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Fig. 1. A rendered image of an inkwell. The cutouts demonstrate quality using, from le� to right, GPU-based texture formats (BC high) at 1024 × 1024

resolution, our neural texture compression (NTC), and high-quality reference textures. Note that NTC provides a 4× higher resolution (16× texels) than BC

high, despite using 30% less memory. The PSNR and FLIP quality metrics, computed for the cutouts, are shown above the respective images. The FLIP error

images are shown in the lower right corners, where brightness is proportional to error. Bo�om row: two of the textures that were used for the renderings.

The continuous advancement of photorealism in rendering is accompanied
by a growth in texture data and, consequently, increasing storage and mem-
ory demands. To address this issue, we propose a novel neural compression
technique speci�cally designed for material textures. We unlock two more
levels of detail, i.e., 16× more texels, using low bitrate compression, with
image quality that is better than advanced image compression techniques,
such as AVIF and JPEG XL.
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At the same time, our method allows on-demand, real-time decompression
with random access similar to block texture compression on GPUs, enabling
compression on disk and memory. The key idea behind our approach is
compressing multiple material textures and their mipmap chains together,
and using a small neural network, that is optimized for each material, to
decompress them. Finally, we use a custom training implementation to
achieve practical compression speeds, whose performance surpasses that of
general frameworks, like PyTorch, by an order of magnitude.
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1 INTRODUCTION

In recent years, the visual quality of real-time rendering has been
approaching the levels of VFX and �lm productions, giving rise
to powerful new work�ows, like virtual production [59], which
are transforming �lmmaking. These improvements in quality have
been achieved through the adoption of methods used in cinematic
rendering such as physically-based shading for photorealistic mod-
eling of materials [10], ray tracing [56, 70] and denoising [24, 75]
for accurate global illumination, and technologies like Nanite [71]
that render compressed micropolygons, thus enabling a signi�cant
increase in geometric detail.

Although there is a greater convergence of rendering techniques
between cinematic and real-time applications, content creation
work�ows remain largely di�erent. In order to limit storage size,
games often use specialized practices for texturing models, which
can require signi�cant e�ort, for example, reusing content through
instancing, layering tiled materials, or using procedural e�ects. In
spite of these e�orts, games typically present blurry, magni�ed tex-
tures close to the camera. Furthermore, some of these techniques
are not applicable to uniquely parametrized content, such as pho-
togrammetry, usage of which is a growing trend in games today.
One of the main obstacles for achieving the next level of realism in
real-time rendering is limited disk storage, download bandwidth,
and memory size constraints.

While texture storage requirements in real-time applications have
increased signi�cantly, texture compression on GPUs has seen rela-
tively little change. GPUs still rely on block-based texture compres-
sion methods [45, 55, 82], �rst introduced in the late 1990s. These
methods have e�cient hardware implementations and desirable
properties like random access and data locality. They can achieve
high, near lossless quality, but are designed for moderate compres-
sion ratios, typically between 4× and 8×. They are also limited to a
maximum of 4 channels, while the number of material properties
in modern real-time renderers commonly exceed this limit, thus
requiring multiple textures. The main improvement to texture com-
pression in recent years has been meta-compression for reduced
disk storage and faster delivery [30], but this requires transcoding
to GPU texture compression formats.
On the other hand, the �eld of natural image compression is

making signi�cant strides in the lower bitrate regime. In recent years,
newweb image formats have been proposed [2, 13] that signi�cantly
improve upon previous standards, like JPEG [80]. Meanwhile, the
scienti�c community has been developing neural image compression

methods [7, 14, 43], incorporating non-linear transformations in the
form of neural networks, to aid compression and decompression.
These methods signi�cantly improve upon the perceptual quality
of compressed images at extremely low bitrates, but typically o�er
modest distortion metrics improvements. They also require large-
scale image data sets and expensive training, and are not suitable
for real-time rendering due to their lack of important features, such
as random access and non-color material properties compression.
In this work, we tackle the problem of reducing texture storage

by integrating techniques from GPU texture compression as well as
neural image compression and introducing a neural compression
technique speci�cally designed for material textures.

Using this approach we enable low-bitrate compression, unlock-
ing two additional levels of detail (or 16× more texels) with similar
storage requirements as commonly used texture compression tech-
niques. In practical terms, this allows a viewer to get very close to
an object before losing signi�cant texture detail. Our main contri-
butions are:

• A novel approach to texture compression that exploits redundan-
cies spatially, across mipmap levels, and across di�erent material
channels. By optimizing for reduced distortion at a low bitrate,
we can compress two more levels of details in the same storage as
block-compressed textures. The resulting texture quality at such
aggressively low bitrates is better than or comparable to recent
image compression standards like AVIF and JPEG XL, which are
not designed for real-time decompression with random access.

• A novel low-cost decoder architecture that is optimized speci�-
cally for each material. This architecture enables real-time per-
formance for random access and can be integrated into material
shader functions, such as �ltering, to facilitate on-demand de-
compression.

• A highly optimized implementation of our compressor, with fused
backpropogation, enabling practical per-material optimization
with resolutions up to 8192 × 8192 (8k). Our compressor can
process a 9-channel, 4k material texture set in 1-15 minutes on an
NVIDIA RTX 4090 GPU, depending on the desired quality level.

2 PREVIOUS WORK

In this section, we �rst review traditional texture compression (TC),
techniques used in contemporary GPUs. Subsequently, we present
a brief overview of natural image compression that uses entropy
coding and its recent development based on deep learning. Lastly,
we examine recent advances in neural rendering that are closely
related to our work.

2.1 Traditional Texture Compression

Delp and Mitchell [18] introduced block truncation coding (BTC),
which compresses gray scale images by storing two 8-bit gray scale
values per 4 × 4 pixels and having a single bit per pixel to select
one of these two gray scale values. Each pixel is stored using 2 bits
per pixel (BPP). This was modi�ed by Campell et al. [11] who used
the 8-bit values as indices into a lookup table of colors, enabling
color image compression at 2 BPP. Their method is called color
cell compression (CCC). Knittel et al. [35] described hardware for
decompressing CCC textures, which was selected due its random-
access nature and simplicity, which made it a�ordable and fast in
hardware.
The S3 texture compression (S3TC) schemes [82] are clever ex-

tensions of the BTC and CCC and form the basis for most of the TC
methods found in DirectX [45]. The �rst method of S3TC, which
was later called DXT1 and then renamed to BC1 in DirectX, stores
two colors per 4 × 4 pixels. These are quantized to 5 + 6 + 5 (RGB)
bits. Two additional colors are created using linear interpolation
between the stored colors. Hence, there is a palette of four colors
available per 4 × 4 pixels and each pixel then points to one of these
using a 2-bit index.
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Today, there are seven variants of S3TC in DirectX. These are
called BC1-BC7 and handle alpha, normal maps, high-dynamic range
(HDR), and are using either 4 or 8 BPP. All of these have the ran-
dom access property, since each block of 4 × 4 pixels always are
compressed to the same number of bits.
Munkberg et al. [49] and Roimela et al. [62] presented the �rst

TC schemes for HDR textures, and both were inspired by the pre-
vious block-based schemes, but adapted those to HDR. BC6H is a
variant for HDR texture compression in DirectX. We omit many
other references on this topic, since HDR TC is not our focus.

Fenney [20] presented a di�erent block-based compression scheme
called PowerVR texture compression (PVRTC), which is used on
all iOS devices. PVRTC decompresses two low-resolution images,
which are bilinearly magni�ed, and then uses a per-pixel index to
select a color in between the interpolated colors.
Ericsson texture compression (ETC1), which is part of OpenGL

ES, also compresses 4 × 4 pixels at a time but stores only a single
base color, which is then modulated using a trained table of o�sets,
which is selected per block [66]. ETC2 is backwards compatible
with ETC1 by using invalid bit combinations, and improves image
quality [67]. ETC1/ETC2 are available in over 12 billion mobile
phones. ASTC [55] is currently themost �exible texture compression
scheme, since it supports low-dynamic range, HDR, and 3D textures,
with bitrates from 0.89 to 8 BPP. This is achieved using larger block
sizes, speci�c color spaces, and e�cient bit allocation. ASTC is
supported on (at least) ARM’s GPUs, the most recent Apple GPUs,
as well as several desktop GPUs. However, there is no support in
DirectX.

