
Real-Time Neural Appearance Models

TIZIAN ZELTNER
∗
, NVIDIA, Switzerland

FABRICE ROUSSELLE
∗
, NVIDIA, Switzerland

ANDREA WEIDLICH
∗
, NVIDIA, Canada

PETRIK CLARBERG
∗
, NVIDIA, Sweden

JAN NOVÁK
∗
, NVIDIA, Czech Republic

BENEDIKT BITTERLI
∗
, NVIDIA, USA

ALEX EVANS, NVIDIA, United Kingdom

TOMÁŠ DAVIDOVIČ, NVIDIA, Czech Republic

SIMON KALLWEIT, NVIDIA, Switzerland

AARON LEFOHN, NVIDIA, USA

Fig. 1. Close-up renderings of a Teapot asset with our neural BRDF. Our model learns the intricate details and complex multi-layered material behavior of the

ceramic, fingerprints, smudges, and dust which are responsible for the realism of the object while being faster to evaluate than traditional non-neural models

of similar complexity. The system we present allows us to include such high-fidelity objects in real-time renderers in a scalable way.

We present a complete system for real-time rendering of scenes with complex
appearance previously reserved for offline use. This is achieved with a
combination of algorithmic and system level innovations.

Our appearance model utilizes learned hierarchical textures that are
interpreted using neural decoders, which produce reflectance values and
importance-sampled directions. To best utilize the modeling capacity of
the decoders, we equip the decoders with two graphics priors. The first
prior—transformation of directions into learned shading frames—facilitates
accurate reconstruction of mesoscale effects. The second prior—a microfacet
sampling distribution—allows the neural decoder to perform importance
sampling efficiently. The resulting appearance model supports anisotropic
sampling and level-of-detail rendering, and allows baking deeply layered
material graphs into a compact unified neural representation.

∗Equal contribution. Order determined by a rock-paper-scissors tournament.

© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3659577.

By exposing hardware accelerated tensor operations to ray tracing shaders,
we show that it is possible to inline and execute the neural decoders effi-
ciently inside a real-time path tracer. We analyze scalability with increasing
number of neural materials and propose to improve performance using
code optimized for coherent and divergent execution. Our neural material
shaders can be over an order of magnitude faster than non-neural layered
materials. This opens up the door for using film-quality visuals in real-time
applications such as games and live previews.

CCS Concepts: • Computing methodologies→ Reflectance modeling.

Additional Key Words and Phrases: appearance models, neural networks,
real-time rendering

ACM Reference Format:
Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan
Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit,
and Aaron Lefohn. 2024. Real-Time Neural Appearance Models. ACM Trans.
Graph. 43, 3, Article 33 (June 2024), 17 pages. https://doi.org/10.1145/3659577

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

https://doi.org/10.1145/3659577
https://doi.org/10.1145/3659577

33:2 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

Absorption (Beer)

Dielectric

Lambert

Dielectric

C
er

am
ic

OrenNayar

St
ai

n

OrenNayar

D
us

t

R T

R

R T

T

R

R

OrenNayarD
ir
t

M
et
al

Conductor

G
re
as
e

Conductor

R

R

R

Dielectric Dielectric

LambertPl
as

ti
c

TR TR

R

G
re

as
e Dielectric TR

OrenNayar
R

OrenNayarD
ir

t

R

LambertD
ir

t
M

et
al

Conductor Conductor
R

R

G
re

as
e

Dielectric

R

TR
Conductor

OrenNayar

V
er

di
gr

is
B

ra
ss Conductor Conductor

R

O
xy

R
Conductor

R R

R

R

Ceramic body Metal handle Plastic handle Metal blade Metal body

Teapot Cheese slicer Inkwell

Fig. 2. We show rendered images of five reference materials created with a layering approach similar to [Jakob et al. 2019] that we approximate with neural

models for representing the BRDF and importance sampling. All objects are challenging for real-time renderers due to their complex reflection behavior and

high resolution textures (see Table 1). The corresponding shading graphs are provided in the supplementary material.

1 INTRODUCTION

Recent progress in rendering algorithms, light transport methods,
and ray tracing hardware have pushed the limits of image quality
that can be achieved in real time. However, progress in real-time
material models has noticeably lagged behind. While deeply layered
materials and sophisticated shading graphs are commonplace in off-
line rendering, such approaches are often far too costly to be used in
real-time applications. Aside from computational cost, sophisticated
materials pose additional challenges for importance sampling and
filtering: highly detailed materials will alias severely under minifi-
cation, and the complex multi-lobe reflectance of layered materials
causes high variance if not sampled properly.
Recent work in neural appearance modelling [Kuznetsov et al.

2022; Sztrajman et al. 2021; Zheng et al. 2021] has shown that multi-
layer perceptrons (MLPs) can be an effective tool for appearance
modelling, importance sampling, and filtering. Nevertheless, these
models do not support film-quality appearance and a scalable solu-
tion for high-fidelity visuals in real time has yet to be demonstrated.

In this paper, we set our goal accordingly: to render film-quality
materials, such as those used in the VFX industry exemplified in
Figure 2 with statistics in Table 1, in real time. These materials
prioritize realism and visual fidelity, relying on very high-resolution
textures. Layering of reflectance components, rather than an uber-
shader, is used to generate material appearance yielding arbitrary
BRDF combinations with tens of parameters. Approximating such
materials with simple analytical models is inaccurate (see Figure 3)
and porting to real-time applications is therefore challenging.

In order to render film-quality appearance in real time we i) care-
fully cherry-pick components from prior works, ii) introduce algo-
rithmic innovations, and iii) develop a scalable solution for inlining
neural networks in the innermost rendering loop, both for classical
rasterization and path tracing. We choose to forgo editability in
favor of performance, effectively “baking” the reference material
into a neural texture interpreted by neural networks. Our model can
thus be viewed as an optimized representation for fast rendering,
which is baked (via optimization) after editing has taken place.

Ourmodel consists of an encoder and two decoders, with the neural
(latent) texture in between. The encoder maps BRDF parameters

Table 1. Statistics of our reference materials from Figure 2. The shading

graph with shading nodes (a) is programmatically converted to a number of

BRDF layers (b) controlled by parameters (c), which are varied spatially using

RGB textures (with the total number of used channels in parenthesis) (d);

the total number of RGB megatexels is reported in column (e).

Nodes Layers Parameters Textures MTexels
(a) (b) (c) (d) (e)

Teapot ceramic 37 5 121 5 (11) 1174
Teapot handle 41 2 91 11 (19) 152
Slicer handle 20 5 43 3 (7) 201
Slicer blade 54 3 114 16 (40) 324
Inkwell 49 5 143 4 (11) 201

to a latent space, thereby converting a set of traditional textures
(per-layer albedo, normal map, etc.) into a single multi-channel
latent texture. Using the encoder is key to support materials with
high-resolution textures. The latent texture is decoded using two
networks: an evaluation network that infers the BRDF value for a
given pair of directions, and a sampling network that maps random
numbers to sampled (outgoing) directions.
Our main algorithmic contributions can be characterized as em-

bedding fixed-function elements—graphics priors—in the two neural
decoders. First, we insert a standard rotation operation between
trainable components of the BRDF decoder to handle normalmapped
surfaces. Second, we utilize a network-drivenmicrofacet distribution
for importance sampling. These priors are necessary to efficiently
utilize the (limited) expressive power of small networks.
On the system level, we present an efficient method for inlining

fully fused neural networks in rendering code. To the best of our
knowledge, this is the first complete and scalable system for running
neural material shaders inside real-time shading languages. A key
contribution is an execution model that utilizes tensor operations
whenever possible and efficiently handles divergent code paths. This
allows fast inferencing in any shader stage including ray tracing and
fragment shaders, which is important for adoption in game engines
and interactive applications.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

Real-Time Neural Appearance Models • 33:3

Numerically optimized analytical BRDF Manually optimized analytical BRDF Our neural BRDF Reference
8-channel texture + diffuse & specular lobes 8-channel texture + diffuse & specular lobes 8-channel latent texture + MLP (3 × 64) 11-ch. texture + sh. graph

Vi
ew

1
Vi
ew

2

Fig. 3. First two columns: approximations of the multi-layer Teapot materials from Figure 2 using a simple analytical BRDF, parameterized by only 8

spatially-varying input channels: base color (3), specular roughness (1), specular normal map (2), specularity (1), and metallness (1). Third column: our neural

BRDF parameterized by an 8-channel latent texture. FLIP visualizations emphasize the perceptual differences against the reference (last column, Figure 2,

Table 1). The parameters for the analytic BRDF are either numerically optimized or tuned manually. In both cases, we see a much larger approximation error

as it lacks the expressive power to capture the complexity of the reference, e.g. the view-dependent blue color of the ceramic glazing.

Our neural model has a fixed evaluation cost, independent of the
material complexity, allowing us to render complex materials in
a real-time path tracer. To that end, we authored highly detailed
assets with layered materials (Figure 2) that provide visual detail
down to a 10 cm viewing distance. We can reproduce the visual
fidelity of such complex assets, with shading being up to 10× faster
than the original, moderately optimized shading models, while also
providing additional sampling and filtering facilities (Figure 1).
Achieving the desired visual fidelity at real-time rates required

innovations both in the neural model and at the system level:
• a complete and scalable system for film-quality neural materials,
• tractable training for gigatexel-sized assets using an encoder,
• decoders with priors for normal mapping and sampling, and
• efficient execution of neural networks in real-time shaders.

We believe the joint evolution of models and systems to be crucial
to bringing neural shaders to real-time, and we built our system to
serve as a solid foundation in this regard.

2 RELATED WORK

In this section, we review previous work related to neural material
representation, filtering, and sampling, and refer to Pharr et al.
[2016] for a detailed overview of classical material models.

2.1 Neural appearance modeling

We focus on representing existing materials neurally and rendering
them in real time on classical geometry. We therefore do not utilize
ray marched neural fields [Baatz et al. 2022; Mildenhall et al. 2020;
Müller et al. 2022], although these could present a viable alternative
in the future. Our goals generally align with prior work on neural
BRDFs [Fan et al. 2022; Kuznetsov et al. 2019, 2021; Rainer et al.
2020, 2019; Sztrajman et al. 2021; Zheng et al. 2021]. Common to
these methods is a conditioning of a neural network on a pair of

directions, and optionally a trained latent code. Latent codes are
typically stored in a texture [Thies et al. 2019] and sampled using
classical UV mapping to support spatially varying BRDFs.

