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Figure 1. XCube (X 3). Our model generates high-resolution (up to 10243) sparse 3D voxel hierarchies of objects and driving scenes in
under 30 seconds. The voxels are enriched with arbitrary attributes such as semantics, normals, and TSDF from which mesh could be readily
extracted. Here we show randomly sampled geometries using our model trained on ShapeNet, Objaverse, Karton City, and Waymo.

Abstract

We present X 3 (pronounced XCube), a novel genera-
tive model for high-resolution sparse 3D voxel grids with
arbitrary attributes. Our model can generate millions of
voxels with a finest effective resolution of up to 10243 in a
feed-forward fashion without time-consuming test-time op-
timization. To achieve this, we employ a hierarchical voxel
latent diffusion model which generates progressively higher
resolution grids in a coarse-to-fine manner using a custom
framework built on the highly efficient VDB data structure.
Apart from generating high-resolution objects, we demon-
strate the effectiveness of XCube on large outdoor scenes at
scales of 100m×100m with a voxel size as small as 10 cm.
We observe clear qualitative and quantitative improvements
over past approaches. In addition to unconditional genera-
tion, we show that our model can be used to solve a variety
of tasks such as user-guided editing, scene completion from
a single scan, and text-to-3D. More results and details can
be found on our project webpage.

1. Introduction
Equipping machines with the ability to create and understand
three-dimensional scenes and objects has long been a tanta-
lizing pursuit, promising a bridge between the digital and
physical worlds. The problem of 3D content generation lies
at the heart of this endeavor. By modeling the distribution of

objects and scenes, generative models can propose plausible
shapes and their attributes from scratch, from user input, or
from partial observations.

There has been a surge of new and exciting works on
generative models for 3D shapes in recent years. Initial work
in this area, train on datasets of 3D shapes and leverage 3D
priors to perform generation [18, 22]. While these works
produce impressive results, their diversity and shape quality
is fundamentally bounded by the size of 3D datasets (e.g.
[5, 12]), as well as their underlying 3D representation. To
address the diversity problem, one line of work [47, 67] pro-
posed an elegant solution that leverages powerful 2D genera-
tive models to produce 3D structures using inverse rendering
and a diffusion score distillation formulation. While they
benefit from the massive corpora of 2D image data and can
generate highly diverse and high-quality shapes, the gener-
ated shapes usually suffer from the Janus face problem, and
the generation process requires test-time optimization that is
lengthy and computationally expensive. More recent works
such as [31, 33] achieve state-of-the-art 3D generation by
smartly combining a mix of 2D and 3D priors. They gain
diversity from 2D data and spatial consistency from 3D data
and speed up the generation process by operating directly
in 3D. These works motivate a deeper investigation into the
fundamentals of 3D priors for generation. In particular, cur-
rent 3D priors are limited to low resolutions, and do not scale
well to large outdoor scenes such as those in autonomous
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driving and robotics applications. These datasets of large-
scale scenes are abundant and contain more data than those
consisting solely of objects [60]. Thus, developing a scal-
able 3D generative prior has the potential to unlock new
sources of training data and further push the boundary of
what is possible in 3D generation. In this work, we aim to
explore the limits of purely 3D generative priors, scaling
them to high resolutions and large-scale scenes. Our model
is capable of scaling to high-resolution outputs (e.g. 10243)
by leveraging a novel sparse formulation and can produce
outputs with high geometric complexity, by focusing dense
geometry near the surface of a shape.

Our method, X 3, is a novel hierarchical voxel latent dif-
fusion model for generating high-resolution 3D objects and
scenes with arbitrary attributes such as signed distances, nor-
mals, and semantics. Our model generates a latent Sparse
Voxel Hierarchy — a hierarchy of 3D sparse voxel grids with
latent features at each voxel — in a coarse-to-fine manner.
In particular, we model each level of the hierarchy as a la-
tent diffusion model conditioned on the coarser level. The
latent space at each level is encoded using a highly efficient
— both in terms of compute and memory — sparse structure
Variational Autoencoder (VAE). Our generated representa-
tion enjoys several key benefits: (1) it is fully 3D, enabling
it to model intricate details at multiple resolutions, (2) it can
output very high-resolution shapes (up to 10243 resolution)
by leveraging sparsity, (3) the distribution at each level is
easy to model since the coarse level need only model a rough
shape, and finer levels are concerned with local details, (4)
our generated shapes support multi-scale user-guided editing
by modifying coarser levels and regenerating finer levels, (5)
since our model leverages a latent diffusion model over a
hierarchy of features, we are able to decode arbitrary multi-
scale attributes (e.g. semantics, TSDF) from those features.

We demonstrate the effectiveness of our hierarchical
voxel latent diffusion model on standard object datasets such
as Objaverse [12] and ShapeNet [5] achieving state-of-the-
art results on unconditional and conditional generation from
texts and category labels. We further demonstrate the scala-
bility of our method by demonstrating high-quality uncondi-
tional and conditional (from a single lidar scan) generation
on large outdoor scenes from the Waymo Open Dataset [60]
and Karton City [1]. Finally, by leveraging a custom sparse
3D deep learning framework built on VDB [38], our model
is capable of generating complex shapes at 10243 resolution
containing millions of voxels in under 30 seconds.