2.2 Traditional and Neural Image Compression

Image compression formats that target storage on disk or network
transfer have less restrictive constraints than GPU texture com-
pression. Without the need for random access and strict bounds on
hardware complexity, they can utilize global transforms, as well as
entropy coding methods to target signi�cantly lower bitrates.
Despite its widespread usage, JPEG [80] has been found to pro-

duce noticeable artifacts, such as detail loss, discoloration, and band-
ing, particularly at lower bitrates. This has led to the development of
alternative image compression formats, such as AVIF [13] and JPEG
XL [2], which incorporate algorithmic advancements and prioritize
alignment with human visual perception [1].
The tradeo� between objective distortion and perceptual mea-

surements has been well-studied [8], particularly in the context
of machine learning. Various methods have been proposed to im-
prove optimization for perceptual qualities, such as using features
extracted from a convolutional network [88], the network structure
itself [77], or another network [37]. Non-neural methods have also
been developed to localize perceptually-relevant errors for image
comparison [3].
In recent years, neural image compression methods [5, 61, 73]

have emerged as an alternative to traditional formats such as JPEG
2000 [65], o�ering improved perceptual quality. These techniques
often use encoder-decoder architectures to create an information
bottleneck, which is then quantized and entropy-coded based on
an entropy model. Rapid evolution has occurred in this area, with

di�use/albedo normal map ARM displacement map

Fig. 2. An example texture set consisting of a di�use map, normal map, an

ARM (ambient occlusion, roughness, metalness) texture, and a displacement

map, for a ceramic roof material. Our approach compresses these textures

together. Textures retrieved from https://polyhaven.com/.

advances such as the provision of sideband information to improve
the accuracy of the entropy model [7], the incorporation of gener-
ative models to achieve higher perceptual quality [43], and more
recently the use of attention based networks [14, 40] which were
the �rst to improve upon both PSNR and perceptual quality over the
new VVC-intra [9] standard, which uses traditional compression
methods.

2.3 Neural Rendering and Materials

Neural rendering [72] is a new �eld that has emerged recently and
includes approaches that leverage neural methods inside traditional
rasterization or ray tracing based renderers, which is particularly
relevant to our work. Thies et al. [74] proposed a method for higher
quality image synthesis from low quality 3D content, by storing
learned neural features in a texture, which are then sampled and ras-
terized into an o�-screen bu�er. The �nal images are then produced
using a jointly-optimized neural renderer.
The idea of using neural latent grids to store spatially-varying

appearance has been adopted by computer vision research, as well
as computer graphics, where it has been used to represent complex
materials and their mipmap chains [36]. Most of these works focus
on modeling materials and their appearance, using representations
that can be signi�cantly larger than traditional 8-bit textures. While
our study focuses on practicality and cost-e�ciency in traditional
rendering, it is important to note that our algorithm is also appli-
cable to neural rendering, where it could greatly reduce memory
consumption.
Neural networks have emerged as a popular alternative to dis-

crete grids for signal representation. The predominant architec-
tures are coordinate networks [46], which o�er a fully di�erentiable
and smooth representation, advantageous for 3D computer vision
reconstruction tasks. Coordinate networks frequently employ po-

sitional encoding, a concept originating from language modeling
literature [79]. Instead of passing the input coordinates p directly
to the MLP, this method encodes it as a vector of sin(2ℎcp) and
cos(2ℎcp) terms, where ℎ represents an octave. Fourier encoding
has been shown to overcome the low-frequency bias of MLPs [69].
For improved computational e�ciency, trigonometric functions can
be replaced by triangle waves [48]. As an alternative to positional en-
coding, trigonometric [64], Gaussian [15], or wavelet [63] activation
functions can be used to increase the bandwidth of each layer. This
property can be used to band limit network parts and interactively
stream only lower frequencies of the encoded content [38].
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Fig. 3. Singular value distribution representing cross-channel correlation

in 20 texture sets selected from diverse materials. The sharp fallo� in the

singular values indicates a high degree of correlation across channels.

Storage size is often overlooked in neural representation literature,
with typical coordinate networks requiring more storage to repre-
sent discrete 2D signals than their uncompressed form. For instance,
on the task of image �tting, the original work on positional-encoded
coordinate networks [69] uses a network with 327K parameters to
represent 197K scalar values (a 256 × 256 RGB image). Similarly,
work on periodic activation functions [64] uses 329K parameters to
represent 786K scalar values (a 512 × 512 RGB image). For this rep-
resentation size, both approaches report only a PSNR under 30 dB.
Improving the storage e�ciency of these coordinate-based networks
was a key motivation for subsequent work that used grid-based neu-
ral representations compressed using vector quantization [68] or
hash tables [47].

Finally, previous work on neural radiance caches [48] has shown
that it is possible to e�ciently embed small neural networks inside
a renderer, enabling training and inference in real time, orders of
magnitude faster than traditional deep learning frameworks. We
build on this work and optimize it further.

3 MOTIVATION

Lossy image compression techniques typically exploit both spa-
tial and cross-channel correlations and, subsequently, quantize or
eliminate weakly correlated information. For example, the BC1 com-
pression format maps all RGB color triplets in a 4 × 4 texel tile to
a single line in RGB space, assuming perfect correlation between
all channels. Other BCx formats use similar assumptions but re-
lax some constraints, such as the allowed number of lines inside
a block. Block compression formats, however, can only compress
textures with up to four channels, while modern renderers typically
use several material properties, including di�use color, normals
maps, height maps, ambient occlusion, glossiness, roughness, and
other BRDF information. These properties are typically stored as
multiple textures within a group, which we refer to as a texture

set (Figure 2). As seen in Figure 3, there is signi�cant correlation
across the channels of di�erent textures in a texture set. This can
be attributed to both the physical properties of real-world materials
(specularity and albedo are inversely correlated), geometric prop-
erties (displacement, normal maps, edges), as well as the material
authoring process, where an artist may layer, mask, and combine
multiple channels together [51].

Earlier work [84, 85] has noted this correlation, applying it to
dimensionality reduction of material inputs. Besides correlations
across pixels and channels, Zontak et al. [89] have also noted re-
dundancies across multiple scales. In this paper, we derive a neural
compression scheme that builds on these observations and exploits
redundancies spatially, across mip levels, and between all channels
of a texture set.

4 NEURAL MATERIAL TEXTURE COMPRESSION

We represent the texture set as a tensor with dimensionsF×ℎ×2 and
our model compresses the tensor without making any assumptions
about the channel count or the speci�c semantics of each channel.
For example, the normals or di�use albedo could be mapped to any
channels without a�ecting compression. This is possible because we
learn the compressed representation for each material individually,
e�ectively specializing it for its unique semantics. The only assump-
tion we make is that each texture in a texture set has the same width
and height. Some materials can have BRDF properties not present
in other ones, for instance, subsurface scattering color or thickness.
While an alternative approach using a pre-trained global encoder
could potentially achieve faster compression, it would also require
imposing globally pre-assigned semantics for each channel, which
can be impractical for a large set of diverse materials.

