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(a) Henyey-Greenstein 𝑔 = 0.85 (b) Double Henyey-Greenstein (c) Tabulated Mie Reference (d) HG-Draine blend (ours)

Figure 1: Path-traced multiple scattering in clouds using a single HG phase function (a) or HG-mixture (b) fails to match a
tabulated reference Mie phase function (c). Our model (d) blends a HG forward peak with Draine’s phase function to achieve a
closer match without requiring large tables for evaluation and sampling. Note the overall brightness and apparent detail in the
clouds in (c,d) as compared to the more approximate models (a,b). All renders are 8000 spp and roughly equal time.

ABSTRACT
The Mie phase function describes the complex shapes that arise
when light is scattered by water droplets. Inconvenient tables of
data are required to include Mie scattering in a path tracer. To avoid
this complexity, analytic models such as Cornette-Shanks (CS) or
Henyey-Greenstein (HG) mixtures are often used instead, resulting
in a lack of accuracy for fog, clouds, skies and tissue. We show that
a blend of HG and Draine’s phase function can accurately match
95% of the Mie phase function over a wide range of droplet sizes.
We provide a practical parameter fit for this mapping and derive
analytic CDF inversion of the Draine (and CS) phase function, to
produce a parametric approximation with fully analytic evalua-
tion and sampling. In this talk we describe our fitting procedure,
sampling derivations, and compare the proposed model to several
others.
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1 INTRODUCTION
With the advent of hardware ray tracing, path tracing is increasingly
used to render images in games and simulations. The accuracy of
path tracing in scenes with atmospheric effects, such as fog and
clouds, relies heavily on the phase function’s ability to approximate
the interaction of light with small particles like water droplets.
Unfortunately, the complex shapes (Figure 2) resulting from Mie
scattering lack an analytic representation, and their evaluation and
sampling necessitate extensive data tables. Consequently, simpler
models such as the Henyey-Greenstein (HG) phase function, or
their combinations, are often employed, but they are inadequate
in certain situations (Figure 1). To increase accuracy and artistic
expression, new analytic models are therefore desirable.

To more closely approximate Mie scattering, analytic models
such as Cornette-Shanks (CS) [1992] and Draine (D) [2003] have
been proposed, but significant errors remain for both, and neither
model provides analytic importance sampling, which is essential
for real-time applications. In this talk, we show that both CS and
Draine phase functions can be sampled analytically, and further,
that a linear combination of HG and Draine can accurately fit 95%
of the energy (the forward half) of the Mie phase function for water
droplets typical of fog and clouds. We performed a parameter fitting
for this approximation over a wide range of mean droplet sizes and
compared the accuracy to a variety of other approximations. In
summary, we present a new two-lobe, parametric, fully-analytic
Mie approximation that outperforms previous work.
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Figure 2: Cross section polar plots of the phase functions.

1.1 Fitting Procedure
We used a publicly available tool [Mie Sim 2020] to generate a
tabulated Mie phase function 𝜙Mie (𝜃 ) for water droplets in air (𝜂 =

1.333) with log-normal-distributed diameters (standard deviation of
0.25). The results were averaged uniformly over wavelength from
400 nm to 700 nm. Figure 2 shows an example for 5 micron particles
(in black).

For the fitting of a target model 𝜙 (𝜃 ), we tried a number of
different loss functions and found

𝐸AS =
∑︁
𝜃

| cos(𝜃 ) | sin(𝜃 ) · (log𝜙 (𝜃 ) − log𝜙Mie (𝜃 ))2 . (1)

to produce good results. The sinweighting accounts for integration
over the sphere and the cos weighting together with L2 loss in log
space helps maintain an accurate mean cosine and increase the
influence of backward directions.

2 THE MODEL
We explored a number of different mixtures of HG, Draine, CS, vMF
and Gegenbauer lobes and found that a blend of HG (for the peak)
and Draine (for the bulk) provided the best fit overall. For a single-
wavelength monodisperse simulation, the peak of Mie scattering
is asymptotically known to be vMF [Chilton et al. 1969], but we
found HG to be a better fit after including fluctuations in particle
size and averaging over wavelength.

Draine’s phase function is a two-parameter distribution

𝜙𝛼,𝑔 (𝜃 ) =
1
4𝜋

1 − 𝑔2

(1 + 𝑔2 − 2𝑔 cos𝜃 )3/2
1 + 𝛼 cos2 𝜃

1 + 𝛼 (1 + 2𝑔2)/3
(2)

and reduces to HG for 𝛼 = 0, to Rayleigh for 𝑔 = 0, 𝛼 = 1 and to CS
for 𝛼 = 1.

Figure 2 compares a number of isolated models (dashed lines),
fitted using Equation (1), as well as several blends of HG lobes.
None of these approximations fit the bulk of the distribution as
well as our HG+Draine blend, which is remarkably close for the
forward half of the phase function (accounting for 95% of the total
scattered signal). While our approximation fails to produce the
weak back-scattering peaks that lead to fogbow and glory features,
these are not observable in most scenes, and our approximation
remains the most accurate on average in this region. Performance
over mean particle size is shown in Figure 3.
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Figure 3: Fitting error of several candidate models.

For sampling cosines 𝑢 of the Draine phase function (and there-
fore also CS), we note that the CDF is easily obtained analytically.
Upon a substitution of 𝑢 → (1+𝑔2 − 𝑣2)/(2𝑔) to remove the square
root, solving for random variate 𝜉 is then the solution of a quartic
equation (see supplemental for complete details).

2.1 Our Fog Phase Function
Using the combined HG+D phase function, we need four param-
eters: two anisotropy parameters 𝑔HG, 𝑔D, the 𝛼 parameter of the
Draine function and a mixture weight𝑤D ∈ [0, 1]:

𝜙fog (𝜃 ) = (1 −𝑤D) · 𝜙0,𝑔HG +𝑤D · 𝜙𝛼,𝑔D . (3)

We fitted our model 𝜙fog (𝜃 ) over a range of water droplet diameters
5 < 𝑑 < 50 in µm and then produced a second fit to map 𝑑 to the
parameters:

𝑔HG (𝑑) = e−
0.0990567
𝑑−1.67154 , (4)

𝑔D (𝑑) = e−
2.20679

𝑑+3.91029 −0.428934, (5)

𝛼 (𝑑) = e3.62489 −
8.29288

𝑑+5.52825 , (6)

𝑤D (𝑑) = e−
0.599085

𝑑−0.641583 −0.665888 (7)

to provide a meaningful and intuitive single parameter for our
model. The additional error of this secondary fit is much smaller
than the initial fitting error. See the supplemental material for
plots of this approximation to reference data, as well as additional
mappings for smaller particle diameters.
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