2. Related Work

Generative Probabilistic Models. Common generative
models include variational autoencoders (VAE) [27], gen-
erative adversarial networks (GAN) [17], normalizing
flows [50], autoregressive models (AR) [66], and more re-
cently diffusion models (DM) [19, 57]. A popular method

for generative modeling is latent diffusion that has been
found useful in, e.g., images [46, 52, 65] and videos [3],
where the diffusion process happens over the latent space
of a simpler generative model (e.g. a VAE). Latent diffu-
sion models allow for easy decoding of multiple attributes
through different decoders. In our work, we employ a latent
diffusion model over a hierarchy of sparse voxels.

3D Generative Models. The recent surge in the 3D gen-
erative modeling literature mostly focuses on object-level
shape synthesis. One line of work opts for distilling 2D im-
age priors into 3D via inverse rendering [29, 33, 67], while
others [15, 24, 41, 43, 44, 71] focus on directly learning 3D
priors from large-scale 3D datasets [11, 12]. Recently, hy-
brid 2D-3D approaches [32, 61] which better leverage both
image priors and large 3D datasets have started to emerge.
Fundamental to these works are good 3D priors that can
instill multiview consistency without the need for expensive
test-time optimization. This is the interest of our work.

Works that tackle large-scale scene generation either
choose a procedural approach that decouples the genera-
tion of different scene components (e.g. roads, buildings,
etc.) [49, 59, 69], or a more generic approach that gener-
ates the entire scene at once [8, 25, 30]. While the former
approaches usually provide more details, they are limited
to generating a fixed subset of possible scenes and require
specialized data to train. The latter approaches are theoret-
ically more flexible but are currently bounded by their 3D
representation power (hence producing fewer details), which
is a problem we address in this work.

3D Representation for Generative Tasks. Many popular
3D representations exist in the generative modeling literature.
Point clouds [2, 35, 40, 71] are flexible and adaptive, but
cannot represent solid surfaces and pose challenges in archi-
tecture design. Triangle meshes [16, 42] are more expressive
but are limited to a fixed topology and hence hard to optimize.
Neural fields [7, 34, 41] encode scene geometry implicitly in
the network weights and lack an explicit inductive bias for
effective distribution modeling. Tri-planes [6, 15, 56] can
represent objects at high resolutions with reduced memory
footprint, but fundamentally lack a geometric bias except for
large axis-aligned planes, posing challenges when modelling
larger scenes with complex geometry. Comparably, voxel
grids [22, 55, 68] are flexible, expressive for both chunky
and thin structures, and support fast querying and process-
ing. Sparse voxel hierarchies do not store voxel information
for empty regions and hence are more efficient. A popular
approach in the literature is to implement these using oc-
trees [23, 64] or hash tables [62]. However, previous works
either focus only on geometry [64, 72], are limited to an ef-
fective resolution of 2563 [23], do not consider hierarchical
generation [73], or are not evaluated on large-scale, real-
world datasets [28]. In contrast, our method can generate
high-resolution shapes from a hierarchical latent space, and
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Figure 2. Method. Sparse voxel grids within the hierarchy are first encoded into compact latent representations using a sparse structure VAE.
The hierarchical latent diffusion model then learns to generate each level of the latent representation conditioned on the coarser level in a
cascaded fashion. The generated high-resolution voxel grids contain various attributes for different applications. Note that technically X1 is
a dense latent grid, but illustrated as a sparse one for clarity.

is evaluated on large-scale, real-world scene datasets.

3. Method

Our goal is to learn a generative model of large-scale 3D
scenes represented as sparse voxel hierarchies. The hierarchy
comprises of L levels of coarse-to-fine voxel grids G =
{G1, ...,GL} and their associated per-voxel attributes A =
{A1, ...,AL} such as normals and semantics. Finer grids
Gl+1 with smaller voxel sizes are strictly contained within
the coarser grids Gl for l = 1, ..., L− 1, and the finest level
of grid GL contains the maximum amount of details.

Our method trains a hierarchy of latent diffusion mod-
els over the sparse voxel grids G encoded by a hierarchy of
sparse structure VAEs, as summarized in Fig. 2. We first
introduce the sparse structure variational autoencoder (VAE)
that learns a compact latent representation of voxel grids
in § 3.1. Then we describe our full diffusion probabilistic
model that learns the joint distribution of the latent represen-
tation and the sparse voxel hierarchy in § 3.2. The training
and sampling procedures are described in § 3.3, followed by
the implementation details in § 3.4.