Figure 4 illustrates the decoding process, progressing from a com-
pressed representation, on the left, to a decompressed texel, on the
right. Our compressed representation is a pyramid of quantized
features levels, which are typically at a lower resolution compared
to the reference texture. To achieve decompression of a single texel,
feature vectors are sampled from a feature level and subsequently
decoded to generate all channels within the texture set. To facilitate
greater feature decorrelation, the decoder is modeled as a non-linear
transform [6], utilizing a multilayer perceptron (MLP) as a universal
approximator [28]. This MLP is shared across all the mipmap (mip)
levels, which enables joint learning of the compressed representa-
tion and the MLP’s weights, using an autodecoder framework [57].
Speci�cally, the compressed representation is directly optimized
through quantization-aware training and backpropagation through
the decoder, as opposed to using an encoder.
The following sections describe each stage of decompression in

detail. Later, in Section 6, we show how those assumptions hold
over a diverse set of materials and textures from di�erent datasets,
di�erent formats, and using di�erent material semantics.

4.1 Feature Pyramid

As shown in Figure 4 (a), our compressed representation is a pyra-
mid of multiple feature levels � 9 , with each level, 9 , comprising a

pair of 2D grids, � 9
0 and �

9
1 . The grids’ cells store feature vectors

of quantized latent values, which are utilized to predict multiple
mip levels. This sharing of features across two or more mip levels
lowers the storage cost of a traditional mipmap chain from 33% to
∼ 6.7% or less. Furthermore, within a feature level, grid �0 is at
a higher resolution, which helps preserve high-frequency details,
while �1 is at a lower resolution, improving the reconstruction of
low- frequency content, such as smooth gradients.
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Fig. 4. Overview of our method. a) Our compressed representation comprises multiple feature levels, each having two feature grids; a high resolution grid

�0 and a low resolution grid�1 (Section 4.1). The solid circles represent the grid cells accessed for a target texel (in red). b) During training, we simulate

quantization through addition of noise and clipping (Section 4.2). c) During inference and training, we sample the four neighboring feature vectors (orange

circles) from the grid�0 (Section 4.3.1) and bilinearly interpolate features from�1 (hollow gray circle), concatenating them with local positional encoding

(Section 4.3.2) and a normalized level-of-detail (LOD) value for the target mip level. d) Finally, we use a neural network (Section 4.4) to decode the mip level (e).

Table 1 illustrates the feature levels and grid resolutions for a
1024 × 1024 texture set. The resolution of the grids is signi�cantly
lower than the texture resolution, resulting in a highly compressed
representation of the entire mip chain. Typically, a feature level
represents two mip levels, with some exceptions; the �rst feature
level must represent all higher resolution mips (levels 0 to 3), and
the last feature level represents the bottom three mip levels, as it
cannot be further downsampled.

4.2 Simulated�antization

Since we do not use entropy coding, we enforce a �xed quantization
rate for all latent values in a feature grid and only optimize for
image distortion. We simulate quantization errors along the lines
of previous neural image compression techniques [5] by adding

uniform noise in the range
(
−
&:

2 ,
&:

2

)
to the features, where &: is

the range of a quantization bin on grid : . To limit the number of
quantization levels, we clamp features to the quantization range after
updating them in the backward pass. This ensures that both gradient
computations and feature updates are w.r.t. values strictly within
the quantization range. We observed that this approach produces
better results than clamping features in the forward pass, where the
learned features can drift outside the desired quantization range.

Table 1. Compressed representation of a mip chain through feature levels

and low resolution grids for a 1024 × 1024 texture set.

Feature level � 9 �
9
0 grid resolution �

9
1 grid resolution Predicted mip levels

0 256×256 128×128 0,1,2,3
1 64×64 32×32 4,5
2 16×16 8×8 6,7
3 4×4 2×2 8,9,10

For each feature grid �
9

:
, we use an asymmetric quantization

range of
[
−
#:−1

2 &: ,
#:

2 &:

]
, where #: = 2�: is the desired number

of quantization levels. This quantizes a zero value with no errror
by aligning it with the center of a quantization bin [32]. In turn,
this produces better results especially when we quantize to four
levels or less. We set &: to 1

#:
and therefore #: is the only value

provided during training. Toward the end of the training process, we
stop adding noise to simulate quantization and explicitly quantize
the feature values. The feature values are frozen for the rest of
the training. Then, we continue to optimize the network weights
for 5% more steps, adapting them to the discrete-valued grids. We
also include a comparison between scalar quantization and vector
quantization [78] in our supplementary material (Appendix E).

4.3 Sampling and Concatenation

In this section, we describe the �rst stage of decompression, which
samples the grids of a feature level and prepares the input to the
MLP, as shown in Figure 4 (c). In this stage, we �rst select a feature
level based on the desired level of detail (LOD) (Table 1), and then
resample both the grids in the feature level to the target resolution.
In the next section, we describe how grids are resampled by inter-
polating the features at the target texel location. Following this, we
describe our positional encoding scheme that aids in interpolation
and preserving high-frequency details.

4.3.1 Feature Interpolation. Features may be upsampled or down-
sampled depending on the feature level and the target LOD. How-
ever, upsampling the �rst feature level � 0 alone presents the main
challenge for reconstruction quality, as it is typically at a much
lower resolution than the input texture. To a large extent, we rely
on the lower resolution of the grids for compression.
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Fig. 5. Positional encoding tiles of 8 × 8 texels. A single texel is represented

by 6+6 scalars, each encoding the horizontal and vertical texel position

inside the tile. The last value is constant in both the horizontal and vertical

encoding.

To achieve real-time decompression performance, we balance
complexity against reconstruction quality by using two di�erent
approaches for resampling the grids. We use a learned interpolation
approach for the higher resolution grid�0 and bilinear interpolation
for the lower resolution grid �1. In the case of learned interpola-
tion, we concatenate four neighboring feature vectors and rely on
phase information from the positional encoding (Section 4.3.2) to
reconstruct high-frequency details. Concatenation, as opposed to
summation of weighted features, allows the following MLP layers to
combine features di�erently depending on the texel location. How-
ever, the learned interpolation also increases the cost of the input
layer of the network. The bilinear interpolation of the low resolution
grid was chosen to limit this. We observed that the smooth output
of bilinear interpolation can compliment learned interpolation well
by suppressing banding artifacts resulting from heavily quantized
features.

4.3.2 Tiled Positional Encoding. To improve the �delity of high-
frequency details, we condition our decoder on positional encod-

ing [46, 79]. We use a more computationally e�cient variant of the
encoding [48], which is based on triangular waves, and observe no
quality loss.
Our architecture is not fully coordinate-based since we also use

features stored in low-resolution grids. Therefore, any low-frequency
information can be directly represented by the features and we only
need positional encoding to represent frequencies higher than the
Nyquist limit of the grids. The number of octaves for the encoding
is log2 8, as 8 is the maximum upsampling factor we encounter, i.e.,
when upsampling grid �1 to a target LOD of 0. Consequently, the
encoding is a tiled pattern that repeats every 8 × 8 texels, as shown
in Figure 5.

Fig. 6. With a low-bitrate model, the choice of loss function can improve

color fidelity or preservation of high-frequency details but typically not both.

Le�: Original. Middle: L2. Right: Linear combination of L2 and 1 − SSIM.

Textures retrieved from https://ambientcg.com.

4.4 Network

Our network is a simple multi-layer perceptron with two hidden
layers, each of size 64 channels. The size of our input is given by
4�0 +�1 + 12 + 1, where �: is the size of the feature vector in grid
�: . Note that we use 4× more features from grid �0 for learned
interpolation, 12 values of positional encoding and a LOD value.
We do not use any activation function on the output of the last

layer. We experimeted with several di�erent activation functions for
the three remaining layers and observed best results with GELU [26].
To reduce the computation overhead of GELU functions, we derived
an approximation denoted “hardGELU”, which is similar to hard
Swish [29]. Our variant is given by

hardGELU(G) =




0, if G < − 3
2 ,

G, if G >
3
2 ,

G
3 (G + 3

2 ), otherwise.