However, we differ from prior work on a number of key axes:

Obtaining latent textures. Kuznetsov et al. [2019] in their NeuMIP
work employ direct optimization, updating a randomly-initialized
latent texture via backpropagation—a simple but costly solution for
large textures with millions of texels. In contrast, Rainer et al. [2019]
rely on an auto-encoder architecture to encode a set of reflectance
measurements into latent codes. We pursue a hybrid approach:
we first train an encoder and, partway through training, we use
it to create a hierarchical latent texture, which we then finetune
through direct optimization. This approach combines the speed
of the encoder-decoder architecture with the flexibility of direct
optimization. Contrary to Rainer et al. [2019], we do not encode the
reflectance measurements, but the set of corresponding material
parameters (albedo, roughness, normal, etc.).

Encodings and priors. Both Zheng et al. [2021] and Sztrajman et al.
[2021] reparametrize input directions into a half-angle coordinate
system [Rusinkiewicz 1998]. While this specific encoding did not
provide much benefit in our case, we leverage the principle and
incorporate a novel graphics prior—rotation to learned shading
frames—to better handle normal-mapped, layered materials.

Rendering novel BRDFs. Fan et al. [2022] are able to render novel
BRDFs not part of the training set through layering of latents. How-
ever, this requires large neural networks unsuitable for real-time.
We focus on small networks that render only materials they were
trained on and do not pursue generalization. We support layered
materials by capturing the joint effect of all layers at once, dispens-
ing with the explicit layering of the original material, and avoiding
any layering of neural components.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

33:4 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

�� �� �
��

���

���

�� �� ��� ��
�

��
��

�����

���

��
	

��

Geometry

(𝑢, 𝑣, 𝑙)

Latent texture z

Latent code z(x)

BRDF
evaluation

Importance
sampling

Shading
frames

𝝎i 𝝎o

𝝎i 𝝎o

Frame extraction Decoding MLP

Decoding MLP Analytic
sampler

BRDF 𝑔

Albedo 𝛼

PDF 𝑝

Fig. 4. We use our neural BRDFs in a renderer as follows: for each ray that hits a surface with a neural BRDF, we perform standard (𝑢, 𝑣) and MIP level 𝑙

computation, and query the latent texture of the neural material. Then we input the latent code z(x) into one or two neural decoders, depending on the needs

of the rendering algorithm. The BRDF decoder (top box) first extracts two shading frames from z(x) , transforms directions 𝝎i and 𝝎o into each of them, and

passes the transformed directions and z(x) to an MLP that predicts the BRDF value (and optionally the directional albedo). The importance sampler (bottom

box) extracts parameters of an analytical, two-lobe distribution, which is then sampled for an outgoing direction 𝝎o, and/or evaluated for PDF 𝑝 (x,𝝎i,𝝎o) .

2.2 Neural material filtering

Aliasing due to shading is commonly addressed with mipmapping,
but requires special care for non-diffuse materials as their appear-
ance can change significantly with linear filtering. Methods such
as LEAN [Olano and Baker 2010], LEADR [Dupuy et al. 2013] and
MIPNet [Gauthier et al. 2022] use statistical methods or neural down-
sampling to more closely match the prefiltered ground truth. While
these approaches tune the parameters of traditional BRDFs, we in-
stead train neural models and hierarchical textures to represent the
filtered appearance directly, similarly to Kuznetsov et al. [2021] and
Bako et al. [2023], albeit with a different interpolation scheme (see
Section 4.1). However, we still leverage LEAN [Olano and Baker
2010] as a graphics prior to filter the inputs of our encoder.

2.3 Neural material importance sampling

Prior work on the importance sampling of neural materials can clas-
sified as: i) utilizing an analytical proxy distribution, ii) leveraging
normalizing flows, and iii) warping samples with a network directly.
See Xu et al. [2023] for an overview of neural materials samplers.
We utilize the first approach, in which a network parameterizes

an analytical distribution. In contrast to Sztrajman et al. [2021] and
Fan et al. [2022], who use the Phong-Blinn model or an isotropic
Gaussian, we leverage a standard microfacet model [Trowbridge
and Reitz 1975; Walter et al. 2007]. The microfacet model better
handles anisotropy that is prevalent in (filtered) realistic materials.
Normalizing flows for importance sampling [Dinh et al. 2017;

Müller et al. 2019] were first utilized for neural BRDFs by Zheng et al.
[2021]. With sufficiently large networks, these can accurately match
intricate distributions but we found it challenging to match the
quality of the analytical proxy at comparable runtime performance.

The third approach, using the network directly to warp samples,
has been recently explored by Bai et al. [2023] who aid training
of the network with 2D optimal transport. This method has the
drawback that the learned density only approximately matches the
true Jacobian determinant of their warp. This leads to potentially un-
bounded bias, and we exclude this option to maintain compatibility
with physically based renderers.

3 OVERVIEW

Our goal is to reproduce the appearance of real materials that stems
from the interaction of light with matter. It can be described using
the spatially varying bidirectional reflectance distribution function
(SVBRDF) 𝑓 (x,𝝎i,𝝎o) that quantifies the amount of scattered dif-
ferential radiance d𝐿o (x,𝝎o) due to incident radiance 𝐿i (x,𝝎i):

𝑓 (x,𝝎i,𝝎o) =
d𝐿o (x,𝝎o)

𝐿i (x,𝝎i) cos\𝑖d𝝎i
, (1)

where x is a surface point, and 𝝎i, 𝝎o are incident and outgoing
directions, respectively. The SVBRDF can be integrated over the
upper hemisphere 𝐻2 to produce directional albedo 𝛼 (x,𝝎o):

𝛼 (x,𝝎o) =
∫
𝐻 2

𝑓 (x,𝝎i,𝝎o) cos\𝑖d𝝎i . (2)

Our model represents both of these quantities; see Figure 4.
We design our model to serve as an optimized representation

of existing (reference) SVBRDFs. That is, given a target material
𝑓 (x,𝝎i,𝝎o), we provide a function 𝑔 ≈ 𝑓 that closely approximates
the reference material and can be evaluated in real time. To be useful,
our system must satisfy a number of properties:

Visual fidelity. Our main goal is to faithfully reproduce a broad
range of challenging materials, including multi-layer materials with
low-roughness dielectric coatings, conductors with glints, stains,
and anisotropy. We wish to go beyond fitting to spatially uniform
measured material datasets [Dupuy and Jakob 2018; Matusik et al.
2003], and want to explicitly address materials with high resolution
textures (4k and above) with detailed normal maps.

Level of detail. Unfiltered high-resolution materials tend to alias
under minification and properly filtered reflectance can change
significantly within a pixel footprint. We seek to support filtered
lookups to enable level-of-detail rendering at low sample counts.

Importance sampling. In addition to representing the BRDF, we
need an effective importance sampling strategy to permit deploy-
ment in Monte Carlo estimators, such as path tracing. This includes
the traditionally challenging problem of importance sampling fil-
tered versions of the material.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

Real-Time Neural Appearance Models • 33:5

Performance. Our neural representation is geared towards real-
time applications, where material evaluation may only use a small
fraction of the total frame time. We require compatibility with path
tracing, where materials are evaluated at random locations over
many bounces. This precludes large networks and models relying
on convolutions.

Practicality. While the optimization of our neural material hap-
pens in an offline process, training times have to remain reasonable
even for high material resolutions (4k and beyond) for the system
to remain practical. Days of training time are not acceptable.

Our main focus is on developing a system that fits the afore-
mentioned criteria. Like prior works on neural materials, we forgo
explicit constraints on energy conservation and reciprocity rely-
ing on the MLP learning these from data. We also set aside certain
special cases, such as BRDFs with delta components, and (rough)
refraction, although preliminary experiments show that our model
can handle the latter.
In Sections 4 and 5, we describe the architecture of our neural

model and its training procedure, following with a comparative
analysis of individual components in Section 6. Since real-time
performance is one of our main goals, we dedicate Section 7 to
the task of efficiently evaluating the neural model from inside ray
tracing shaders. We conclude by demonstrating the quality and
runtime performance on a number of challenging scenes in Section 8.

4 NEURAL BRDF DECODER

In this section, we describe the architecture of our appearance model
illustrated in Figure 4. The model consists of two main components:
a latent texture and two neural decoders. All these components are
jointly optimized to represent a specific material or a set of materials;
details of the optimization procedure (e.g., encoding of the latent
texture) follow in the next section.
The latent texture represents spatial variations of the material

with a compact, eight-dimensional code denoted z. Given a query
location x and the corresponding latent code z(x), the BRDF value
is inferred by a neural decoder 𝑔 with trainable parameters \ :

𝑓 (x,𝝎i,𝝎o) ≈ 𝑔 (z(x),𝑇 · 𝝎i,𝑇 · 𝝎;\) , (3)

where𝑇 represents a transformation of incident and outgoing direc-
tions to a number of learned shading frames. Next, we discuss the
properties of the latent texture z and then describe the procedure of
extracting 𝑇 .

4.1 Latent texture

Similarly to prior works [Kuznetsov et al. 2021; Thies et al. 2019], we
store latent codes in a UV-mapped, hierarchical texture, where each
texel characterizes the appearance of the object at a given spatial
location and scale. To maintain the fidelity of the original material,
we set the resolution of the finest level to the texture resolution of
the original material, and we leverage its UV-parametrization to
preserve the original texel density.

Highly detailed materials may cause severe aliasing under minifi-
cation (Figure 5, left columns in (a) and (b)). By default, our neural de-
coder would reproduce such aliasing. To avoid this, the hierarchical

Unfiltered Ours Ground truth

(a) Cheese slicer, close

Unfiltered Ours Ground truth

(b) Cheese slicer, far

Fig. 5. Highly detailed materials will alias significantly when rendered

without supersampling (left columns, unfiltered). Supersampling averages

high frequency glints and produces a filtered material, but at impractical

sample cost for real-time (right columns, ground truth at 512 SPP). Our

neural material can render filteredmaterials without aliasing at any distance,

without supersampling (middle columns, ours).

latent texture stores the latent codes in a texture pyramid [Kuznetsov
et al. 2021; Thies et al. 2019]. Each level of the pyramid contains
latent codes that characterize the original material filtered with a
specific filter radius. The decoder is trained to infer the properly
filtered BRDF value for all levels of the pyramid (Figure 5, middle
columns in (a) and (b)).
During rendering, we first determine the pixel footprint at the

intersection point, and project it into UV space [Akenine-Möller
et al. 2021]. We then determine the appropriate level of the texture
pyramid to sample based on the area of the footprint.
The level index may be fractional and lie between two levels of

the pyramid. We probabilistically select one of them using Russian
roulette, and fetch the latent code via bilinear interpolation within
the level. This introduces a small, but bounded amount of variance.
We found this to yield higher quality than the more commonly used
method of trilinearly interpolating the latent codes. This is likely
because the latter strategy induces the additional constraint that
the latent interpolation produce plausible BRDF values across levels,
even though they may store very different content.