3.1. Sparse Structure VAE

Motivation. The sparse structure VAE is designed to learn
a compact latent representation of each voxel grid within the
hierarchy and its associated attributes. Instead of directly
modeling their joint distribution that comprises a mixture of
continuous and discrete random variables, we encode them
into a unified continuous latent representation, which is not
only friendly to the downstream diffusion models during
training and sampling [65, 71], but also facilitates the formu-
lation of a hierarchical probabilistic model which we aim to
demonstrate. Additionally, the latent representation, encoded
in a coarser spatial resolution, serves as a compact yet mean-
ingful proxy that saves the computation while preserving the

Subdivide Prune Subdivide Prune

…

Figure 3. VAE Decoder Architecture. Coarser levels of grids
Gl are upsampled to finer grids Gl+1 by iteratively subdividing
existing voxels into octants and pruning excessive ones. Each level
may contain many upsampling layers that double the resolution.

expressivity [18, 52]. Represented as X = {X1, ...,XL},
the latent is also a featurized sparse voxel hierarchy corre-
sponding to a coarser version of G, with the voxel size of Xl

being the same as Gl−1.
Network Design. We choose to train separate VAEs that op-
erate on each level l of the hierarchy independently. Hence
for the ease of notation, we drop the subscript l in the fol-
lowing discussion. Here, we build the neural networks based
on the operators over sparse voxel grids to model both the
posterior distribution qϕ(X|G,A) and the likelihood dis-
tribution pψ(G,A|X), with ϕ,ψ being the encoder and
decoder weights respectively.

For the encoder, we utilize the sparse convolutional neural
network to process the input G and A by alternatively apply-
ing sparse convolution and max pooling operations, down-
sampling to the resolution of X. For the decoder, we borrow
the structure prediction backbone from [21] that allows us
to predict novel sparse voxels that are not present in the in-
put. It starts from X and proceeds by progressively pruning
excessive voxels and subdividing existing ones based on the
prediction of a subdivision mask, and finally reaching the res-
olution of G after several upsampling layers. An illustration
of the above decoding scheme is shown in Fig. 3.

3.2. Hierarchical Voxel Latent Diffusion

Probabilistic Modeling. Existing 3D generation litera-
ture [18, 41] typically uses one level of latent diffusion (i.e.



L = 1). While this is sufficient to generate intricate scenes
containing one single object, the resolution is still far from
enough to generate large-scale outdoor scenes. The limited
scalability of their underlying 3D representation and the ab-
sence of probabilistic modeling to capture the coarse-to-fine
nature of the data hinder the effectiveness of these methods.
We solve this by marrying a hierarchical latent diffusion
model [3, 20] with the sparse voxel representation. Specif-
ically, we propose the following factorization of the joint
distribution of grids and latents:

p(G,A,X ) =

L∏
l=1

pψl
(Gl,Al|Xl)pθl(Xl|Cl−1), (1)

where Cl−1 is the condition from the coarser level, with:

Cl =

{
c, l = 0

{Gl,Al, c}, l > 0
, (2)

with c being an optional global condition such as a category
label or a text prompt, and pθl(·) instantiated as a diffusion
model with parameter θl which we elaborate on later.

The above factorization assumes the Markov process (i.e.
level l is only conditioned on its coarser level l − 1), which
is naturally induced from the geometric nature of the data.
By doing so, we reduce the layers in each level of VAE
and amortize both the computation and the representation
power across multiple levels (see § 4.4 for empirical proof).
Additionally, such a factorized modeling endows us with
utmost flexibility, enabling user controls by editing or re-
sampling grids from different levels.
Diffusion Model pθ. Here we omit subscript l again for
clarity. A diffusion stochastic process transforms a compli-
cated distribution of a random variable into the unit Gaussian
distribution X0 ∼ N (0, I) by iteratively adding white noise
to it, following a Markov process [19]. One commonly used
instantiation is the following:

Xt|Xt−1 ∼ N (
√
1− βtXt−1, βtI), (3)

where 0 < βt ≪ 1 controls the amount of noise added for
each step. The reverse process, on the other hand, removes
the noise iteratively and reaches data distribution XT within
a discrete number of steps T . It is usually modeled as:

Xt−1|Xt ∼ N (µθ(Xt, t),
1− ᾱt−1

1− ᾱt
βtI), (4)

with αt = 1 − βt, ᾱt =
∏t

s=0 αs, and µθ a parametrized
learnable module. In practice, we re-parametrize µθ as:

µθ =
√
αtXt − βt

√
ᾱt−1

1− ᾱt
vθ, (5)

so that the learnable module predicts v instead. This is in
accordance with the v-parameterization in [53] that has been
shown to facilitate training.

We instantiate vθ(·) as a 3D sparse variant of the back-
bone used in [13], ensuring the grid structure of the de-
coded output from vθ matches the input. To inject condition
Cl−1, we directly concatenate the feature from Al−1 with
the network input recalling that Xl also shares the same grid
structure with Gl−1. Timestep condition is implemented
using AdaGN [52] and textual condition c is first CLIP-
encoded [48] and then injected using cross attention.

3.3. Training and Sampling

Loss Functions. We train the VAE and the diffusion model
level-by-level independently. During the training of the level-
l VAE, we employ the following loss function:

LVAE
l = E{Gl,Al}[EXl∼qϕ [BCE(Gl, G̃l)+

LAttr
l (Al, Ãl)] + λ KL(qϕ(Xl) ∥ p(Xl))],

(6)

where G̃l, Ãl is the output of the VAE decoder ψ given
Xl, and LAttr

l is the loss supervising the attribute predictions
(e.g., TSDF, semantics, etc.) with its specific form postponed
to the supplementary material. BCE(·) is the binary cross
entropy on the grid structure, making pψ a mixed product
distribution. KL(· ∥ ·) is the KL divergence between the
posterior and the prior p(Xl), which we set to unit Gaussian
N (0, I), and λ is its weight.