4.5 Optimization Procedure and Loss Function

We jointly optimize the feature pyramid and the decoder, using
gradient descent with the ADAM [34] optimizer. Unless stated oth-
erwise, our model is trained for 250k iterations. Our method can
use and minimize an arbitrary image loss function.

To optimize our compressed representation, we explored several
di�erent loss functions, including SSIM [81], a version of VGG loss
that supports texture sets [12], adversarial as well as L1 and L2
losses, and combinations thereof. In general, we found that the loss
function presented a compromise betweenmaintaining color �delity
and preserving high-frequency details – though we were unable
to �nd a loss function that did not show weaknesses in one or the
other. Figure 6 illustrates this behavior, where using only L2 results
in loss of high-frequency detail, while adding SSIM improves on
this but discolors the image. The choice of objective function can
thus be adapted based on the use case and when the application
only requires one of the two quality properties to be preserved. We
found the L2 loss to be a reasonable compromise. As it also trains
robustly and is the simplest and computationally fastest choice, we
use it throughout this paper.
We hypothesize that the observed behavior is a consequence of

information theoretical limitations, i.e., that we cannot preserve both
high-frequency detail and color �delity at this low bitrate. Further
investigation of this hypothesis is left for future work. In addition,
we conducted initial experiments to explore potential bene�ts of
using di�erent specialized objective functions for di�erent texture
types. While these experiments did not indicate advantages of such
an approach, we believe it to be an interesting area of future research.

5 IMPLEMENTATION

As outlined in in Section 4, we decompress textures at a given texel
by sampling the corresponding latent values from a feature pyramid
and decoding them using a small MLP network. Our compressed
representation, as mentioned previously, is trained speci�cally for
each texture set. Specializing the compressed representation for
each material allows for using smaller decoder networks , resulting
in fast optimization (compression) and real-time decompression.
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Fig. 7. Bilinear and stochastic filtering.

5.1 Compression

Similar to the approach used by Müller et al. for training autode-
coders [47], we achieve practical compression speeds by using half-
precision tensor core operations in a custom optimization program
written in CUDA.We fuse all of the network layers in a single kernel,
together with feature grids sampling, loss computations, and the
entire backward pass. This allows us to store all network activations
in registers, thus eliminating writes to shared or o�-chip memory
for intermediate data.
We process batches of eight randomly sampled 256 × 256 texel

crops, selected from the same level of detail. For each batch, we ran-
domly choose a level of detail proportionally to the mip level’s area
by sampling from an exponential distribution: LOD = ⌊− log4 - ⌋,
where - ∼ * (0, 1) . To mitigate undersampling of low-resolution
mip levels, 5% of the batches sample their LOD from a uniform dis-
tribution de�ned over entire range of the mip chain. We use a high
initial learning rate of 0.01 for the latent grids, and a lower value
of 0.005 for the network weights and apply cosine annealing [42],
lowering the learning rate to 0 at the end of training.

5.2 Decompression

Inlining the network with the material shader presents a few chal-
lenges as matrix-multiplication hardware such as tensor cores op-
erate in a SIMD-cooperative manner, where the matrix storage is
interleaved across the SIMD lanes [54, 86]. Typically, network inputs
are copied into a matrix by writing them to group-shared memory
and then loading them into registers using specialized matrix load
intrinsics. However, access to shared memory is not available inside
ray tracing shaders. Therefore, we interleave the network inputs
in-registers using SIMD-wide shu�e intrinsics.

We used the Slang shading language [25] to implement our fused
shader along with a modi�ed Direct3D [44] compiler to generate
NVVM [52] calls for matrix operations and shu�e intrinsics, which
are currently not supported by Direct3D. These intrinsics are instead
directly processed by the GPU driver. Although our implementa-
tion is based on Direct3D, it can be reproduced in Vulkan [23]
without any compiler modi�cations, where accelerated matrix oper-
ations and SIMD-wide shu�es are supported through public vendor
extensions. The NV_cooperative_matrix extension [22] provides
access to matrix elements assigned to each SIMD lane. The mapping
of these per-lane elements to the rows and columns of a matrix
for NVIDIA tensor cores is described in the PTX ISA [54]. The
KHR_shader_subgroup extension [21] enables shu�ing of values
across SIMD lanes in order to assign user variables to the rows
and columns of the matrix and vice versa. These extensions are not
restricted to any shader types, including ray tracing shaders.

Fig. 8. Filtering across the boundaries of a highly specular material. a)

Nearest-neighbor filtering. b) Trilinear filtering. c) Single frame of stochastic

filtering. d) Resolved stochastic temporal filtering. Trilinear texture filtering

causes specular lighting artifacts as the high specularity interpolates outside

the glossy material. Textures retrieved from https://ambientcg.com.

5.2.1 SIMD Divergence. In this work, we have only evaluated per-
formance for scenes with a single compressed texture-set. However,
SIMD divergence presents a challenge as matrix acceleration re-
quires uniform network weights across all SIMD lanes. This cannot
be guaranteed since we use a separately trained network for each
material texture-set. For example, rays corresponding to di�erent
SIMD lanes may intersect di�erent materials.
In such scenarios, matrix acceleration can be enabled by iterat-

ing the network evaluation over all unique texture-sets in a SIMD
group. The pseudocode in Appendix A describes divergence han-
dling. SIMD divergence can signi�cantly impact performance and
techniques like SER [53] and TSU [31] might be needed to improve
SIMD occupancy. A programming model and compiler for inline
networks that abstracts away the complexity of divergence handling
remains an interesting problem and we leave this for future work.

5.3 Filtering

Our method supports mipmapping for discrete levels of mini�ca-
tion (Section 4.1), similar to BCx compression methods. For the best
quality and compression ratios, our compression approach relies
on over�tting the network only at the discrete texel locations in
the original texture. However, this does not guarantee smooth re-
construction in between these discrete texel locations and mipmap
levels. Therefore, we cannot rely on hardware acceleration for tri-
linear �ltering and we implement it in software on the GPU. The
software implementation decompresses and combines four texels for
bilinear �ltering, and eight texels for trilinear �ltering, signi�cantly
increasing decompression cost.
In order to decouple the decompression cost from �ltering, we

propose a simple alternative to trilinear �ltering based on stochastic
sampling [17, 19, 27], which we call stochastic �ltering. We add ran-
dom noise to the (D, E) position, followed by nearest neighbor sam-
pling. We can achieve di�erent types of texture �ltering by changing
the distribution of the noise, as shown in Figure 7. For example, a
uniform distribution in the range (−0.5, 0.5) of one texel produces
bilinear �ltering, and a normal distribution produces Gaussian �l-
tering. In addition to jittering the (D, E) coordinates, we also jitter
the LOD to enable a smooth transition between mip levels.

Stochastic �ltering typically increases the amount of noise in the
rendered image, but we observed that modern post-process recon-
struction techniques [4, 33, 39] can e�ectively suppress this noise.
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Fig. 9. �antitative results. Vertical axis: PSNR scores of di�erent methods. The horizontal axis is bits per pixel per channel storage cost. The size of each

ellipse corresponds to the variation in PSNR and compressed material size due to di�erent texture channel counts present in the data set. Table 3 contains the

explicit numbers for the markers in this figure, in addition to corresponding SSIM and LPIPS values.

Figure 8 shows a comparison of trilinear �ltering and stochastic
�ltering with reconstruction using DLSS [39]. We note that, while
traditional texture �ltering �lters the input material properties, sto-
chastic �ltering �lters the shading output, which produces more
accurate results, as shown in Figure 8.

6 RESULTS

Our neural compression method for material textures (NTC) is �ex-
ible, allowing for adjustments in feature grids resolution, channel
counts, and bit depths to optimize the trade-o� between compression
quality, storage, and inference performance. We use the four com-
pression pro�les listed in Table 2, each targeting a di�erent number
of bits per-pixel per-channel (BPPC), for our comparisons. Table 2
also shows the total storage cost including network weights and
feature levels. The cost of the network weights is roughly constant
across all pro�les, and does not change with the texture resolution.
Please refer to Appendix F in the supplementary material for more
details of the NTC storage cost.