4.2 Transformation to learned shading frames

Our focus on real-time applications severely constrains the size
of the decoder network. This makes it all the more important to
incorporate graphics priors into the architecture to handle realis-
tic materials, such as those exemplified in Figure 2. These layered
materials produce intricate SVBRDFs, where reflection lobes shift
in direction as we move over the surface. Such effects are readily
modeled in classical materials via textured transformations, e.g.,
using normal maps, but are hard to achieve for a standard MLP.
A material may feature as many normal maps as scattering lay-

ers. We aim to compress the stack of layers, but still provide the
model with enough room to represent multiple normal maps. We
therefore incorporate a transformation module into the network,
which transforms incident and outgoing directions into a number
of learned shading frames (mult operation in Figure 4). Specifically,
we use a single trainable layer to extract a fixed number 𝑁 of nor-
mals (n1 . . . n𝑁) and tangent vectors (t1 . . . t𝑁) from the latent code.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

33:6 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

2

1

364 64 64 64 8

...

(𝑢, 𝑣) space

Albedo
Normal
Tangent
Roughness
...

Encoder

Surface parameters k(x) Latent texture z

Latent code z(x)
BRDF

evaluation

Importance
sampling

Fig. 6. We optimize our model by uniformly sampling the UV domain of the reference material. We start by fetching surface parameters (e.g., albedo) encoding

them using an MLP to a latent code, and interpreting it as a BRDF value using the decoder (path marked with 1○). Once the encoder is sufficiently trained, we

construct the latent texture 2○ by processing all texels, and then drop the encoder. We continue “finetuning” the latent texture by sampling the UV space and

MIP levels of the texture and optimizing the texels directly 3○. We sample exponentially distributed filter footprints to optimize all levels of the latent texture,

and train the decoder with prefiltered versions of the input material.

Then we construct a basis (t𝑖 , b𝑖 , n𝑖) for each 𝑖-th pair of normalized
normals and tangents, and construct a combined transformation
matrix 𝑇 :

𝑇 =
©«
𝑡1,𝑥 𝑏1,𝑥 𝑛1,𝑥 . . . 𝑡𝑁,𝑥 𝑏𝑁,𝑥 𝑛𝑁,𝑥

𝑡1,𝑦 𝑏1,𝑦 𝑛1,𝑦 . . . 𝑡𝑁,𝑦 𝑏𝑁,𝑦 𝑛𝑁,𝑦

𝑡1,𝑧 𝑏1,𝑧 𝑛1,𝑧 . . . 𝑡𝑁,𝑧 𝑏𝑁,𝑧 𝑛𝑁,𝑧

ª®¬
⊺

. (4)

The transformation layer then computes the product 𝑇 · 𝝎𝑖 and
𝑇 · 𝝎𝑜 , resulting in 𝑁 new incident and outgoing vectors, one pair
for each of the learned shading frames. The vectors are then fed
to the decoder. The transformation allows the model to rotate the
input directions into multiple, spatially varying shading frames in
a single operation, improving the representational power of the
network. We analyze the benefits in Section 6.

Discussion. It may not be immediately obvious why a vanilla MLP
struggles with rotating directions. This is because, even though
MLPs are built from matrix operations, they can only perform mul-
tiplicative transformations of the inputs with the (fixed) network
weights. They cannot readily multiply the input dimensions with
each other. In our case, a decoder with a vanilla MLP cannot easily
multiply 𝝎i,𝝎o with the latent code, which stores spatial variations
of the material. The decoder is forced to approximate the multi-
plicative transform using its trainable layers, depleting its modeling
capacity. Our approach is conceptually similar to (self-)attention
models that augment neural networks with multiplicative trans-
forms between activations [Rebain et al. 2023; Vaswani et al. 2017].

4.3 Importance sampling

We focus on samplers suitable for representation by a network:
an invertible transform𝑊 from random variates u ∈ [0, 1)2 into
outgoing directions 𝝎o =𝑊 (u; x,𝝎i), and its associated probabil-
ity density function (PDF) 𝑝 (𝝎o; x,𝝎i). Low variance results are
achieved whenever the shape of 𝑝 closely matches 𝑓 .
Optimizing an MLP to perform the sample transform𝑊 does

not guarantee invertibility of𝑊 and tractable PDF evaluations. Im-
portance sampling thus requires a different approach than BRDF
evaluation. We draw inspiration from prior work and utilize a neu-
ral network to drive an existing analytic proxy distribution that is
invertible in closed form. Like Sztrajman et al. [2021] and Fan et al.

[2022], we use a linear blend between a cosine-weighted hemispher-
ical density and a specular reflection component, but we differ in
the choice of the specular component.

Instead of the isotropic models proposed earlier (e.g., Blinn-Phong
model [Sztrajman et al. 2021] or a 2D Gaussian [Fan et al. 2022]) we
use the more general, state-of-the-art microfacet model based on a
Trowbridge-Reitz (GGX) NDF [Trowbridge and Reitz 1975; Walter
et al. 2007] including elliptical anisotropy and non-centered mean
surface slopes [Dupuy 2015]. This is well-suited both to the strongly
normal-mapped materials represented in our target materials, as
well as filtered BRDFs that naturally produce anisotropic distri-
butions; we demonstrate the advantage in Section 6 and provide
additional details of the sampler in Appendix A.
We train an additional importance sampling decoder MLP that

infers parameters of the analytic model from the same latent code
as used for the BRDF evaluation. This is conceptually similar to
Sztrajman et al. [2021], though we additionally feed 𝝎i into the de-
coder to capture Fresnel-like effects where, e.g., the diffuse-specular
mixing weights vary as a function of the incident angle.

5 TRAINING

We now discuss the training procedure for our decoder and latent
texture (see Figure 6), and how our training data is generated.
One major challenge in training detailed materials is the sheer

number of parameters to be optimized. Although the number of
networkweights is small, the resolution of the latent texturematches
that of the source material and can be considerable: the ceramic
body of the Teapot (Figure 2) is defined using 14 4k × 4k texture
tiles totaling 235 million texels, or 2.5 billion latent parameters.
Optimizing these parameters independently using backpropagation
is impractical. Instead, wemake use of an encoder in the first training
phase to bootstrap latent codes, which we describe next.

5.1 Encoder

The encoder is a simple MLP that takes the parameters k(x) of
the original material (albedo, roughness, normal maps, etc. for all
material layers) at a given query location x as input, and outputs
the corresponding latent vector z(x). To bootstrap the filtering, we
prefilter the material parameters k(x) (using LEAN [Olano and
Baker 2010]) for coarse MIP levels of the hierarchy.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

Real-Time Neural Appearance Models • 33:7

In the first training phase, the model is trained end-to-end by
forwarding the latent code from the encoder directly to the decoder,
bypassing the latent texture.
After the decoder converges, we switch to the finetuning phase.

The latent texture is initialized by evaluating the encoder for all
texels, after which the encoder is dropped. The contents of the latent
texture are then trained directly using backpropagation through the
decoder. Because the encoder only participates in training, it has no
impact on the evaluation cost during rendering.
The encoder also improves the structure of the latent space: it

guarantees that similar material parameters are mapped to similar
points in the latent space. This leads to better results under interpo-
lation, and makes the job of the decoder easier. In contrast, direct
optimization is prone to leaving portion of the random initialization
noise in the latent texture, as analyzed in Section 6.2.
The encoder can be optimized to encode multiple materials, or

even the full appearance space spanned by the reference BRDF (by
sampling its parameters uniformly). Since our latent textures have a
large memory footprint, in practice we train each one individually
along with its own encoder, unless stated otherwise.

5.2 Data generation and optimization

We generate training data by uniformly sampling the UV space of
the target (multi-layered) material. For each sample, we generate
random directions 𝝎i and 𝝎o by uniformly sampling their half
and difference vectors [Rusinkiewicz 1998; Sztrajman et al. 2021],
and evaluate the reference BRDF value. Each sample additionally
contains: normal, tangent, albedo, roughness, and layer weight,
exported for each of the layers. Depending on the layer count a
single sample may require over a hundred floating point numbers.
We generate the samples on the GPU online during training.

Filtering. We discretely sample a pyramid level for each training
sample from an exponential distribution, favoring finer levels. We
average multiple sample points drawn from a Gaussian with appro-
priate footprint for the level, and choose the number of samples
proportional to the filter area. This sampling process is fast enough
that it does not significantly impact training time.

Mollification. Materials with very narrow peaks (e.g. the smooth
glaze of the Teapot) lead to large training errors early in training
and are challenging to learn for the network. To solve this, we ini-
tially blur the material directionally by averaging multiple samples
from a small cone centered on 𝝎o. The angle of the cone decreases
during training, so that the network initially learns broad features
of the material before converging to the reference.

Optimization. We train the BRDF decoder and the importance
sampler simultaneously to establish a shared latent space. The BRDF
prediction is optimized using the 𝐿1 loss in log space [Zheng et al.
2021]. The PDF of samples 𝝎o drawn from the learned sampler
is scored using the KL divergence against the current state of the
learned BRDF.We found that training stability is improved when the
latent code is detached from the KL loss computation. This way, the
sampler MLP learns how to interpret the latents without interfering
with the main BRDF evaluation decoder.

MIP 0 (4k × 4k) MIP 3 (512 × 512) MIP 5 (128 × 128)

Latent texture distribution Network weight distribution

14 12 10 8 6 4 2 0 2 4
0.0

0.1

0.2

0.3

0.4
MIP 0
MIP 3
MIP 5

14 12 10 8 6 4 2 0 2 4
0.0

0.1

0.2

0.3 Sampling MLP
Evaluation MLP

log2 (magnitude) log2 (magnitude)

Fig. 7. Top row: Optimized latent textures (3 channels shown as RGB) for

the neural Inkwell material at three levels of the MIP hierarchy. Bottom

row: The corresponding distribution of latent (left) and network parameter

magnitudes (right). All parameters lie comfortably within the (2−14, 216)
numerical range of FP16 normal numbers (excluding denorms), making

quantization easy. The other materials show very similar distributions.

Albedo predictions, if enabled, are optimized using the 𝐿2 loss
against one-sample MC estimates of Equation (2).
We optimize our models using 300k iterations, processing two

batches of 65k training samples in each iteration; one for optimizing
the BRDF decoder and one for the sampler. This amounts to nearly
40 billion (online-generated) material samples in total, with training
times lasting around 4–5 hours per material on a single NVIDIA
GeForce RTX 4090. Further details of the training procedure are
provided in the supplemental document.