The training loss for the diffusion model is:

LDM
l = Et,Xl,ε∼N (0,I)

[
∥vθl(Xl,t, t)− vref∥22

]
, (7)

where vref =
√
ᾱtε−

√
1− ᾱtXl, t ∼ [1, T ], Xl is sampled

from the VAE posterior, and Xl,t =
√
ᾱtXl +

√
1− ᾱtε.

Sampling. To sample from the joint distribution of Eq (1),
one starts by drawing the coarest latent X1 from the diffu-
sion model pθ1 . Then, the decoder pψ1

is used to generate
the coarsest grid G1 and its associated attributes A1 (which
is then optionally refined by the refinement network). Con-
ditioned on C1 = {G1,A1, c}, the diffusion model pθ2 is
used to generate the next level of latent X2, and the process
goes on until the highest resolution of {GL,AL} is met. We
include TSDF in AL for all our experiments, which enables
us to decode high-resolution meshes. For other tasks such
as perception, we further allow for decoding other attributes
such as semantics. We use DDIM [58] as our sampler.

3.4. Implementation Details

In practice, we find the following implementation details,
specially tuned for the sparse voxel hierarchy generation
case, to be helpful for better results: (1) Early dilation. In
network layers with larger voxel sizes, we dilate the sparse
voxel grids by one, so that the halo regions of the sparse
topology also represent non-zero features. This helps later
layers to better capture the local context and generate smooth
structures. (2) Refinement network. An inherent problem



LION NFD NWD (Ours)

Figure 4. ShapeNet [5] Qualitative Comparison. We show comparison of our method with LION [71], NFD [56], and NWD [22]. Our
method is capable of generating intricate geometry and thin structures. Best viewed with 200% zoom-in.

of our factorized modeling is error accumulation, where
higher-resolution grids cannot easily fix the artifacts from
prior layers. We mitigate this by appending a refinement
network to the output of the VAE decoder that refines Gl and
Al. The architecture of the refinement network is similar to
[21], and its training data is augmented by adding noise to
the posterior of the VAE [20] before being decoded. Last but
not least, our architecture and training details can be found
in the supplementary.

Sparse 3D Learning Framework. The use of sparse voxel
grids motivates and enables us to build a custom 3D deep
learning framework for sparse data in order to support higher
spatial resolution and faster sampling. To this end, we lever-
age the VDB [38] structure to store our sparse 3D voxel grid.
Thanks to its compact representation (taking only 11MB for
3.4 million of voxels) and fast look-up routine, we are able
to implement common neural operators such as convolution
and pooling in a very efficient manner. Fully operating on the
GPU (including grid building), our framework is able to pro-
cess a 3D scene with 10243 in milliseconds, runs ∼3× faster
with ∼0.5× of the memory usage than the current state-of-
the-art sparse 3D learning framework TorchSparse [62]. All
our architectures are based on this custom framework.

4. Experiments

We conduct comprehensive experiments to evaluate the per-
formance of our model. First, we demonstrate XCube’s
ability to perform unconditional object-level 3D generation
using ShapeNet [5] (§ 4.1), and conditional 3D generation
from category and text using Objaverse [12] (§ 4.2). Next,
we showcase high-resolution outdoor scene-level 3D genera-
tion using both the Karton City [1] and Waymo [60] datasets
(§ 4.3), which is one of the first results of this kind. Finally,
we conduct ablation studies for our design choices (§ 4.4).
Please refer to the supplementary for further results.

Airplane Chair Car

CD EMD CD EMD CD EMD

Point-based method
PVD [74] 69.55 60.89 57.68 54.95 64.89 54.61
LION [71] 65.10 60.15 56.72 54.28 60.61 54.94

Triplane-based method
NFD [56] 57.55 53.47 54.87 54.06 69.49 71.96

Dense voxel-based method
NWD [22] 59.78 53.84 56.35 57.98 61.75 58.54

Ours 52.85 49.75 53.99 48.60 57.96 54.43

Table 1. 1-NNA Comparison on ShapeNet [5]. The lower the
better. Best scores highlighted in bold.

4.1. Object-level 3D Generation on ShapeNet

Dataset. To benchmark XCube against prior methods, we
use the widely-adopted ShapeNet [5] dataset. Following
the experimental setup in [35, 56, 70, 71], we choose three
specific categories: Airplane, Car and Chair, containing
4145, 7496, 6778 shapes respectively. To build the ground-
truth voxel hierarchy for training, we voxelize each mesh at
a 5123 resolution and use the train/val/test split from [10].

Evaluation. To evaluate the geometric quality of our syn-
thesized output, we follow previous work [22, 70, 71] and
use 1-NNA as our main metric (with both Chamfer distance
(CD) and earth mover’s distance (EMD)). 1-NNA provides
a comprehensive measure of both quality and diversity by
measuring the distributional similarity between the gener-
ated shapes and the validation set [70, 71]. Please refer to
the supplementary for more details and evaluations.