6.1 Evaluation Data Set

To evaluate di�erent compression techniques, we selected 20 diverse
materials with texture sets varying in content, frequency character-
istics, resolution, and channel counts. The content includes natural
textures, human-made objects, character textures, and a synthetic
gradient, with attributes such as high-frequency repeating patterns,
noisy, and smooth. The texture sets have resolutions varying from
2048 × 2048 to 8192 × 8192 texels and channel counts ranging from
3 to 12. More details about the evaluation data set can be found in
our supplementary material (Appendix J).

6.2 Compared Methods

Our method can replace GPU texture compression techniques, such
as BC [45] and ASTC [55]. It is a common industry practice to use
di�erent BC variants for di�erent material texture types [16], but
there is no single standard. As such, we propose two compression
pro�les for the evaluation of BC, namely “BC medium” and “BC
high.” The BC medium pro�le uses BC1 for di�use and other packed
multi-channel textures, BC7 for normals, and BC4 for any remaining
single-channel textures. The BC high pro�le, on the other hand, uses
BC7 for three-channel textures and BC4 for one-channel textures.

Our method is not directly comparable with compression formats
using entropy encoding, as NTC is designed to support real-time
random access. However, to provide a frame of reference for stor-
age and quality at lower bitrates, we also evaluate methods using
entropy encoding, namely, the texture meta-compression algorithm
Basis Universal [30] and the recently standardized, high-quality im-
age compression formats AVIF and JPEG XL. We have not included
recent neural image compression techniques in our analysis as they
do not produce signi�cantly better quantitative results compared
to traditional methods on metrics like MSE, despite typically o�er-
ing better perceptual characteristics [14]. In addition, they do not
support random access, which is a key property for GPU texture
accesses. Details of the compression settings used for our evaluation
are included in our supplementary material (Appendix D).

Table 2. NTC profiles with di�erent bits per-pixel per-channel (BPPC) and

total storage costs calculated using a 4096× 4096× 9 texture set as reference

BPPC Pro�le �0
0 grid resolution �

9
0 grid channels �

9
1 grid channels Total (MB)

NTC 0.2 1024×1024 8×2b 12×4b 3.52
NTC 0.5 1024×1024 12×4b 20×4b 8.53
NTC 1.0 2048×2048 12×2b 10×4b 17.03
NTC 2.25 2048×2048 16×4b 12×4b 38.03
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Table 3. Average PSNR, 1 − SSIM, and LPIPS values over the evaluation data set for the methods used in our comparison. The methods are grouped based on

their storage requirements. Algorithms marked in gray do not support random access. “BC M.” is short for “BC medium” and “BC H.” is for “BC high.”

Low (∼ 0.2 BPPC) Medium-low (∼ 0.5 BPPC) Medium (∼ 1.0 BPPC) Medium-high (∼ 1.5 - 3.0 BPPC) High (∼ 4.0 BPPC)

AVIF NTC JPEG XL ASTC 12 × 12 AVIF NTC ASTC 10 × 10 JPEG XL AVIF NTC JPEG XL AVIF Basis JPEG XL NTC BC M. BC H.

BPPC (mean) 0.20 0.23 0.27 0.43 0.49 0.56 0.61 0.66 1.03 1.13 1.16 2.02 2.24 2.33 2.51 3.12 3.94

PSNR (↑) 29.49 32.71 27.87 28.90 33.10 36.12 30.08 30.74 34.01 39.92 33.74 43.44 37.27 44.86 45.30 37.38 40.23
1 - SSIM (↓) 0.1138 0.0633 0.1377 0.1034 0.0586 0.0375 0.0788 0.0778 0.0380 0.0183 0.0451 0.0068 0.0219 0.0030 0.0076 0.0211 0.0099

LPIPS (↓) 0.1051 0.0660 0.1001 0.0722 0.0302 0.0364 0.0460 0.0272 0.0108 0.0176 0.0087 0.0013 0.0114 0.0003 0.0057 0.0133 0.0024

21.1 dB (0.2) 25 dB (0.11) 34.81 dB (0.06) 31.84 dB (0.058)

BC Medium  3.36 MB NTC 0.2  3.5 MB NTC 1.0  17 MB BC Medium   48 MB Reference

26.92 dB 34.43 dB34.58 dB21.86 dBPSNR↑

PSNR↑ (FLIP↓)

Fig. 10. Iso-storage and iso-quality comparison showing PSNR and FLIP scores for the di�use and normal map textures in the Paving Stones texture set,

retrieved from https://ambientcg.com. For iso-storage comparisons, we use two higher mip levels for the BCx textures to match the storage size of NTC.

6.3 �antitative Results

Figure 9 presents an overview of our compression results, showing
PSNR values for di�erent compression methods, across a range of
BPPC rates as well as the variations across texture sets. The PSNR
values are computed over the entire texture set and all mip levels
down to resolution 4×4 (see Appendices I and J in our supplementary
material). The plot shows that our method signi�cantly outperforms
GPU texture compression at high bitrates and surpasses advanced
compression methods at lower rates of less than 1.5 BPPC. We
attribute these improvements to signi�cant cross-channel and cross-
mip-level correlations, not exploited in prior works.
Our compression method can signi�cantly reduce texture sizes,

which can be leveraged in di�erent ways. For example, the NTC 0.5
pro�le can be used to achieve iso-quality results as the BC medium
pro�le, at 1/5th of the storage cost. Alternatively, the NTC 0.2 pro�le
can be used to store two additional higher mip levels at a PSNR that
is slightly lower but still better quality than AVIF and JPEG XL. This
enables signi�cantly higher detail, as demonstrated in Figure 1.

Although our compression is not optimized for perceptual quality,
we also include SSIM [81] and LPIPS [88] metrics in Table 3 for com-
parison. Even with these perceptual metrics, NTC provides better
results than all other compression methods at low and medium-low
rates, only trailing recent high-quality image compression tech-
niques at higher rates. Perceptual quality of our method can be
further improved by optimizing for perceptual metrics.

The quantitative results with our compression technique are also
consistent across di�erent mip levels and di�erent material tex-
tures. We include per-mip and per-texture-type PSNR results in our
supplementary material (Appendix C).

6.4 �alitative Results

Previous work has noted that the PSNR metric is not su�cient for
image quality comparison and, furthermore, that objective distortion
metrics are at an inherent trade-o� with perceptual quality [8]. Un-
fortunately, there is no single metric that would perfectly correlate
with human preferences, which might vary for di�erent applica-
tions. We use qualitative, human analysis to evaluate image quality
in addition to the PSNR metric. We also include FLIP [3] values,
which are better aligned with perceptual quality.

6.4.1 Texture �ality. A key motivation for our work was to de-
termine the extent to which we could preserve image quality while
reducing the storage. Figure 10 provides an overview of this by
comparing the BC medium pro�le with NTC at di�erent rates. We
present an approximately iso-quality comparison using the medium
rate NTC 1.0 pro�le and iso-storage comparison using the low rate
using NTC 0.2 pro�le. To evaluate BC medium at a low BPPC rate,
we excluded the two largest mip levels to achieve a comparable stor-
age size to NTC 0.2. For both comparisons, we used the 4096×4096
resolution Paving Stones texture set, which is one of the most chal-
lenging in our evaluation.
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Fig. 11. PSNR vs. training time for a 4096×4096 texture set with 9 channels.

Our custom training implementation is an order of magnitude faster than

PyTorch, compressing the texture set in a few minutes.