Precision. We train master parameters for the BRDF decoder and
sampler in 32-bit floating-point (FP32) precision. It is possible to
make careful use of mixed precision training to further improve
training performance without losing accuracy, but due to the small
sizes of our MLPs we did not explore this option. For efficient infer-
encing, we use post-training quantization to convert the parameters
to half precision (FP16) at load time. Figure 7 shows a representative
example of the distribution of parameters for the evaluation and
sampling models. In all our example configurations, the numerical
range of network parameters lie within the normalized range of
FP16. In future work, we plan to explore quantization aware training
to further reduce runtime precision to INT8 or lower.

6 MODEL ANALYSIS AND ABLATION

Now that we have introduced our appearance model and its training
procedure, we will analyze the main technical novelties: i) the trans-
formation into learned shading frames, ii) the anisotropic impor-
tance sampler, and iii) the use of the encoder. We also demonstrate
the filtering capabilities and the option of inferring albedo.
A number of neural appearance models have been published in

the past, addressing various aspects of appearance modeling, e.g.,

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

33:8 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

geometric level of detail [Kuznetsov et al. 2021, 2022], interpretabil-
ity of the latent space [Zheng et al. 2021], or layering of neural
components [Fan et al. 2022]. These are complementary to our sys-
tem and could be incorporated in the future. In this work, we focus
on accommodating film-quality visuals and efficient execution on
modern GPUs (presented in Section 7).

Due to the difference in focus, it is hard to compare our work to
previous approaches directly. Instead, we compare to two ablated
variants of our model in Table 2 and Figure 8, and relate them to
corresponding components in prior work.

Vanilla MLP decoder with latent texture. The basic variant utilizes
only a hierarchical latent texture and a vanilla MLP decoder. As such,
there is no explicit rotation to shading frames in the decoder, and
the texels of the texture are optimized directly via backpropagation.
This variant can be viewed as the decoder of Sztrajman et al. [2021]
extended to handle spatial variations using a hierarchical neural
texture [Thies et al. 2019]. The model and the training procedure is
also conceptually close to the NeuMIP model [Kuznetsov et al. 2021],
except that NeuMIP additionally features a UV-offsetting module
for handling displaced surfaces. The results of this variant (Figure 8,
first column) fail to correctly reproduce the spatial details of the
reference material due to the vast number of latent texels that need
to be optimized. We further analyze the scaling of latent-texture
optimization with increasing resolution in Section 6.2.

Latent texture encoder. The second column in Figure 8 shows
the benefits of adding the encoder (Section 5.1). The texture detail
is reproduced more faithfully due to two main reasons. First, the
encoder prevents situations where multiple texels with identical
BRDF end up with different latent codes after optimization. Such
surjective mapping of latents to BRDF values often occurs in the
basic model (first column) depleting the modeling capacity of the
decoder. Second, the encoder amortizes each training record over
many latent texels instead of optimizing a single latent texel.
While the spatial variations are captured well in this particular

example, the decoder is unable to additionally capture the narrow
reflection lobe of the Teapot ceramic even though it was correctly
captured by the vanilla MLP decoder. This suggests that the model
has insufficient modelling capacity to accurately reproduce both the
spatial variations and the high-frequency reflections. This can be
alleviated by increasing the size of the decoder.
Our encoder-decoder architecture is reminiscent of the auto-

encoder used by Rainer et al. [2019] for compressing BTFs, with the
key distinction that we chose to encode the material parameters
(albedo, roughness, normal, etc.) instead of encoding the reflectance
measurements. This allows our system to further improve scaling
to very high-resolution textures, since the encoder can exploit the
redundancy in the material parameterization.

Transformation to learned shading frames. In the third column
of Figure 8, we prepend the MLP decoder with the transformation
of directions to two learned shading frames, which are extracted
from the latent code using an extra trainable layer with 12 neurons.
This constitutes our complete model. As discussed in Section 4.2,
performing a multiplicative operation on the inputs explicitly spares

Table 2. Image error metrics averaged over the four images in Figure 8 for

each of the three compared variants. Material-specific statistics are included

in the supplemental material.

Vanilla
MLP

with
encoder

with frame
transform

Mean FLIP 0.2390 0.1956 0.0815
Mean abs. error 0.0769 0.0652 0.0183
Mean sqr. error 0.0682 10.1933 0.0057
Mean rel. abs. error 0.2177 0.3439 0.0656
Mean rel. sqr. error 0.0798 265.4018 0.0090
SMAPE 0.2670 0.2397 0.0713

the MLP from approximating it using its non-linear layers. The qual-
ity of the results improves, including effects that are not necessarily
related to normal mapping. This suggests that modeling capacity
retained by the explicit shading frame transformation is “invested”
in better capturing the shape and spatial variations of the BRDF.

6.1 Filtering

We evaluate the quality of our filtering in Figure 9 by comparing
individual levels of the latent pyramid to ground truth rendered
with supersampling. Our filtered model is a good match up close, but
loses small details from a medium distance. This is because latent
optimization does not work as well for coarser levels as it does for
level 0 and slightly overblurs the result. This may be compensated
by biasing our level selection towards finer MIP levels, at the cost
of some aliasing. From afar, all levels have a similar appearance.

6.2 Latent texture optimization

We further analyze the benefits of using the encoder in Figure 10,
in which we compare the latent textures of different configurations
at MIP level 0. We visualize latent textures obtained via direct opti-
mization (top row) and using the encoder at small (512 × 512, left)
and large (4k × 4k, right) resolutions. The bottom insets show a
close-up of the learned texture and the rendered appearance of this
area. While direct optimization and the encoder perform compara-
bly at small resolutions (as used for instance in NeuMIP [Kuznetsov
et al. 2021]), the difference becomes apparent at high resolutions. At
resolution 4k × 4k, the directly optimized texels receive roughly 64×
fewer gradient updates than texels of the 512 × 512 latent texture.
This results in the decoder having to map vastly different latent
codes (due to random initialization) to the same BRDF value, hinder-
ing its performance. Much of the initialization noise is still visible
in the converged model. On the other hand, the encoder provides a
more data- and compute-efficient approach, yielding high-fidelity
visuals. All models were trained using the same amount of training
data. Despite being computationally less intense during training,
the models with direct optimization nearly doubled the training
times (up to 10 hours) due to their higher memory requirements.

6.3 Importance sampling

We compare the importance sampler described in Section 4.3 against
a simplified variant resembling that from Sztrajman et al. [2021]
and Fan et al. [2022]. This variant is trained to only produce two
outputs: an isotropic roughness parameter and a relative weight

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

Real-Time Neural Appearance Models • 33:9

Vanilla MLP decoder with latent texture With latent texture encoder With transformed 𝝎i , 𝝎o—full model
(basic variant) (improved training) (improved training and decoding) Reference

In
kw

el
l

Te
ap

ot
Ch

ee
se

sl
ic
er

bl
ad
e

Ch
ee
se

sl
ic
er

ha
nd

le

Fig. 8. A qualitative comparison of two ablated variants and our full model at equal amount of training iterations. A vanilla MLP decoder with directly

optimized latent texture (first column) provides limited quality. Training an encoder to produce the latent texture (second column) ensures that texels with

identical appearance feature identical latent codes, easing the decoding to BRDF values. Augmenting the MLP decoder with an explicit transformation of

directions to learned shading frames—our full model (third column)—further improves the reproduction of the reference image (last column). The bottom left

corners show images of the FLIP difference metric. The models without the shading frame extractor (first two columns) were equipped with an extra first layer

with 8 neurons to roughly match the number of parameters of the full model.

Reference Footprint-based Level 0 Level 1 Level 2 · · · Level 5

Fig. 9. We evaluate the quality of our filtering by comparing footprint-based level selection to fixed latent pyramid levels (rendered with supersampling) on

the Cheese slicer asset at different distances. Up close, coarser levels show loss of small detail such as glints, which reflects in our filtered result. This is not

the case for level 0, which is a near perfect match to the ground truth (at the cost of aliasing). From afar, all levels average to visually similar appearance.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

33:10 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

512 × 512 4k × 4k

En
co
de
r

D
ire

ct
op

tim
iz
at
io
n

zoom-in

zoom-in

zoom-in

zoom-in

render

render

render

render

Fig. 10. Latent textures of the Inkwell asset. Direct optimization (top row)

works well for small textures (left) but struggles with high resolutions (right)

as independently optimizing texels is computationally inefficient; the latent

texture still contains a large amount of initialization noise after many iter-

ations. Therefore, we train an encoder (bottom row) that transforms PBR

surface attributes into latent codes, and can be executed at any resolution.

All analyzed configurations were optimized using the same amount of data.

The left inset zooms-in on a small part of the texture that is partly visible in

the rendered inset on the right.

for mixing the specular and diffuse components. Figure 11 shows
the benefit of the more general approach in the context of level-of-
detail rendering, where it is useful to sample both non-centered and
anisotropic NDFs for normal mapped and filtered BRDFs.
We also considered using samplers based on normalizing flows

[Dinh et al. 2017] in our system. In particular, the variant described
by Zheng et al. [2021] where the distribution of half-vectors is repre-
sented by two piecewise quadratic warps [Müller et al. 2019], each
parameterized by an MLP (3 layers with 16 neurons). We found this
to yield comparable sampling quality to our chosen approach, but
it increases the total frame render time by a factor of 2–3.8× (see
Figure 12), making it less viable in our real-time context. This is
explained by the additional overhead of the warps and the need
to evaluate a larger number of MLPs at shading time. Normalizing
flows generally run 4 MLPs at each hit: 2 when sampling an out-
going direction and 2 when evaluating the associated PDF, e.g. for
computing multiple importance sampling (MIS) weights [Veach and
Guibas 1995]. In contrast, our method only needs to query the sam-
pling network once per hit and caches the resulting analytic proxy
parameters for subsequent sampling and PDF evaluation steps.

6.4 Albedo inference

Figure 13 demonstrates the ability of a data-driven BRDF model to
learn additional material characteristics. The BRDF decoder outputs
an extra RGB triplet approximating the albedo of the multilayer
material. We optimize the triplet against (one-sample) estimates of

the true albedo during training using the 𝐿2 loss, which ensures con-
vergence towards the mean. The ability to predict albedo gives our
approach an edge over complex materials composed of analytical
models, that can only output texture values of individual compo-
nents, since numerical albedo estimation is typically infeasible in a
path tracer. The albedo value can be used, e.g., to guide a denoiser.