Baselines. We compare XCube to state-of-the-art 3D gen-
erative models that leverage various latent and shape repre-
sentations: PVD [74], LION [71], NFD [56], and NWD [22].
PVD and LION employ point clouds as both latent and
output-shape representations. NFD uses a triplane-based



Figure 5. Close-up View of Our Generated Shape. The voxel
grid is colored by predicted normal. XCube is able to generate a
high level of detail, such as the car interior and airplane propellers.

latent representation and decodes a mesh as its output shape
representation. NWD uses a dense voxel grid for its latent
representation and also decodes a mesh as output. In con-
trast, our method uses a sparse voxel hierarchy as a latent
representation and outputs a sparse voxel grid, which can be
readily converted to a mesh.

Results. Tab. 1 provides a quantitative comparison of
XCube against baseline approaches and shows the superior-
ity of our approach over past work. The point-based meth-
ods are naturally restricted to generating coarse shapes (i.e.,
2048 points), while our method is able to generate millions
of voxels (500× larger). The triplane-based method (NFD)
exhibits decent performance in categories such as Airplane
and Chair with simple geometry. However, its effectiveness
diminishes when confronted with the Car category with intri-
cate geometry (such as the suspension of cars), underscoring
the challenges of using triplane-based latent representations
to generate complex geometric structures. While NWD is
based on a dense voxel grid, it is unable to generate fine
details due to limited resolution and the fact that its inverse
wavelet transform is lossy. In contrast, our method is able to
generate high-resolution shapes with fine details, as shown
in Fig. 5. Fig. 4 shows a qualitative comparison, which is
consistent with our quantitative results.

User-guided Editing. Our method is based on a sparse
voxel hierarchy, which is a natural representation for user-
guided editing. We demonstrate this ability by allowing
users to edit the coarse-level shapes by adding or removing
voxels in Goxel [9], a Minecraft-style 3D voxel editor. Fig. 6
shows several examples of user-guided editing.

4.2. Object-level 3D Generation on Objaverse

Dataset. To further demonstrate XCube’s ability to per-
form object-level 3D generation, we evaluate it using the
Objaverse [12] dataset, which offers approximately 800K
publicly available 3D models. For the text-to-3D experi-
ment, we use the descriptive text automatically generated by
Cap3D [36]. For category-conditional generation, we adopt

Figure 6. User-guided Editing. By adding (green) and deleting
(red) coarse-level voxels, one can easily control the finer 3D shape.

the LVIS categorized object subset of [12], containing ∼40K
3D objects. We voxelize the 3D objects at a 5123 resolution
to build the ground truth voxel hierarchy for training.

Evaluation. We conduct a user study on Amazon Mturk
to compare our method with Shap·E [24], a state-of-the-art
text-to-3D method. Specifically, we gather 30 prompts from
popular text-to-3D works [24, 43, 44, 63]. For each prompt,
we ask 30 users to pick the 3D object (ours v.s. Shap·E
w/o texture) that better matches the text prompt and exhibits
higher geometric fidelity. In total, we collect 900 pairwise
comparisons. In 79.2% of the comparisons, participants vote
for our generated 3D objects.

Results. We provide qualitative results for text-to-3D in
Fig. 7, and category-conditional generation in Fig. 9. The
texture of our results is generated by off-the-shelf texture
synthesis methods [4, 51]. We also compare our method
with Shap·E [24] in Fig. 8. Our whole pipeline including
generating the geometry and the texture for one object takes
about 1 minute (30s for objects and 30s for textures). We
observe that our method is able to generate more diverse 3D
objects with higher geometric fidelity and finer details than
Shap·E, as shown in Fig. 9.

4.3. Large-scale Scene-level 3D Generation

Dataset. To demonstrate our model’s scalability and abil-
ity to generate large-scale high-resolution scenes, we train
and evaluate it on the Waymo Open Dataset [60] which
contains 1000 LiDAR scan sequences capturing different
driving scenarios. Here, we extract the ground-truth dense
scene geometry by accumulating the LiDAR scans and prop-
agating the semantic labels. To construct the ground-truth
sparse voxel hierarchy, we crop each of the extracted scenes
to 102.4m× 102.4m chunks and voxelize the points and
meshes at a resolution of 10243, resulting in a voxel size of
10 cm. To demonstrate the superiority of our representation
power, we train a model on Karton City [1], a custom syn-
thetic dataset of 20 blocks of synthetic city scenes using the
same resolution settings as Waymo. We divide the 20 blocks
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“A 3D model 
of skull”

“An 
eagle head”

Figure 7. Text-to-3D Results on Objaverse [12]. For each sample we show the input text prompt, the generated sparse voxel grid colored
by normal, the extracted mesh, and the textured mesh (using [51]) sequentially.
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Figure 8. Comparison with Shap·E [24]. We can generate high-
quality shapes that better match the given prompts.

into train/val splits and randomly crop 102.4m× 102.4m
chunks in each split to generate 900/100 unique train/val
scenes. Fig. 12 shows examples from the Karton City model
and we include more results in the supplementary.

Evaluation. To evaluate the quality of our generated results,
we perform a user study using Amazon Mturk. Here we
show 30 users 30 pairs of scenes (totaling 900 pairwise
comparisons) where one scene is sampled from the validation
set and the other is a random output generated by our model.
We ask each user to rank which scene is more realistic. Out
of the 900 comparisons, 66.3% favors our results over the
ground truth, demonstrating that our generated outputs are of
high quality. Fig. 10 shows several unconditional generations
from our model as well as decoded semantics and normals.