In the iso-quality comparison, we see that the BC medium pro�le
consumes 48 MB of storage, while the NTC 1.0 pro�le exceeds its
quality with just 1/3rd of the size. We also see that the NTC 0.2
pro�le only consumes 3.5 MB of storage and has a signi�cantly
higher quality that appears closer to the reference than the BC
medium pro�le at a comparable size.
Figure 13 presents a more extensive iso-storage comparison for

the NTC 0.2. We selected the 8192 × 8192, painted concrete texture
set for this comparison as it is close to the mean PSNR score re-
ported in Table 3. Overall, our method produces results that are
signi�cantly better than BCx compression with the same storage.
We also observe better normal map quality compared to advanced
image compression techniques like AVIF and JPEG XL, while the
di�use texture is slightly blurrier. We provide a more detailed qual-
itative analysis of this texture set in our supplementary material
(Appendix D) and cover a set of failure cases in Section 7.2.

6.4.2 Rendered�ality. Since our method is designed for compress-
ing material textures used in rendering, we demonstrate the results
with end-to-end rendered images in Figure 1. The �gure compares
the NTC 0.2 pro�le, which uses 3.8 MB for the metal texture set, to
“BC high” with two mip levels removed and still using 39% more
storage. As depicted in the insets, the quality of the NTC 0.2 pro�le
is superior, which is also indicated by the better PSNR and FLIP
numbers. Our supplementary material includes additional exam-
ples, including a closed book and an open book with text, to further
demonstrate the e�ectiveness of our method.

6.4.3 Filtering �ality. In the supplementary video, we showcase
the quality of stochastic temporal �ltering in motion. We use DLSS
for high-quality spatiotemporal reconstruction [39] as described
in Section 5.3. The use of temporal reconstruction techniques may
exhibit �ickering or ghosting in certain scenarios. Our experiments
reveal minor specular �ickering, but no ghosting, under fast motion.
A higher quality jitter sequence [83], or reconstruction techniques
optimized for stochastic �ltering, could further improve quality.

Table 4. Decompression performance for a 4k material texture set (Paving

Stones). Performance is similar across all texture sets for a given profile.

BC High NTC 0.2 NTC 0.5 NTC 1.0 NTC 2.25

0.49 ms 1.15 ms 1.46 ms 1.33 ms 1.92 ms

6.5 Performance

In this section, we discuss compression performance as well as
decompression performance in a simple renderer.

6.5.1 Compression. As described in Section 5.1, we use a custom
CUDA-implementation to optimize our compressed representation.
Figure 11 shows our compression times for a single 4k material tex-
ture set with 9 channels, compared to a reference implementation in
PyTorch [58]. Both implementations were evaluated on an NVIDIA
RTX 4090 GPU for two di�erent compression pro�les.
Our custom implementation is approximately 10× faster than

PyTorch, which is crucial for achieving practical compression times.
We can generate a preview quality result in just under one minute
for both con�gurations, with a di�erence of less than 1.5 dB com-
pared to the maximum length of optimization (320k steps) in the
0.2 BPPC case. Moreover, for compression with the 1.0 BPPC pro�le,
our implementation uses less than 2 GB of GPU memory, whereas
PyTorch requires close to 18 GB, which is infeasible for many GPUs.
Traditional BCx compressors vary in speed, ranging from frac-

tions of a second to tens of minutes to compress a single 4096×4096

texture [60], depending on quality settings. The median compres-
sion time for BC7 textures is a few seconds, while it is a fraction of
a second for BC1 textures. This makes our method approximately
an order of magnitude slower than a median BC7 compressor, but
still faster than the slowest compression pro�les.

6.5.2 Decompression. We evaluate real-time performance of our
method by rendering a full-screen quad at 3840 × 2160 resolution
textured with the Paving Stone set, which has 8 4k channels: di�use
albedo, normals, roughness, and ambient occlusion. The quad is lit
by a directional light and shaded using a physically-based BRDF
model [10] based on the Trowbridge–Reitz (GGX) microfacet dis-
tribution [76]. Results in Table 4 indicate that rendering with NTC
via stochastic �ltering (see Section 5.3) costs between 1.15 ms and
1.92 ms on a NVIDIA RTX 4090, while the cost decreases to 0.49 ms
with traditional trilinear �ltered BC7 textures. The performance is
similar for all materials in our evaluation set, and independent of the
output channel count, ranging from three to twelve. On the other
hand, the varying number of features used across di�erent compres-
sion pro�les impacts the NTC performance. A higher number of
features increases the sampling cost and the size of the network’s
�rst, input layer. We also implemented trilinear �ltering for NTC
by decompressing and �ltering together eight texels and observed
an 8× slowdown.
Although NTC is more expensive than traditional hardware-

accelerated texture �ltering, our results demonstrate that ourmethod
achieves high performance and is practical for use in real-time ren-
dering. Furthermore, when rendering a complex scene in a fully-
featured renderer, we expect the cost of our method to be partially
hidden by the execution of concurrent work (e.g., ray tracing) thanks
to the GPU latency hiding capabilities. The potential for latency
hiding depends on various factors, such as hardware architecture,
the presence of dedicated matrix-multiplication units that are oth-
erwise under-utilized, cache sizes, and register usage. We leave
investigating this for future work.
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Table 5. Texture set quality as a function of material channel count.

channels 1 2 3 4 5 6 7 8 9

PSNR 36.22 29.97 29.34 28.96 29.57 28.68 28.22 28.43 28.71
BPPC 2.19 1.1 0.73 0.55 0.44 0.36 0.31 0.27 0.244

7 DISCUSSION

In this section, we discuss various aspects of our compression. First,
we verify the original motivation for our work by analyzing com-
pression across channels and mipmap levels. Following this, we
present various limitations of our approach, including failure cases.
Finally, we discuss future work and potential applications.

7.1 Compression Across Texture Channels and Mip Levels

Texture Channels. Table 5 shows results from our compression on
a single texture set, with channel counts from 1 to 9. We selected
the Paving Stones set as it is one of the most challenging texture set
in our evaluation set. We keep the compressed representation size
�xed, expecting to observe a signi�cant reduction in PSNR in case
of uncorrelated properties, due to entropy limitations imposed by
information theory. Above two channels, we observe roughly con-
stant quality, indicating the presence of signi�cant cross-channel
correlations, and suggesting that our model is able to e�ectively
learn and exploit them. The quality is not monotonic with respect
to the channel count, because we report averaged PSNR across all
channels. Some channels are more challenging to compress than
others, which leads to a PSNR increase when the introduced addi-
tional channel is easier to compress and more highly correlated with
the previous ones. Overall, we achieve a similar low error across a
large number of channels.
Mipmap Levels. Since our method shares a single decoder for all

mipmap levels, we also analyzed the impact of compressing only
mipmap level 0 with the 0.2 BPPC pro�le, and observed that the
PSNR score was within 0.5 dB. This indicates a high level of feature
reuse across mip levels.

7.2 Limitations

Failure Cases. Every lossy image or texture compression algorithm
produces visual degradation at low bitrates. Typically, our method
only results in mild blurring and color shifts. However, there are a
few objectionable failure cases, which are presented in Figure 12.
We observed that two of the failure cases (c and d) result from poten-
tial material authoring errors, namely misaligned texture channels
and banding present in only a single channel, respectively, in the
reference uncompressed textures. Our method relies heavily on
channel correlation, and can be very sensitive to any alignment
errors. We include a more detailed discussion of these failure cases
in our supplementary material (Appendix D).
Uniform Resolution. Our method relies on storing all textures

within a single compressed material at the same resolution. It is
common practice for video game artists to store less visually impor-
tant textures at smaller resolutions. Our method can assign di�erent
levels of importance to textures by weighting its contribution to the
loss, but otherwise requires all the single material input textures to
be resampled to the same resolution before compression.

Reference

NTC 0.2

a b c d

Fig. 12. Failure cases with our method. From le� to right, a) removing fine

details and noise, b) strong color shi�, c) leaking of features between the

texture channels, and d) removal of sharp staircase-like pa�erns.