7 INLINE NEURAL MATERIALS

In this section, we describe the runtime system for inlining our neu-
ral appearance model in ray tracing shaders. Similar to recent work
on real-time NeRFs [Müller et al. 2022], we implement fully fused
neural networks from scratch on the GPU. Instead of hand-written
kernels however, we use run-time code generation to evaluate the
neural model inline with rendering code. This allows fine-grained
execution of neural networks at every hit point in a ray tracing
shader program, intermixed with hand-written code. There are sev-
eral technical challenges in making this possible.
First, existing machine learning frameworks, such as PyTorch

and TensorFlow, are built for coherent execution of neural networks
in large batches. Tools for integrating neural networks in real-time
shading languages such as GLSL or HLSL with potentially divergent
execution, are largely non-existent. Second, we want to leverage
hardware accelerated matrix multiply-accumulate (MMA) opera-
tions in recent GPU architectures by AMD,1 Intel,2 and NVIDIA,3
but these instructions are not exposed in current shading languages.
Last, the execution and data divergence in a renderer are challeng-
ing for neural networks, which load large amounts of parameter
data from memory.
In the following, we discuss how we address each of these chal-

lenges in order to reach real-time performance.

7.1 Neural material shaders

Our neural model consists of several small MLPs, interconnected
by blocks of non-neural operations. We train materials offline and
export a description of the final model along with its learned hier-
archical latent textures, stored as mipmapped 16-bit RGBA images.
Texture compression of the latents is an interesting avenue for fu-
ture work. In particular, neural texture compression [Vaidyanathan
et al. 2023] may be very fruitful as the compression and neural
material model could be trained end-to-end.
The runtime system compiles the neural material description

into optimized shader code. We target the open source Slang shad-
ing language [He et al. 2018], which has backends for a variety of
targets including Vulkan, Direct3D 12, and CUDA. Slang supports
shader modules and interfaces for logically modularizing code. We
generate one shader module per neural material, implementing the
same interface as hand-written materials. In other words, neural
materials are executed by the renderer no differently than classical
ones. See the supplemental material for implementation details and
pseudocode examples for functional reproducibility of our work.

1https://gpuopen.com/learn/wmma_on_rdna3
2https://www.intel.com/content/www/us/en/developer/articles/technical/
introduction-to-the-xe-hpg-architecture.html
3https://developer.nvidia.com/tensor-cores

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

https://gpuopen.com/learn/wmma_on_rdna3
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html
https://developer.nvidia.com/tensor-cores

Real-Time Neural Appearance Models • 33:11

1

0

1

0
5

0

180

225

270

315

0 22

45

90

135

45 68

180

225

270

315

0 22

45

90

135

45 68

180

225

270

315

0 22

45

90

135

45 68

180

225

270

315

0 22

45

90

135

45 68

5

0

MIP 2MIP 0

Is
ot
ro
pi
c
PD

F
O
ur

PD
F

Example NDF Std. deviation Zoomed view MIP 0 reference Zoomed view Std. deviation Example NDF

Mean: 0.70

Mean: 1.73

Mean: 0.22

Mean: 0.42

Fig. 11. The importance sampler (top row) reduces noise levels compared to a simpler variant only supporting isotropic specular reflections (bottom row),

in the spirit of Sztrajman et al. [2021] and Fan et al. [2022]. Left: Fine details of a normal map are captured using a non-centered microfacet NDF. Right:

At coarser MIP levels, the filtered distribution is strongly anisotropic. The zoomed views are rendered using 4 SPP. False-color images show the pixel-wise

standard deviation and its mean across the entire inset.

−90°

−60°

−30°

0°

30°

60°

90° 0.0001
0.001

0.01

0.1

−90°

−60°

−30°

0°

30°

60°

90° 0.0001 0.001 0.01
0.1 1

10 100 1000

0.5

0.0

4.0

0.0

Normalizing flows (8 bins)

Normalizing flows (16 bins)

Analytic proxy (ours)

Reference BRDF

Te
ap

ot
In
kw

el
l

Normalizing flows (8 bins) Normalizing flows (16 bins) Analytic proxy (ours) Example PDF
Time: 7.93 ms

TTUV: 12.26 ms
Time: 14.31 ms

TTUV: 22.12 ms
Time: 3.06 ms

TTUV: 4.73 ms

Time: 10.59 ms
TTUV: 366.00 ms

Time: 17.69 ms
TTUV: 330.06 ms

Time: 4.55 ms
TTUV: 70.34 ms

Fig. 12. Pixel-wise standard deviation images of our importance sampler against an alternative implementation based on normalizing flows. The sampler

architecture in the first column (using warps with 8 bins, matching that of Zheng et al. [2021]), is adequate for the glossy Inkwell metal it struggles with

the highly specular peak of the Teapot ceramic. The second column (using a higher-quality warp with 16 bins) captures the peak and roughly matches the

variance of our sampler based on the analytic proxy (third column). The last column shows corresponding (log scale) polar plots of the learned densities. The

overlaid numbers report rendering time (for the full frame at 1 SPP) and the time to unit variance (TTUV), i.e. the product of mean variance and render time.

This reveals a significant runtime overhead of normalizing flows. The size of the evaluation network is fixed at 2 layers with 32 neurons in all cases.

Rendering Visualization of learned albedo

Fig. 13. The BRDF decoder can be trained to additionally infer the albedo

of the material by optimizing its additional RGB output against a Monte

Carlo estimate of the albedo of the reference material.

Code Generation. GPUs use a single instruction, multiple threads
(SIMT) execution model, where batches (wavefronts or warps) of
threads execute in lockstep. Threads may be terminated or masked
out due to control flow. Because each thread may process a different
hit point and material, there is no guarantee that all threads in a
warp evaluate the same network.

We handle this by generating two code paths, optimized for di-
vergent and coherent execution respectively. The shader selects
dynamically per warp which path to take. In the divergent case,
we rely on the hardware SIMT model to handle divergence and
generate an unrolled sequence of arithmetic and load instructions.
A majority of the instructions evaluate the large matrix multiplies
in the MLP feedforward layers. We use fused multiply-add (FMA)
instructions to operate on two packed 16-bit weights at a time. The
weights are laid out in memory in order of access, and special care
is taken to generate 128-bit vectorized loads.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

33:12 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

Cake box scene Ratio of coherent warps per path length

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

Coherent
Divergent

Fig. 14. This partially open Cake box is filled with 25 different neural mate-

rials. The statistics show that our megakernel path tracer achieves a high

degree of shading coherency using shader execution reordering (SER) over

all vertices along long light paths.

7.2 Tensor core acceleration

Some recent GPU architectures offer hardware units for acceler-
ating general matrix multiplication. While implementation details
vary, core functionality is similar. We focus on NVIDIA’s tensor
cores which provide many flavors of matrix multiply instructions,
although the same idea applies to other architectures.
These instructions are currently limited to compute APIs and

are not exposed in shaders. To address this, we modified an open
source LLVM-based DirectX shader compiler4 to add custom in-
trinsics for low-level access. This mechanism allows us to generate
Slang shader code evaluating neural networks very efficiently using
tensor cores, which operate on 16 × 16 blocks of the weight matrix
simultaneously.
MMA instructions require cooperation across the warp, which

limits this fast path to coherent warps where all threads evaluate
the same material. Additionally, loading network parameters also
benefits from coherent access, requiring careful consideration of
how to construct coherent warps, which we discuss next.

7.3 Shading coherency

Neural materials allow us to reproduce a variety of materials using
the same shader code, simply by swapping out network weights
and latent textures. This improves warp utilization (and thus per-
formance) even for workloads with traditionally high execution
divergence, such as path tracing.
However, the increase in data divergence puts pressure on the

memory system, and we can extract additional performance by
increasing shading coherence. Classical coherent approaches like
wavefront path tracing [Laine et al. 2013; van Antwerpen 2011] store
hits to memory and globally reorder them after each bounce, but
the high bandwidth requirements fundamentally limit their perfor-
mance. Recent hardware features such as Intel’s thread sorting unit
(TSU)5 and NVIDIA’s shader execution reordering (SER),6 instead
reorder work locally. We use a megakernel path tracer to keep paths
on-chip, and benefit from the increased data coherence provided by
SER. Figure 14 shows that the majority of warps are fully coherent
(shading the same material with all threads active) with our path
tracing architecture.
4https://github.com/microsoft/DirectXShaderCompiler
5https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-
tracing-in-games.html
6https://developer.nvidia.com/sites/default/files/akamai/gameworks/ser-
whitepaper.pdf

8 RUNTIME ANALYSIS AND RESULTS

To study quality and performance, we implement our system for
neural materials in a real-time path tracer [Clarberg et al. 2022a,b]
built on the Falcor rendering framework [Kallweit et al. 2022]. The
path tracer uses next-event estimation with MIS [Veach and Guibas
1995], and each path calls the eval, sample, and evalPdf material
interface multiple times.

Our system is running onDirect3D 12 using hardware-accelerated
ray tracing through DirectX Raytracing (DXR). All results are gener-
ated on anNVIDIAGeForce RTX 4090GPU at resolution 1920× 1080,
unless otherwise noted. We focus on evaluating quality and perfor-
mance for path tracing with neural materials, and therefore disable
denoising and other features that can bias the results.
Performance is reported as total time in milliseconds (ms) for

rendering a 1920 × 1080 image with one path sample per pixel (SPP).
The timing in ms/SPP is representative for real-time path tracing,
and can be scaled linearly to predict rendering time at higher SPP for
applications such as high-quality preview rendering. Path length is
capped at six path vertices (camera and light included) and Russian
roulette is turned off for the purpose of these measurement.

Reference materials. In order to study rich materials, we added
support for physically-based, layered material graphs expressed in
the open standard MaterialX [Smythe and Stone 2021], a common
interchange format for high-fidelity materials in VFX and movie
production. This allows authoring complex layered materials (c.f.,
Figure 2) in Houdini and other tools. All materials consist of multiple
BRDFs combined through mixing or coating operations. Nearly all
parameters are textured, with resolutions of 4k-8k per texture. Some
materials stitch multiple (up to 14) 4k texture tiles for even higher
resolution. We programmatically converted the reference materials
into an optimized Slang code that implements the shading graph as
a weighted (𝝎i-dependent) combination of standard BRDF models.
Each material comprises multiple layers, where each layer is driven
by a number of textures; the statistics are provided in Table 1.