Single-Scan Conditioning. We demonstrate that our model
can be used to perform conditional generation on large-scale
scenes. In this qualitative experiment, we condition the
model on a single input LiDAR scan and generate a complete

<Dog>

“A chair that looks like a root”

<Lizard>

Figure 9. Diversity of Our Generated Shapes. XCube can gener-
ate diverse shapes under the same text prompt or category label.

scene with normals and semantics. Fig. 11 shows several
completions using our method. Note that our input does
not contain semantics, yet our model is able to generate
plausible geometric and semantic completion results. The
supplementary shows additional details and figures.

4.4. Ablation Study

Progressive Pruning. We replace the progressive prun-
ing part of our pipeline with a single pruning step for the
163 → 1283 VAE on ShapeNet Chairs. We observe that the
reconstruction accuracy (grid IoU) drops from 92.88% to
89.68%, indicating that progressive pruning is critical for



Curb & Lane Marker Vehicles Road Sidewalk Vegetation & Trees Building Sign & Pole

Figure 10. Unconditional Samples on the Waymo Open Dataset [60]. The dashed boxes show a zoomed-in view and the solid boxes show
the normal map for the extracted mesh. Best viewed with 200% zoom-in.

Figure 11. Single-scan-conditioned Generation. The left column
shows the input LiDAR scan and the right column shows our gen-
erated semantic mesh conditioned on the input.

preserving shape details and injecting 3D inductive bias. Fur-
thermore, the GPU memory usage also increases by a factor
of 3× when removing progressive pruning.

Hierarchy Configuration. As shown in Tab. 2, we com-
pare the performance of our model with different hierarchy
configurations on ShapeNet Chairs. We observe that: (1)
the hierarchical model outperforms the single-level model,
emphasizing the importance of a sparse voxel hierarchy in
3D generative modeling. (2) the model’s performance is
robust to the resolution of the initial hierarchy level. We find
163 is sufficient for capturing the overall shape of the object.
(3) using two-level and three-level models achieve compa-
rable performance. For unconditional generation, we use a
two-level model for fast sampling. And for the user-editing

Model CD (%) EMD (%)

163 → 5123 59.31 57.46
163 → 1283 → 5123 53.99 48.60
323 → 1283 → 5123 55.39 51.40
43 → 163 → 1283 → 5123 52.88 53.62

Table 2. Ablation of Different Resolutions and Depths of the
Hierarchy. Metrics are in 1-NNA. The lower the better.

Figure 12. Unconditional Samples on Karton City [1].

setting, we use a three-level model for easier editing.

5. Discussion
Conclusion. We presented X 3, a novel generative model for
large-scale 3D scenes represented as a hierarchy of sparse
3D voxel grids. We proposed a hierarchical voxel latent
diffusion model that learns the joint distribution of the latent
representation and the sparse voxel hierarchy. The effective-
ness of our method was demonstrated on both object-level
and scene-level generation, reflecting our method’s capabil-
ity of generating high-resolution 3D scenes with fine details.
Limitations and Future Work. Nevertheless, there are
challenges that remain. Due to current 3D datasets being
still not on par with image datasets (such as LAION-5B [54]),
our text-to-3D model is hard to deal with complex prompts.
In the future, we plan to extend our method in the setting of
image-conditioning, as well as leveraging the learned prior
as a fundamental model to support more downstream tasks.
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Appendices
In this supplementary material, we provide additional details on our method and experiments. In Appendix A, we describe
our sparse 3D deep learning framework, and compare it to state-of-the-art implementations. In Appendix B, we provide
more implementation details for our method as well as precise definitions of our loss function and evaluation metrics. In
Appendix C, we provide more qualitative results on all the datasets we trained/evaluated on in the main paper. We additionally
provide a supplementary video in the accompanying files to better illustrate our results.

A. Sparse 3D Learning Framework
All of our networks are implemented using a customized sparse 3D deep learning framework built on top of PyTorch. To
represent sparse grids of features and perform efficient deep-learning operations (convolution, pooling, etc.) over them, we
leverage NanoVDB [39], a GPU-friendly implementation of the VDB data structure [38]. A VDB tree is a variant of B+-Tree
with four layers where the top layer is a hash table, followed by two internal layers (with branching factor 323, 163), followed
by leaf nodes with 83 voxels.

To demonstrate the effectiveness of our VDB-based deep learning framework, we benchmark it against TorchSparse [62], a
state-of-the-art sparse deep learning framework. As shown in Tab. 3, our custom framework is both fast and memory-efficient,
especially for large input grid resolutions. Built upon the highly efficient VDB data structure, our 3D representation is
compactly stored in memory and supports more efficient nearest neighbor lookup and processing than its hash table counterpart
in [62]. Such a framework lays the foundation for our high-resolution 3D generative model and has potential to applications in
many other downstream tasks such as reconstruction and perception.

Voxel Grid Memory (MB) ↓ Convolution Forward Time (ms) ↓
Grid Resolution 5123 10243 323 2563 10243

TorchSparse [62] 15.0 104.6 2.1 8.5 446.0
Ours 3.6 8.4 0.5 5.0 149.6

Table 3. Sparse 3D benchmark results.