Distance-Dependent Bene�ts. Our method operates at di�erent
compression rate pro�les, but one of the more interesting con�g-
urations is the one with lowest bitrate (NTC 0.2). It demonstrates
signi�cantly more detail than BCx by enabling two higher resolution
mipmap levels with the same storage. However, this increase in de-
tail is not applicable at larger camera distances, when the additional
mipmaps are no longer used.
Bene�ts Proportional to the Channel Count. Our method shows

a high compression e�cacy for materials with multiple channels.
However, for lower channel counts, e.g., just RGB textures, our
storage cost is similar at iso-quality (Table 5). This means that our
method would lose some of its advantage if it was to be applied to
single textures or regular images.

Decompression of All Channels. Our method always decompresses
all material channels. Only the last output layer can be simpli�ed
for extraction of fewer textures, and it does not signi�cantly reduce
cost. This can be a limitation if di�erent parts of texture set are used
in di�erent rendering contexts, for example, a partial depth prepass
that only requires opacity maps or tessellation that only accesses
a displacement map. In such cases, it might be a better choice to
compress these textures separately using traditional methods.
Filtering Cost. Unrolled �ltering is computationally expensive,

and stochastic �ltering can introduce �ickering by increasing the
burden on spatiotemporal reconstruction [87]. Literature shows that
it is possible to create �lterable neural representations directly [36],
but we leave this for the future work.
Anisotropic Filtering. GPU texture samplers support anisotropic

�ltering, which improves the appearance of objects in the distance.
However, a software implementation of anisotropic �ltering with
NTC would be prohibitively expensive for real-time rendering as it
requires a large number of taps, each of which needs to be decoded.

7.3 Future Work

More Texture Types. Traditional GPU compression can support many
types of textures, such as cube maps, 3D textures, and HDR textures.
We have not investigated the feasibility of application to those, and
leave it for future work.

Appearance-Based Training. Recently emerging inverse and neural
rendering techniques allow to use an appearance-based loss function.
Using the rendering error to drive the texture compression instead
of the BRDF property similarity could allow for even more e�cient
content adaptation.
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Inlined Material Evaluation. Our method targets compression of
arbitrary, generic material textures that can be used by an analytical
or a neural renderer. For the latter, there is no need to unpack
materials to an intermediate representation. It is possible to fuse
together decompression and BRDF evaluation into a single MLP.
We leave this for future research.

Generative Textures andMaterials. In our work, we target a faithful
texture compression and preservation of existing detail. It is possible
to expand it further and use generative approaches, where new
plausible detail is generated upon zoom, despite not being present in
the original texture. Using some form of generative super-resolution,
it should be possible to generate multiple �ner additional texture
mipmaps, without ever storing them on disk or in memory.

Further Optimizations. Further improvements to the compression
ratio and inference speed could be achieved through lower precision
intermediate computations.

8 CONCLUSION

We have introduced a novel texture compression algorithm, target-
ing the increasing memory and �delity requirements of modern
computer graphics applications, and new, richer physically-based
shading models that require many properties, commonly stored
in textures. For high-performance texture accesses, it is of utmost
importance to be able to spatially access the textures anywhere at a
small cost, which is often referred to as the random access property.
We have shown that very high compression rates can be achieved
even without sacri�cing local and random access.

By compressing many channels and mipmap levels together, the
quality of our algorithm’s low bitrate results surpasses that of state-
of-the-art industry standards, such as JPEG XL and AVIF that are
substantially more complex methods, without requiring entropy
coding.
By utilizing matrix multiplication intrinsics available in the o�-

the-shelf GPUs, we have shown that decompression of our textures
introduces only a modest timing overhead as compared to simple
BCx algorithms (which executes in custom hardware), possibly
making our method practical in disk- and memory-constrained
graphics applications.

We hope our work will inspire the creation of highly compressed
neural representations for use in other areas of real-time rendering,
as a means of achieving cinematic quality.
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A HANDLING DIVERGENCE

Using matrix acceleration for the neural network requires all SIMD
lanes to be active and network weights to be uniform across the
SIMD lanes. However, in some scenarios like ray tracing, rays from
the same SIMD group may hit di�erent materials or miss geometry
altogether. When querying ray-scene intersections from a compute
shader, users can control the execution mask, ensuring all SIMD
lanes are active during network evaluation. Conversely, in hit or
miss shaders, users lack control over the shader execution mask.
In these cases, the users can query the execution mask and enable
tensor acceleration when all lanes are active, otherwise a fallback
path without tensor acceleration is necessary.
The following example code shows how divergence can be han-

dled inside a hit shader by enabling matrix acceleration when all
lanes are active, and by iterating over unique sets of network pa-
rameter o�sets, which are broadcast across all SIMD lanes to make
them uniform. SIMD occupancy in a complex scene with a large
number of materials can potentially be improved with techniques
like SER [53] and TSU [31]. We leave this evaluation for future work.

Outputs runNetwork(Inputs x, uint paramOffsets) {

// Check if all lanes are active.

if (WaveActiveCountBits(true) == WaveGetLaneCount()) {

uint mask = -1;

uint lane = 0;

// Iterate over unique network parameters in the SIMD group.

for (; mask ;) {

// Broadcast the parameter offset across SIMD lanes.

uint offset = WaveReadLaneAt(paramOffsets, lane);

bool matchingLanes = offset == paramOffsets;

// Evaluate the MLP with matrix acceleration.

Outputs y = MLP(x, offset);

// Store the outputs for matching lanes.

storeOutputs(y, matchingLanes);

// Clear the evaluated lanes.

mask -= WaveActiveBallot(matchingLanes).x;

lane = firstbitlow(mask);

}

} else {

// Fallback without matrix acceleration.

}

}
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Fig. 13. Comparison of di�erent methods at 0.2 BPPC, where we selected to show the texture set for which NTC’s PSNR was closest to its average PSNR

over all texture sets in our evaluation dataset. Recall that neither AVIF nor JPEG XL provide random access to the texture data. Furthermore, to achieve an

approximately iso-storage comparison, mipmap level 0 images for BC high were created by bilinear upsampling of its mipmap level 2. The textures were

retrived from https://polyhaven.com/. Additional examples are available in our supplementary material.
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SUPPLEMENTARY TO RANDOM-ACCESS NEURAL

COMPRESSION OF MATERIAL TEXTURES

B RENDERED QUALITY

In addition to the �rst �gure in the main paper, Figures 14 and 15
show examples of rendered images using high-quality non-com-
pressed textures, textures compressed with our method (using the
lowest BPPC pro�le, NTC 0.2), and textures compressed with BC
high. For the latter, the two highest-resolution mip levels were cre-
ated through bilinear upscaling of the third mip level in order to
obtain an iso-storage comparison to our method. The rendered im-
ages, supported by the error images and values, show that NTC
achieves higher quality rendered images than the iso-storage ver-
sion of BC high. This is especially noticeable in Figure 15, which
also gives an indication that NTC does well on textures with text.

C ADDITIONAL QUANTITATIVE RESULTS

The following two subsections demonstrate how the quality of
NTC’s compressed images changes over the mipmap chain (Sec-
tion C.1) and how it di�ers for various texture types (Section C.2).

C.1 Mipmap �ality

The performance of a compression technique can vary based on the
frequency spectrum of the image and therefore perform di�erently
across mip levels. In Figure 21, we compare the per-mip-level PSNR
scores of NTC 0.2 to the BC high algorithm. Since there is a 16×
di�erence in storage cost between the algorithms, an iso-storage
comparison was conducted, resulting in the omission of the �rst
two mip levels for BC compression. PSNR values with our method
are either comparable to, or higher than BC depending on the mip
level, except for mip levels two and three where NTC shows slightly
worse PSNR scores.