8.1 Visual accuracy

In Figure 3, we compare our proposed neural material parameterized
by an 8-channel latent texture to a simple analytical model that
combines a diffuse component with an isotropic Trowbridge-Reitz
(GGX) lobe, which are driven by textures with 8 channels in total.We
tested two variants for the analytical model: numerically optimized
parameters obtained using our existing training pipeline (which
was tuned for training neural materials), and parameters that were
manually optimized by a specialist. Both variants fail to capture the
complexity of the reference, multi-layered material. In particular, the
diffuse albedo of the simple analytical model can only capture a slice
of the view-dependent color of the ceramic glazing and is therefore
accurate only for the specific view directions that match the chosen
albedo. The neural material offers a more faithful reproduction,
overall striking a balance between the speed and quality of the high-
quality but slow reference, and the lower-quality but fast analytical
approximation.

In Figures 15 and 16, we compare the visual quality and rendering
performance of three configurations of the neural BRDF decoder
(the importance sampler always comprises 3 hidden layers with

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

https://github.com/microsoft/DirectXShaderCompiler
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://developer.nvidia.com/sites/default/files/akamai/gameworks/ser-whitepaper.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/ser-whitepaper.pdf

Real-Time Neural Appearance Models • 33:13

2 layers with 16 neurons 2 layers with 32 neurons 3 layers with 64 neurons Reference

3.64 ms

Vi
ew

1

4.36 ms 9.94 ms 14.58 ms

3.26 ms

Vi
ew

2

4.16 ms 10.93 ms 15.36 ms

Fig. 15. The Inkwell scene where the metal uses the proposed neural BRDF. The remaining parts use analytical BRDFs. The first three columns show different

sizes of the BRDF decoder, from fastest to the most accurate. In the corners we show a FLIP error image and the rendering performance of an image with a

single path sample per pixel (1 SPP) at 1920 × 1080 resolution using paths of up to length six. All images are rendered at 8192 SPP to suppress path tracing noise.

2 layers with 16 neurons 2 layers with 32 neurons 3 layers with 64 neurons Reference

3.15 ms

Vi
ew

1

3.71 ms 6.31 ms 13.25 ms

3.30 ms

Vi
ew

2

4.32 ms 7.67 ms 14.29 ms

4.29 ms

Vi
ew

3

5.73 ms 11.02 ms 19.98 ms

3.49 ms

Vi
ew

4

4.39 ms 8.68 ms 16.53 ms

3.45 ms

Vi
ew

5

4.12 ms 7.68 ms 7.78 ms

Fig. 16. The Stage scene with four materials that we approximate using the proposed neural BRDFs. We use a similar layout as in Figure 15. FLIP error images

are in the corners, timings quantify the cost of rendering a 1 SPP image of the scene at 1920×1080 resolution using paths of up to length six. All images are

rendered at 8192 SPP to suppress path tracing noise. The rendering with neural BRDFs is 1.64× to 4.14× faster than the reference materials in full frame time

(averaged over the views in Figure 15 and here). Please refer to the supplemental document for details on the scene and lighting setup.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

33:14 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

Table 3. Image error metrics averaged over the converged renderings shown

in Figures 15 and 16, each of which was produced using 8192 SPP. View-

specific statistics are included in the supplemental material.

2 × 16 2 × 32 3 × 64

Mean FLIP 0.1087 0.0551 0.0444
Mean abs. error 0.0439 0.0145 0.0121
Mean sqr. error 1.3855 0.0107 0.0101
Mean rel. abs. error 0.1042 0.0429 0.0347
Mean rel. sqr. error 0.0353 0.0056 0.0035
SMAPE 0.1449 0.0468 0.0363

Table 4. Full frame performance in ms/SPP with three different BRDF de-

coder architectures (importance sampler is always 3 × 32). Column labels

denote the number and width of hidden layers. Numbers in parenthesis

show speed up over the reference material, reported in the last column.

2 × 16 2 × 32 3 × 64 Ref.

Inkwell, View 1 3.64 (4.01×) 4.36 (3.34×) 9.94 (1.47×) 14.58
Inkwell, View 2 3.26 (4.71×) 4.16 (3.69×) 10.93 (1.41×) 15.36
Stage, View 1 3.15 (4.21×) 3.71 (3.57×) 6.31 (2.10×) 13.25
Stage, View 2 3.30 (4.33×) 4.32 (3.31×) 7.67 (1.86×) 14.29
Stage, View 3 4.29 (4.66×) 5.73 (3.49×) 11.02 (1.81×) 19.98
Stage, View 4 3.49 (4.74×) 4.39 (3.77×) 8.68 (1.90×) 16.53
Stage, View 5 3.45 (2.26×) 4.12 (1.89×) 7.68 (1.01×) 7.78

Average 3.51 (4.14×) 4.40 (3.31×) 8.89 (1.64×) 14.54

32 neurons each). As expected, quality varies with the size of the
decoder. The largest configuration, with 3 hidden layers and 64
neurons, reproduces the reference material well, with most details
and colors captured accurately. The errors appear mostly at grazing
angles of near-specular materials, e.g., the ceramic Teapot body
near to the silhouette. We tested a number of hyper-parameter
configurations, and while some successfully reduced the grazing
angle artifacts (e.g., using 𝐿2 loss), the quality elsewhere degraded,
sometimes significantly. In order to escape this “zero-sum” game,
we posit that another graphics prior is needed for handling Fresnel
effects; we leave this to future work.

We include FLIP [Andersson et al. 2020] false-color error images in
corners to illustrate the perceived difference when toggling between
the neural and reference BRDFs renders; all images are also provided
as part of the supplemental material to facilitate such inspection.
Table 3 lists average errors using a variety of standard image error
metrics. The supplemental also includes polar plots for the learned
materials with different decoder sizes.

8.2 Runtime performance

The smallest network yields the best rendering performance, al-
beit at reduced reconstruction accuracy. Table 4 lists the absolute
performance in ms/SPP and the relative speed improvement over
rendering a GPU-optimized implementation of the reference ma-
terial (all running on NVIDIA GeForce RTX 4090 GPU). The full
frame rendering times with the neural BRDFs are 1.64× (3 × 64) to
4.14× (2 × 16) faster than the reference material on average.

Table 5. Material shading performance in ms/SPP with two different BRDF

decoder architectures (importance sampler is always 3 × 32). Column labels

denote the number and width of hidden layers. Numbers in parenthesis

show speed up over the reference material, reported in the last column.

2 × 32 3 × 64 Ref.

Stage, View 3 1.59 (10.19×) 6.02 (2.69×) 16.21
Stage, View 4 1.23 (12.82×) 5.06 (3.12×) 15.77
Inkwell, View 1 1.59 (6.99×) 6.01 (1.85×) 11.11
Inkwell, View 2 1.74 (7.25×) 7.15 (1.76×) 12.61

Average 1.54 (9.06×) 6.06 (2.30×) 13.93

Stage timings (ms) Inkwell timings (ms)

2 × 32 3 × 64 Reference
0
2
4
6
8

10
12
14
16
18 Material shading

Path tracing

2 × 32 3 × 64 Reference
0
2
4
6
8

10
12
14
16
18 Material shading

Path tracing

Fig. 17. Average path tracing and material shading time in ms, respectively,

for rendering a 1 SPP image of the scene at 1920×1080 pixels resolution

using paths up to six path vertices in length. Two different BRDF decoder

architectures are profiled, and compared to the cost of shading using the

reference materials.

The frame time includes both general path tracing operations
(light sampling, ray tracing, and control logic) as well as material
sampling and evaluation. To estimate how much time is spent in
material shading, and thus the relative speedups of our neural mate-
rials over the reference materials, we setup a dedicated benchmark.
Since all neural material shaders in our system are running inline in
the renderer, not as separate kernels, this has to be done with care;
we lock the path distribution to a simple cosine-weighted distribu-
tion, while ensuring that the compiler does not eliminate any of the
material code. As a baseline, we measure the pure path tracing cost
using a material with constant color.

Table 5 and Figure 17 summarize our findings for two representa-
tive views of the Inkwell scene (Figure 15, view 1 & 2) and Stage
scene (Figure 16, view 3 & 4). The shading times with the neural
BRDFs are 2.30× (3 × 64) to 9.06× (2 × 32) faster than the reference
materials on average, with over an order of magnitude speedup for
several views and the mid-sized BRDF decoder (2 × 32).

Overall, the performance and visual fidelity scale in a predictable
manner as neural BRDFs accommodate trading quality for perfor-
mance. Next, we analyze the scaling behavior in more detail.

8.3 Scalability

Figure 18 shows that performance scales favorably when increasing
the number of neural materials. For this test we render the Cake box
scene (Figure 14) and vary the number of (different) neural materials,
while keeping geometry and path distribution identical. Paths up to
ten vertices in length are traced and the scene also contains a small
number of traditional materials, in order to introduce significant
execution and data divergence.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

Real-Time Neural Appearance Models • 33:15

Rendering time (ms) for increasing number of neural materials

1 2 3 4 6 8 12 16 20 25
0

2

4

6

8

10

12

14

3 × 64
2 × 32

Fig. 18. Rendering times for path tracing a 1 SPP image of the Cake box

scene with varying numbers of neural materials. The measurements show

that our method is insensitive to the divergence introduced by path tracing

scenes with many neural materials; rendering times stay near constant

as material count increases. Two different BRDF decoder architectures

are studied. The path distribution is kept fixed to isolate the effects on

performance from scaling the number of materials.

For very small numbers of neural materials, the network param-
eters fit in caches close to the shader cores, whereas with more
materials the parameters are increasingly streamed in from L2 or
global memory. Our approach based on a megakernel path tracer
with local work reordering manages to extract enough coherency
to amortize the cost of memory loads well.

Memory usage. The memory footprint is dominated by the 8-
channel, half-precision latent texture, requiring 256MB per 4k tex-
ture tile. The network weights are comparably small, requiring
37kB for the 3x64 network configuration and 9.3kB for the 2x16
configuration.

Discussion. It is difficult to do a direct comparison to previous
work as our focus is different; we show that neural materials can run
efficiently in real-time shaders even in divergent workloads such as
path tracing. There are few examples of inferencing in traditional
shaders. One exception is deep shading [Nalbach et al. 2017] that runs
a forward pass in GLSL for traditional deferred shading. Research
on neural appearance models have generally used CUDA kernels,
either directly or via machine learning frameworks.
Fan et al. [2022] record all intersections to global memory and

shade in a deferred manner, precluding adaptiveness and paying
the cost of memory transfers. The authors report a single BRDF
evaluation per pixel with resolution 1920 × 1080 costing 5 ms on an
NVIDIA RTX 2080Ti. NeuMIP [Kuznetsov et al. 2021] implement
an interactive CUDA/OptiX-based path tracer and report similar
performance of 5 ms per evaluation at the same resolution/GPU.
The paper is scarce on details; in personal communication it was
stated that the reported 60 frames per second path tracing applies
to relatively short paths in a simple scene with a single material.
Scaling to multiple materials is not explored.

