the number of skinning modes
allows us to safely steer clear of this regime (Fig. 14), and all the
examples reported in the rest of this paper do not exhibit these
spurious deformations.

7.6 Timing Comparison and Discussion
Table 1 provides timings per MFEM and FEM iteration respectively.
We compare timings for the Octobot (Fig. 9 and Fig. 11), the Gator-
man (Fig. 7), theMammoth (Fig. 1) and the Crab (Fig. 2) with varying
subspace sizes. We also compare our solver’s performance to the
full-space MFEM solver of Trusty et al. [2022] and attain an average
speed up of over 3 orders of magnitude. The additional computation
required of our MFEM solver, when compared to FEM, is only the
local stretch and Lagrange multiplier solves Eq. (7), which incurs an
added 𝑂 (𝑘) operations. This step only incurs a marginal difference
as shown clearly in the timing breakdown of Fig. 10, which shows
the MFEM simulation time is dominated by the 𝑂 (𝑚2𝑘) dense 𝑲
matrix assembly.

With an asymptotically equivalent runtime as FEM, as well as
more favorable energetic behavior at low-iterations, our solver
enables real-time heterogenous domain simulation. In contrast, an
equivalent subspace size requires FEM to perform more iterations
(Fig. 2 and Fig. 7), making real-time simulation unattainable in many
cases.

7.7 Artifact Tradeoffs between MFEM and FEM
While FEM exhibits extreme damping artifacts at low iteration
counts, our solver can exhibit overly-energetic motion at low-
iteration counts. Fig. 7 shows a subspace simulation on a case with
extreme deformation and a localized external force.
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Figure 11: Pareto-search exploring the cost/benefit tradeoff
of varying our two subspace parameters, the number of skin-
ning modes𝑚 and the number of cubature points |C| . We
visualize the resulting full space energy gradient after con-
vergence (left) as well as the computation time per newton
iteration (right).

Here, a soft gatorman (5 × 105 Pa) wielding a stiff (1 × 1012 Pa)
sword is pulled back from its tail (using a soft penalty constraint)
and slingshotted towards its enemies. The subspace for the simula-
tion is composed of 10 skinning modes and 192 cubature points. We
compare our subspace simulation results with those of a traditional
FEM solver as we increase the number of solver iterations. Note
that our subspace allows us to capture the localized rotational mo-
tion of the sword which is absent from the FEM solution. We find
that MFEM is overly energetic at low iterations, causing an initial
overestimation of angular motion. This results in jittering artifacts,
which quickly disappear when taking more than one solver iter-
ation. In contrast, FEM requires many more iterations to recover
the correct rotational behavior (see the supplemental video for a
demonstration).

7.8 Limitations of Global Subspaces
The global support of the skinning eigenmode subspace allows our
simulation to efficiently capture complex ranges of motion. This
can lead to noticeable global artifacts when a user is exciting a
local region of the mesh. For example Fig. 12 shows a user bending
the mammoth’s hind leg, causing a jerk motion in the mammoth’s
trunk. Wemeasure the amount of deformation induced by summing
accumulated vertex displacements throughout the simulation. We
increase the size of the subspace and observe that this artifact goes
away as the number of skinning modes increases.

8 CONCLUSION AND FUTUREWORK
We have presented a new subspace mixed finite element method
that offers real-time elastodynamic simulation for large-scale het-
erogeneous domains. Typical subspace methods experience de-
graded performance and jarring artifacts in these settings. We show
that coupling a skinning eigenmode subspacewith amixed finite ele-
ment method and applying a heterogeneity-aware cubature scheme
yields a solver robust to extreme heterogeneities with performance
decoupled from the resolution of the underlying mesh. Our method
provides exciting opportunities for future work. There exists a
complex cost/quality tradeoff between dense globally supported

10 20 30 40

2.0 x103

1.0 x104

1.8 x104

#Skinning Modes

Accumulated Trunk Motion  

bending knee

deforms trunk!

Figure 12: Because of our globally supported subspace, bend-
ing the knee of the mammoth causes the trunk to deform.
This artifact goes away as we increase the size of the sub-
space.

subspaces, and sparse locally supported subspaces. Understand-
ing this tradeoff would help resolve the artifacts in Fig. 12 and
would pave the way to robust reduced-space contact simulation
– a difficult open problem for reduced space methods [Lan et al.
2020]. Finally, we believe our subspace MFEM solver could be ex-
tended for use in physics based inverse design in engineering and
biomechanics where domain heterogeneities are commonplace.
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Figure 13: We pin the pendulum from the top, twist the bottom end, and simulate the unwinding. We compare results from
FEM and MFEM with one solver iteration per timestep against a converged subspace FEM solution. Even at low iterations our
MFEM solvers show much better agreement, which is reflected on the plot on the right where total angular momentum for
each pendulum block is plotted over time.
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Figure 14: Under-integration with our clustering-based in-
tegration leads to artificial softening in softer regions. Here
we simulate a 48,000 tetrahedra heterogeneous cantilevered
beam and visualize the maximum deflection with different
numbers of cubature points. 5 skinning modes are used for
this simulation.
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Figure 15: Our method is compatible with any hyperelastic
material model. Here we apply a load and simulate beams to
equilibrium with As-Rigid-As-Possible (ARAP), fixed corota-
tional (FCR), and stable Neohookean material models

Figure 16: Our cubature sampling scheme is geometry aware
and constraint aware. Note that our schemes samples more
densely in the thin regions and only samples a single point
on the far left where the pendulum is pinned.
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