B. Implementation Details
B.1. Loss Definition

Our model is able to output various attributes A defined on the voxel grids. Here we omit the level subscript l for simplicity.
The direct output of the network at each voxel at each level includes surface normal n ∈ R3, semantic label s ∈ RS , and
neural kernel features ϕ ∈ R4. Here the neural kernel features ϕ are used for computing continuous TSDF values in 3D
space for highly-detailed subvoxel-level surface extraction (using the techniques from [21]), and it could also be replaced with
implicit features q to extract TUDF values for open surfaces as in [45]. The attribute loss LAttr, as mentioned in Eq. (6) of the
main text, is a mixture of different supervisions, written as follows:

LAttr = λ1 ∥n− nGT∥22︸ ︷︷ ︸
normal loss

+λ2 BCE(s, sGT)︸ ︷︷ ︸
semantic loss

+λ3 Ex∈R3∥f(x)− TSDF(x,XGT)∥1︸ ︷︷ ︸
surface loss

, (8)

where nGT and sGT are the ground-truth normal and semantic label at each voxel, andXGT is the ground-truth dense point
cloud of the surface. The surface loss is computed by sampling points x in the 3D space and comparing the predicted TSDF
values f(x) with the ground-truth TSDF values TSDF(x,XGT). To compute f(x) given arbitrary input positions, we leverage
the predicted neural kernels ϕ to solve for a surface fitting problem as in [21]:

f(x) =
∑
v

αvK(x,xv) =
∑
v

αvϕ
⊤
v ϕ(x)Kb(x,xv), (9)

where v is the index of the voxels, ϕ(x) is the neural kernel evaluated at the input position x using bezier interpolation from its
nearby voxels, and Kb(x,xv) = B(x− xv) is a shift-invariant Bezier kernel. The coefficients αv are obtained by performing
a linear solve as detailed in [21]. Similarly, for open surfaces we can replace the neural kernels ϕ with implicit features q



Figure 13. Results of micro-conditioning on Waymo dataset. The voxel number conditioning increases from left to right. There is a clear
trend of increasing number of voxels and more diverse contents in the sampled scenes.

and define f(x) as a local MLP function digesting trilinearly interpolated q at position x [45]. We set λ1 = 1, λ2 = 15, and
λ3 = 1 in our experiment. For the KL divergence, we normalize it by the number of voxels of the voxel grid and then use a
loss weight λ = 0.0015 for all our experiments.

B.2. Conditioning

We explore diverse condition settings for our voxel diffusion models: (1) For the associated attributes from the previous level,
we optionally concatenate them to the latent feature X before the latent diffusion. For example, for user-control cases, we do
not concatenate them for flexibly adding or deleting voxels. (2) For the text prompts, we use cross-attention to fuse them into
the latent. (3) For the category condition, we use AdaGN and fuse them with timestep embedding by adding. (4) For single
scan conditions, we use an additional point encoder to quantize the single scan point cloud to a voxel grid and concatenate it
with the latent feature X.

Micro-conditioning. We found that the Waymo dataset suffers from missing voxels due to the sparsity of the LiDAR scans.
To mitigate this issue, we use a micro-conditioning scheme following SD-XL [46] to inject additional condition to the diffusion
backbone describing the number of the voxels. This helps when the dataset itself contains multi-modal distributions, and
allows fine-grained control of the generated scale of the scene.

B.3. Texture Synthesis

While our model is focused on generating 3D geometry, we also explore the possibility of generating textures for the generated
shapes. To this end, we use a state-of-the-art texture generator TEXTure [51] to create texture maps for the generated shapes.
The method works by applying a sequence of depth-conditioned stable diffusion models to multiple views of the shape.
Later steps in the process are conditioned on the previous steps, allowing the model to generate consistent textures with
smooth transitions. We choose to decouple the geometry and texture generation processes to allow for more flexibility
and controlability – e.g., given the same geometry, different textures can be generated and selected. We demonstrate the
effectiveness of the full pipeline on Objaverse dataset and use the same text prompts for both the geometry and the texture.
Results are shown in Fig. 14.

B.4. Network Architecture

Variational Autoencoders (VAE). We use a custom Autoencoder architecture for our VAE. Given an input voxel grid, Gl at
level l, and associated per-voxel attributes Al, we first positionally encode each voxel using the same function as [37] and
then concatenate the positional encoding of each voxel with the corresponding attribute. We then apply a linear layer to the
concatenated positional embedding and attribute to lift it to a d-dimensional feature (Where d is chosen depending on the task
and described in Table 4). Our VAE then applies successive convolution and max pooling layers, coarsening the voxels to a
bottleneck dimension. When l = 1 (i.e. the coarsest level of the hierarchy), we zero pad the bottleneck layer into a dense
tensor, otherwise, the bottleneck is a sparse tensor. We then apply 4 convolutional layers to convert the bottleneck tensor
into a latent tensor X of the same shape and sparsity pattern as the bottleneck. Latent diffusion is done over the tensor X.
At the end of the decoder, we apply attributes-specific heads (MLPs) to predict the associated attributes within each voxel.
Hyperparameters for our VAEs are listed in Tab. 4.
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Figure 14. Diverse texture synthesis results. Based on the same generated geomtry, we could generate diverse textures by using TEXTrue [51].