We believe the scalability, handling of divergent shaders, and inte-
gration in real-time shading languages are important contributions
of our work for ease of adoption of neural materials more widely.

9 LIMITATIONS & FUTURE WORK

Energy conservation and reciprocity. Because the neural material
is only an approximate fit of the input material, it is not guaranteed
to be energy conserving. Although we have not observed this to be
a problem in our tests, this could become an issue for high albedo
materials with high orders of bounces (e.g. white fur). Enforcing
energy conservation would require the network to output in a form
that is analytically integrable, or integrates to a known value. The
latter can be achieved with normalizing flows (as in [Müller et al.
2020]) at an increased evaluation cost. Our BRDF model is currently
not reciprocal, but reciprocity could be enforced with the modi-
fied Rusinkiewicz encoding of directions [Zheng et al. 2021]. We
opted for the Cartesian parameterization of directions that was more
numerically stable in our experiments and yielded better visuals.

Displacement. We do not currently support effects that affect
surface geometry, such as displacement mapping. We implemented
the neural displacement approach of Kuznetsov et al. [2021], and
tested several variations that include geometric priors, but we found
that this approach is always outperformed by fixed-function ray
marching, both in terms of bandwidth and runtime. None of these
approaches were sufficiently fast to reach our performance goals,
but we expect additional research to make them viable alternatives.

Filtering. Although neural prefiltering is effective at preventing
aliasing, we report that, while the finest level is very accurate, the
coarser levels of the latent pyramid tend to produce softer appear-
ance than the supersampled reference BRDF. This is likely because
the inputs to the encoder correlate stronglywith the appearance only
at the finest level. In case of coarser levels, the encoder consumes
prefiltered material parameters, where the correlation is weaker
and the auto-encoder thus performs worse. Finetuning improves
the quality somewhat, but cannot escape the initial local minimum.

Alternative geometric priors. We tested a number of alternative
implementations of the rotation prior (Section 4.2), ranging from un-
constrained, high-dimensional affine transforms inspired by the gen-
erality of self-attention layers [Vaswani et al. 2017] to rotation-only
matrices. Our final solution uses normalized (but not orthogonal)
normal n and tangent t from the network output, with bitangent
b = n × t/∥n × t∥. Additionally, we tested explicitly supervising
the extracted TBN frames against frames of the reference material,
with an optional asymmetric loss [Vogels et al. 2018]. This occasion-
ally improved the results (e.g., for glints), but the training requires
extensive hyperparameter tuning; hence we excluded it from results.

Training stability and time. We occasionally found training to
converge to local minima with large visual differences based on
small perturbations of hyperparameters or weight initialization. For
instance, the smallest network configuration could not reliably pre-
serve the highly specular glazing of the Teapot so we chose to
include a version without it in our results (Figure 16). We want to
investigate robustness more closely, also while scaling to a larger
target material diversity. At the same time, we would like to sig-
nificantly reduce training times (ideally from hours to minutes) to
improve iteration times when developing further enhancements
and to make the current iteration of the system more practical.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

33:16 • Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák, Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn

Refraction. We evaluate our method only on purely reflective
materials. Extending our model to transmissive materials poses the
following challenge: physically based renderers require knowing
the index of refraction of the material to maintain reciprocity after
refracting. While the network could be trained to produce the index
as an additional output, it is difficult to guarantee that this trained
value matches the actual behavior of the BRDF; this topic deserves
special attention in the future.

10 CONCLUSION

We present a complete real-time neural materials system. The model
jointly addresses evaluation, sampling, and filtering of highly com-
plex and detailed materials. We achieve this by combining ideas
from prior works with new graphics priors and training strategies
to achieve higher quality and faster training. A key contribution
of our work is that such comprehensive solutions can be imple-
mented efficiently on modern graphics hardware; we propose to
deploy the neural network to the innermost rendering loop to reduce
bandwidth requirements. In our tests, the neural BRDFs achieve
state-of-the-art rendering performance, outperform optimized GPU
implementations of reference multi-layered classical materials, and
scale to multiple materials in a scene. We believe the presented
neural BRDFs can serve as “baked” versions of complex materials;
as well as increased performance and lower memory consumption,
this enables easy interchange of arbitrarily complex materials be-
tween different workflows and tools, simply by exchanging a fixed
set of latent textures and a small table of MLP weights. Lastly, we
hope this article will stimulate adoption of small neural networks
in real-time rendering.

ACKNOWLEDGMENTS

Wewant to thank Toni Bratincevic, Davide Di Giannantonio Potente,
and Kevin Margo for their help creating the reference objects, Yong
He for evolving the Slang language to support this project, Craig
Kolb for his help with the 3D asset importer, Justin Holewinski
and Patrick Neill for low-level compiler and GPU driver support,
and Karthik Vaidyanathan for providing the TensorCore support
in Slang. We also thank Eugene d’Eon, Steve Marschner, Thomas
Müller, Marco Salvi, and Bart Wronski for their valuable input. The
material test blob in Figure 14 was created by Robin Marin and
released under CC (https://creativecommons.org/licenses/by/3.0/).

REFERENCES

Tomas Akenine-Möller, Cyril Crassin, Jakub Boksansky, Laurent Belcour, Alexey Pan-
teleev, and Oli Wright. 2021. Improved Shader and Texture Level of Detail Using
Ray Cones. Journal of Computer Graphics Techniques (JCGT) 10, 1 (January 2021),
1–24. http://jcgt.org/published/0010/01/01/

Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle
Åström, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3,
2, Article 15 (Aug 2020), 23 pages. https://doi.org/10.1145/3406183

Hendrik Baatz, Jonathan Granskog, Marios Papas, Fabrice Rousselle, and Jan Novák.
2022. NeRF-Tex: Neural Reflectance Field Textures. Computer Graphics Forum 41, 6,
287–301. https://doi.org/10.1111/cgf.14449

Yaoyi Bai, Songyin Wu, Zheng Zeng, Beibei Wang, and Ling-Qi Yan. 2023. BSDF
Importance Baking: A Lightweight Neural Solution to Importance Sampling General
Parametric BSDFs. arXiv:2210.13681

Steve Bako, Pradeep Sen, and Anton Kaplanyan. 2023. Deep Appearance Prefiltering.
ACM Transactions on Graphics 42, 2, Article 23 (Jan 2023), 23 pages. https://doi.org/
10.1145/3570327

Petrik Clarberg, Simon Kallweit, Craig Kolb, Pawel Kozlowski, Yong He, Lifan Wu, and
Edward Liu. 2022a. Research Advances Toward Real-Time Path Tracing. Game
Developers Conference (GDC).

Petrik Clarberg, Simon Kallweit, Craig Kolb, Pawel Kozlowski, Yong He, Lifan Wu,
Edward Liu, Benedikt Bitterli, and Matt Pharr. 2022b. Real-Time Path Tracing and
Beyond. HPG 2022 Keynote.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2017. Density estimation
using Real NVP. In International Conference on Learning Representations. https:
//openreview.net/forum?id=HkpbnH9lx

Jonathan Dupuy. 2015. Photorealistic Surface Rendering with Microfacet Theory. Ph. D.
Dissertation. Université Claude Bernard - Lyon I ; Université de Montréal.

Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor
Ostromoukhov. 2013. Linear efficient antialiased displacement and reflectance
mapping. ACM Transactions on Graphics 32, 6, Article 211 (Nov 2013), 11 pages.
https://doi.org/10.1145/2508363.2508422

Jonathan Dupuy and Wenzel Jakob. 2018. An adaptive parameterization for efficient
material acquisition and rendering. ACM Transactions on Graphics 37, 6, Article 274
(Dec 2018), 14 pages. https://doi.org/10.1145/3272127.3275059

Jiahui Fan, Beibei Wang, Miloš Hašan, Jian Yang, and Ling-Qi Yan. 2022. Neural Layered
BRDFs. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada).
Association for Computing Machinery, New York, NY, USA, Article 4, 8 pages.
https://doi.org/10.1145/3528233.3530732

Alban Gauthier, Robin Faury, Jérémy Levallois, Théo Thonat, Jean-Marc Thiery, and
Tamy Boubekeur. 2022. MIPNet: Neural Normal-to-Anisotropic-Roughness MIP
Mapping. ACM Transactions on Graphics 41, 6, Article 246 (Nov 2022), 12 pages.
https://doi.org/10.1145/3550454.3555487

Yong He, Kayvon Fatahalian, and Theresa Foley. 2018. Slang: Language Mechanisms for
Extensible Real-time Shading Systems. ACM Transactions on Graphics 37, 4, Article
141 (Jul 2018), 13 pages. https://doi.org/10.1145/3197517.3201380

Wenzel Jakob, Andrea Weidlich, Andrew Beddini, Rob Pieké, Hanzhi Tang, Luca
Fascione, and Johannes Hanika. 2019. Path Tracing in Production: Part 2: Mak-
ing Movies. In ACM SIGGRAPH 2019 Courses (Los Angeles, California). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 20, 41 pages.
https://doi.org/10.1145/3305366.3328085

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tomáš Davidovič, Kai-Hwa Yao, Theresa
Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril
Crassin, and Nir Benty. 2022. The Falcor Rendering Framework (version 5.2). https:
//github.com/NVIDIAGameWorks/Falcor

Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter,
Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning
generative models for rendering specular microgeometry. ACM Transactions on
Graphics 38, 6, Article 225 (Nov 2019), 14 pages. https://doi.org/10.1145/3355089.
3356525

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.
2021. NeuMIP: multi-resolution neural materials. ACM Transactions on Graphics 40,
4, Article 175 (Jul 2021), 13 pages. https://doi.org/10.1145/3450626.3459795

Alexandr Kuznetsov, Xuezheng Wang, Krishna Mullia, Fujun Luan, Zexiang Xu, Miloš
Hašan, and Ravi Ramamoorthi. 2022. Rendering Neural Materials on Curved Sur-
faces. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada).
Association for Computing Machinery, New York, NY, USA, Article 9, 9 pages.
https://doi.org/10.1145/3528233.3530721

Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels considered harmful:
wavefront path tracing on GPUs. In Proceedings of the 5th High-Performance Graphics
Conference (Anaheim, California). Association for Computing Machinery, New York,
NY, USA, 137–143. https://doi.org/10.1145/2492045.2492060

Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. 2003. A data-
driven reflectance model. ACM Transactions on Graphics 22, 3 (Jul 2003), 759–769.
https://doi.org/10.1145/882262.882343

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Computer Vision – ECCV 2020. Springer International
Publishing, Cham, 405–421.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Transactions
on Graphics 41, 4, Article 102 (Jul 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural Importance Sampling. ACM Transactions on Graphics 38, 5, Article 145
(Oct 2019), 19 pages. https://doi.org/10.1145/3341156

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural
control variates. ACMTransactions on Graphics 39, 6, Article 243 (Nov 2020), 19 pages.
https://doi.org/10.1145/3414685.3417804

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, and Tobias
Ritschel. 2017. Deep Shading: Convolutional Neural Networks for Screen Space
Shading. Computer Graphics Forum 36, 4, 65–78. https://doi.org/10.1111/cgf.13225

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

http://jcgt.org/published/0010/01/01/
https://doi.org/10.1145/3406183
https://doi.org/10.1111/cgf.14449
https://arxiv.org/abs/2210.13681
https://doi.org/10.1145/3570327
https://doi.org/10.1145/3570327
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://doi.org/10.1145/2508363.2508422
https://doi.org/10.1145/3272127.3275059
https://doi.org/10.1145/3528233.3530732
https://doi.org/10.1145/3550454.3555487
https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3305366.3328085
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/3355089.3356525
https://doi.org/10.1145/3355089.3356525
https://doi.org/10.1145/3450626.3459795
https://doi.org/10.1145/3528233.3530721
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/882262.882343
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3341156
https://doi.org/10.1145/3414685.3417804
https://doi.org/10.1111/cgf.13225

Real-Time Neural Appearance Models • 33:17

Marc Olano and Dan Baker. 2010. LEAN mapping. In Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games (Washington, D.C.).
Association for Computing Machinery, New York, NY, USA, 181–188. https://doi.
org/10.1145/1730804.1730834

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering,
Third Edition: From Theory to Implementation. Morgan Kaufmann.

Gilles Rainer, Abhijeet Ghosh, Wenzel Jakob, and Tim Weyrich. 2020. Unified Neural
Encoding of BTFs. Computer Graphics Forum 39, 2, 167–178. https://doi.org/10.
1111/cgf.13921

Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. 2019. Neural BTF
Compression and Interpolation. Computer Graphics Forum 38, 2, 235–244. https:
//doi.org/10.1111/cgf.13633

Daniel Rebain, Mark J. Matthews, Kwang Moo Yi, Gopal Sharma, Dmitry Lagun, and
Andrea Tagliasacchi. 2023. Attention Beats Concatenation for Conditioning Neural
Fields. Transactions on Machine Learning Research (2023). https://openreview.net/
forum?id=GzqdMrFQsE

Szymon Rusinkiewicz. 1998. A New Change of Variables for Efficient BRDF Represen-
tation. In Rendering Techniques ’98. Springer Vienna, Vienna, 11–22.

Doug Smythe and Jonathan Stone. 2021. MaterialX: An Open
Standard for Network-Based CG Object Looks, Version 1.38.
https://materialx.org/assets/MaterialX.v1.38.Spec.pdf.

Alejandro Sztrajman, Gilles Rainer, Tobias Ritschel, and Tim Weyrich. 2021. Neural
BRDF Representation and Importance Sampling. Computer Graphics Forum 40, 6,
332–346. https://doi.org/10.1111/cgf.14335

Justus Thies, Michael Zollhöfer, and Matthias Nießner. 2019. Deferred neural rendering:
image synthesis using neural textures. ACM Transactions on Graphics 38, 4, Article
66 (Jul 2019), 12 pages. https://doi.org/10.1145/3306346.3323035

T. S. Trowbridge and K. P. Reitz. 1975. Average Irregularity Representation of a Rough
Surface for Ray Reflection. Journal of the Optical Society of America 65, 5 (1975),
531–536.

Karthik Vaidyanathan, Marco Salvi, BartlomiejWronski, Tomas Akenine-Moller, Pontus
Ebelin, and Aaron Lefohn. 2023. Random-Access Neural Compression of Material
Textures. ACM Transactions on Graphics 42, 4, Article 88 (Jul 2023), 25 pages.
https://doi.org/10.1145/3592407

Dietger van Antwerpen. 2011. Improving SIMD efficiency for parallel Monte Carlo
light transport on the GPU. In Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics (Vancouver, British Columbia, Canada). Association for
Computing Machinery, New York, NY, USA, 41–50. https://doi.org/10.1145/2018323.
2018330

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In
Advances in Neural Information Processing Systems, Vol. 30. Curran Associates, Inc.

Eric Veach and Leonidas J. Guibas. 1995. Optimally combining sampling techniques for
Monte Carlo rendering. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing
Machinery, New York, NY, USA, 419–428. https://doi.org/10.1145/218380.218498

Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Röthlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and
asymmetric loss functions. ACM Transactions on Graphics 37, 4, Article 124 (Jul
2018), 15 pages. https://doi.org/10.1145/3197517.3201388

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.
Microfacet models for refraction through rough surfaces. In Proceedings of the
18th Eurographics Conference on Rendering Techniques (Grenoble, France) (EGSR’07).
Eurographics Association, Goslar, DEU, 195–206.

Bing Xu, Liwen Wu, Miloš Hašan, Fujun Luan, Iliyan Georgiev, Zexiang Xu, and Ravi
Ramamoorthi. 2023. NeuSample: Importance Sampling for Neural Materials. In
ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA). Association
for Computing Machinery, New York, NY, USA, Article 41, 10 pages. https://doi.
org/10.1145/3588432.3591524

Chuankun Zheng, Ruzhang Zheng, Rui Wang, Shuang Zhao, and Hujun Bao. 2021.
A Compact Representation of Measured BRDFs Using Neural Processes. ACM
Transactions on Graphics 41, 2, Article 14 (Nov 2021), 15 pages. https://doi.org/10.
1145/3490385

A IMPORTANCE SAMPLING DETAILS

The following outlines the implementation details of our analytic
proxy model used for importance sampling.

Probability density. Like prior work [Fan et al. 2022; Sztrajman
et al. 2021] our sampling density is aS linear blend between a diffuse
and specular term

𝑝 (𝝎o) = 𝑤d · 𝑝d (𝝎o) +𝑤s · 𝑝s (𝝎o), with𝑤d +𝑤s = 1. (5)

The diffuse PDF 𝑝d is a cosine-weighted distribution but tilted
by a normal vector computed from a predicted 2D surface slope
(`d,x, `d,y) as

nd = Normalize([−`d,x,−`d,y, 1]). (6)

The specular PDF 𝑝s is a standard microfacet density using a
Trowbridge-Reitz (GGX) NDF [Trowbridge and Reitz 1975; Walter
et al. 2007] with elliptical anisotropy and non-centered mean surface
slopes [Dupuy 2015]:

𝑝s (𝝎o) = 𝐷std

(
M−1𝝎h

| |M−1𝝎h | |

)
det

(
M−1)

| |M−1𝝎h | |3
1

4 |𝝎o · 𝝎h |
, (7)

where 𝝎h = Normalize(𝝎i + 𝝎o) is the half vector and 𝐷std is the
isotropic NDF with unit roughness (𝛼 = 1), transformed based on

M =

𝛼x 0 −`s,x
𝛼y 𝜌 𝛼y

√︁
1 − 𝜌2 −`s,y

0 0 1

 . (8)

Here, the elliptical anisotropy is described by two orthogonal rough-
ness values 𝛼x, 𝛼y with correlation parameter 𝜌 and the mean of
the NDF is offset by a 2D surface slope (`s,x, `s,y).

The last two terms in Equation (7) are the Jacobian determinants
accounting for the transformation (and subsequent normalization)
of 𝝎h, as well as the change of variables between 𝝎h and 𝝎o.

Sampling. The sample transform𝑊 first selects one of the two
PDF terms (Equation (5)) based on the relative weights𝑤d and𝑤s.
If the diffuse component is chosen we simply generate a cosine-
weighted outgoing direction 𝝎o and tilt it based on nd. Otherwise,
we perform specular reflection along a sampled half-vector

𝝎h = Normalize(M ·𝑊std (u)) (9)

where𝑊std is the usual isotropic NDF sampling technique (𝛼 = 1).

Network prediction. We dropped the explicit dependence of 𝑝 and
𝑊 on 𝝎i and x above for brevity, but our full set of 9 proxy pa-
rameters {𝑤d, `d,x, `d,y,𝑤s, 𝛼x, 𝛼y, 𝜌, `s,x, `s,y} are the result of an
MLP evaluation that takes these as input. To ensure that all in-
ferred parameters lie in their respective valid ranges (𝛼 ∈ [0, 1], 𝜌 ∈
[−1, 1], ` ∈ [−∞, +∞]) we append an appropriate final activation to
each network output based on quadratic approximations of tanh(𝑥)
and sinh(𝑥). Lastly,𝑤d and𝑤s are processed by the softmax func-
tion to form valid mixing weights that add up to one.

ACM Trans. Graph., Vol. 43, No. 3, Article 33. Publication date: June 2024.

https://doi.org/10.1145/1730804.1730834
https://doi.org/10.1145/1730804.1730834
https://doi.org/10.1111/cgf.13921
https://doi.org/10.1111/cgf.13921
https://doi.org/10.1111/cgf.13633
https://doi.org/10.1111/cgf.13633
https://openreview.net/forum?id=GzqdMrFQsE
https://openreview.net/forum?id=GzqdMrFQsE
https://doi.org/10.1111/cgf.14335
https://doi.org/10.1145/3306346.3323035
https://doi.org/10.1145/3592407
https://doi.org/10.1145/2018323.2018330
https://doi.org/10.1145/2018323.2018330
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1145/3588432.3591524
https://doi.org/10.1145/3588432.3591524
https://doi.org/10.1145/3490385
https://doi.org/10.1145/3490385

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural appearance modeling
	2.2 Neural material filtering
	2.3 Neural material importance sampling

	3 Overview
	4 Neural BRDF Decoder
	4.1 Latent texture
	4.2 Transformation to learned shading frames
	4.3 Importance sampling

	5 Training
	5.1 Encoder
	5.2 Data generation and optimization

	6 Model analysis and ablation
	6.1 Filtering
	6.2 Latent texture optimization
	6.3 Importance sampling
	6.4 Albedo inference

	7 Inline Neural Materials
	7.1 Neural material shaders
	7.2 Tensor core acceleration
	7.3 Shading coherency

	8 Runtime Analysis and Results
	8.1 Visual accuracy
	8.2 Runtime performance
	8.3 Scalability

	9 Limitations & Future Work
	10 Conclusion
	Acknowledgments
	References
	A Importance sampling details