Diffusion UNet. As mention in the main paper, we adopt a a 3D sparse variant of the backbone used in [13] for our voxel
latent diffusion. Hyperparameters for training them are in Tab. 5

B.5. Training Details

We train all of our models using Adam [26] with β1 = 0.9 and β1 = 0.999. We use an EMA rate of 0.9999 for all experiments
and use PyTorch Lightning [14] for training. For ShapeNet models, we use 8× NVIDIA Tesla V100s for training. For other
datasets, we use 8× NVIDIA Tesla A100s for training.

B.6. Metric Definition

To perform a quantitative comparison of our generative model on the ShapeNet dataset, we leverage the framework used in
[71] which uses the 1-NNA metric defined as follows: Given a generated set of point clouds Sg , a reference set of point clouds
Sr, and a metric D(·, ·) : 2R3 × 2R

3 → R between two point clouds, the 1-NNA metric is defined as

1-NNA(Sg, Sr) =

∑
X∈Sg

1[NX ∈ Sr] +
∑

Y ∈Sr
1[NY ∈ Sr]

|Sg|+ |Sr|
, (10)

where NA is the closest point cloud to A ∈ 2R
3

in the set Sg ∪ Sr − {X} under the metric D(·, ·) (i.e. the closest point cloud
to A in the generated and reference set not including A itself), and 1[·] is the indicator function which returns 1 if the argument
is true and 0 otherwise.

Intuitively, the 1-NNA distance is the classification accuracy when using nearest neighbors under D to determine if a point
cloud was generated (∈ Sg) or not (∈ Sr). If the generated set is close in distribution to the reference set, then the classification
accuracy should be around 50% which is the best 1-NNA score achievable.

In our experiment, we sampled 2048 points from the surface of each shape (following [71]) to generate Sg and Sr and used
the Chamfer and Earth Mover’s distances as metrics D to compute the 1-NNA.

C. More results
In this section, we provide more qualitative results on all datasets. First, we show more text-to-3D results on Objaverse in
Fig. 16 to 18. Then, we show more results on ShapeNet in Fig. 15 and 19 to 21. Despite the high quality of our generated
shapes, we show that our model does not overfit the training samples and is able to generate novel shapes in Fig. 15 by
retrieving the most similar shapes in the training set given the generated samples. Furthermore, we show more results on
Waymo in Fig. 22 and 23. Finally, we show more results on Karton City in Fig. 24.



Generated Shape Most similar shapes retrieved from training set

Figure 15. Shape Novelty Analysis. From our generated shape (left), we retrieve top-three most similar shapes in training set by CD distance



"A 3D model of lion"

"A campfire"

"A 3D model of croissant"

"A 3D model of eagle head"

"A 3D model of dragon head"

Figure 16. More qualitative results on text-to-3D.



"A voxelized dog"

"A diamond ring"

"A 3D model of cat"

"A 3D model of duck"

Figure 17. More qualitative results on text-to-3D.



"A designer dress"

"A 3D model of koala"

"A 3D model of mushroom"

"A fireplug"

Figure 18. More qualitative results on text-to-3D.



Figure 19. More qualitative results on ShapeNet Car.



Figure 20. More qualitative results on ShapeNet Airplane.



Figure 21. More qualitative results on ShapeNet Chair.



Figure 22. More qualitative results on Waymo.



Figure 23. More qualitative results on Waymo.



Figure 24. More qualitative results on Karton City.



ShapeNet ShapeNet Objaverse Objaverse Waymo Waymo
163 → 1283 1283 → 5123 163 → 1283 1283 → 5123 323 → 2563 2563 → 10243

Model Size 59.6M 3.8M 236M 14.9M 59.4M 3.8M
Base Channels 64 32 128 64 64 32
Channels Multiple 1,2,4,8 1,2,4 1,2,4,8 1,2,4 1,2,4,8 1,2,4
Latent Dim 16 8 16 8 16 8
Batch Size 16 32 32 32 32 32
Epochs 100 100 25 10 50 50
Learning Rate 1e-4

Table 4. Hyperparameters for VAE. For the Karton City dataset, we used the same hyperparameters as the Waymo dataset.

ShapeNet - 163 ShapeNet - 1283 Objaverse - 163 Objaverse - 1283 Waymo - 323 Waymo - 2563

Diffusion Steps 1000
Noise Schedule linear
Model Size 691M 79.6M 1.5B 79.6M 702M 76.6M
Base Channels 192 64 256 64 192 64
Depth 2
Channels Multiple 1,2,4,4 1,2,2,4 1,2,4,4 1,2,2,4 1,2,4,4 1,2,2,4
Heads 8
Attention Resolution 16,8,4 32,16 16,8,4 32,16 16,8 32
Dropout 0.1 0.0 0.0 0.0 0.0 0.0
Batch Size 256 256 512 128 512 256
Iterations varies* 15K 95K 80K 40K 20K
Learning Rate 5e-5

Table 5. Hyperparameters for voxel latent diffusion models. *We train our model with 25K iterations for ShapeNet Airplane, 45K
iterations for ShapeNet Car, and 35K iterations for ShapeNet Chair. For the Karton City dataset, we used the same hyperparameters as the
Waymo dataset and trained the models to converge.
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