C.2 Di�erent Texture Type Compression �ality

Figure 20 presents the PSNR scores of NTC 0.20, computed on dif-
ferent types of textures in the material texture set, such as di�use,
normals, etc. Given the similarities in data content between certain
texture types, such as ARM and ORM textures, as well as gloss
and specular textures, the results for these pairs were concatenated.
Additionally, texture types that occurred only once in our data set
(see Section J) were excluded. The results indicate that our proposed
method is able to compress di�erent texture types at similar levels
of quality.

D COMPRESSION ARTIFACTS

Every texture compression algorithm degrades quality di�erently.
Particularly visible quality di�erences are called compression arti-

facts andwe present a few typical examples in Figure 16. Block-based
compression methods commonly exhibit visible block artifacts (in-
set a). Methods that rely on heavy quantization tend to exhibit
banding artifacts, as illustrated in insets (b) and (c), and are often
characterized by a visible discoloration towards green or purple
hues, resulting from higher chroma quantization (inset b). These
artifacts are highly perceptible to the human eye, and modern image
compression techniques such as AVIF and JPEG XL, have prioritized
their removal, by producing blurry images instead (inset d).

Since our feature vectors are quantized down to two or four bits
per feature, we speci�cally check for the presence of banding arti-
facts by compressing a synthetic gradient texture and do not observe
noticeable banding artifacts as shown in Figure 19. We attribute this
to the combination of smooth, bilinear interpolation and the higher
frequency learned interpolation (see Sections 4.1 and 4.3).

Figure 13 demonstrates the absence of visually objectionable arti-
facts with our compression method on an average case. In contrast,
we observe the presence of block artifacts on the ARM texture with
BC, especially for mip level 0. AVIF and JPEG XL produce sharper
results than NTC for the di�use texture at mip level 0 but are sig-
ni�cantly blurrier or show some discoloration (JPEG XL) at mip
level 3. This is likely because with these methods, di�erent mip
levels are compressed separately, and their spectral content does
not necessarily reduce proportionally to the resolution. These obser-
vations make a strong case for jointly compressing mip levels as we
do with NTC. Potentially, we could compress AVIF and JPEG XL by
allocating di�erent rates for each mip as well as each texture, while
maintaining the overall storage constant. However, determining
suitable rates can be challenging, particularly as it can be material
speci�c. We do not include comparisons with heterogeneous rates
for this reason, and also because our proposed method does not aim
to compete directly with these image compression techniques.
On average, our method produces results that are a bit blurrier

and sometimes less saturated than the uncompressed reference, but
signi�cantly better than BCx compression. There are, however, some
more objectionable failure cases presented in Figure 12 in the main
paper. In example a) we observe strong distortion of the normal map
of the Ticket Machine texture. The compressed texture is very �at,
mostly sparse, and our optimization procedure fails to reconstruct
subtle details properly. In example b) (albedo of the dragon atlas ma-
terial), we observe discoloration of the texture. Since our approach is
specialized for each material, it can adapt to high frequency content,
such as detailed normal maps, or large color variations. However,
the most challenging materials have both kinds of features. In such
cases, we cannot reconstruct both features equally well given the
low BPPC rates. Typically, we observe that details and normal map
features are favored by our optimization because of their higher
variance, at the cost of other material textures. It is possible to bal-
ance the quality of material textures by adjusting the loss function
(Section 4.5). In scenarios where the material textures have a �xed
set of semantics, we can apply more robust texture speci�c optimiza-
tion, such as a loss in chrominance space, or optimization based on
appearance using di�erentiable renderering. The last two failure
cases (c and d) in Figure 12 correspond to unusual data in the source
materials. In example c) (Pine Forest Ground texture), the normal
maps seem to be misaligned with the albedo maps, producing leak-
age of details between channels. Example d) (metalness map of the
Metal Plates texture) shows strong banding in the source (reference)
texture, present only in a single material channel, and our method
blurs it and correlates with the other material channels.
Figures 17 and 18 show results of texture compression at other

BPPC targets than the ones shown in the main paper. We note that
the texture used to generate Figure 17 (Pine Forest Ground) is half the
size (4096 × 4096) of the texture used to generate Figure 18 (denim)
and the corresponding �gure in the main paper. In Figure 17, we
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BC high. PNSR (↑): 29.1 dB, FLIP (↓): 0.14 NTC. PSNR (↑): 36.0 dB, FLIP (↓): 0.08 reference: not compressed
1024 × 1024 at 4.0 MB. 4096 × 4096 at 3.8 MB. 4096 × 4096 at 171 MB.

Fig. 14. A rendered image of a closed book. The cutouts demonstrate quality using, from le� to right, GPU-based texture formats (BC high) at 1024 × 1024

resolution, our neural texture compression (NTC) , and high-quality reference textures. Note that NTC provides two additional mipmap levels over BC high,

despite it using slightly less memory. The metrics, PSNR and FLIP, were computed for the cutouts and are shown above the respective image. The FLIP error

images, whose brightness is proportional to error, are shown in the upper right corners.

BC high. PNSR (↑): 22.5 dB, FLIP (↓): 0.27 NTC. PSNR (↑): 35.8 dB, FLIP (↓): 0.11 reference: not compressed
1024 × 1024 at 4.0 MB. 4096 × 4096 at 3.8 MB. 4096 × 4096 at 171 MB.

Fig. 15. A rendered image of an open book. See Figure 14’s caption for details.

compare to the medium-low-rate JPEG XL and AVIF con�gurations,
as well as the ASTC compressor (using tiles of size 12 × 12, as
those lead to a mean BPPC closer to 0.50 for the evaluation data set
compared to tiles of size 10 × 10). Figure 18 compares the medium-
bitrate compressors. In the medium-bitrate case, it is di�cult to spot
any di�erences between the compressed textures and the reference.
For the medium-low-rate case, di�erences become visible, most
notably for the higher level mipmap where ASTC 12 × 12 and AVIF
show block artifacts. Here, NTC 0.5 show slight color changes in
the di�use texture. An added challenge of this texture set is that the
normal map is not aligned with the remaining textures.

E COMPARISON TO VECTOR QUANTIZATION

Vector quantization (VQ) is an alternate approach [78] to discretizing
the features, where each cell in a feature grid maps to an entry in

Fig. 16. Examples of typical compression artifacts. a) visible blocks b) pos-

terization and discoloration c) gradient banding d) detail loss and bluriness.

a learned codebook or dictionary. During inference, the feature
vectors can be replaced by a codebook index stored per grid cell.
Unfortunately, the codebook size grows exponentially with the
bitrate, making it prohibitively expensive to learn a codebook for
higher quality levels. Therefore, in order to compare VQ with scalar
quantization (SQ), we limit the size of the dictionary to 256 entries
and assumemultiple dictionaries, such that the overall storage size is
the same.We only apply vector quantization to the higher resolution
grid �0, which is quantized to a smaller number of bits, while �1

always uses scalar quantization with 12 channels and 4 bits.
Table 7 shows a comparison of SQ and VQ for a 4k texture using

our lowest bitrate con�guration (NTC 0.2) where each grid cell in
�0 stores 16 bits. In the case of SQ, we use 8 channels which are
quantized to 2 bits while in the case of VQ, we use two 256-entries
dictionaries, which are referenced by two 8-bit indices respectively.
We compare SQ against two variants of VQ: VQ-8 has 8 channels per
dictionary entry, which is similar to the size of the feature vector
used in SQ, while VQ-16 uses 16 channels per dictionary entry and
a correspondingly larger input layer in the decoder network. The
PSNR for all three quantization options are within 0.5 dB of each
other. VQ-8 has slightly lower PSNR than SQ, while VQ-16 has a
slightly higher PSNR, but with a higher cost for the input layer of the
network. The training time for both VQ-8 and VQ-16 is more than
2.5× that of SQ. Given its simplicity and the signi�cantly shorter
training time, we choose scalar quantization for compression.
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0.5 BPPC
Original Original ASTC 12 × 12 AVIF JPEG XL NTC
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Fig. 17. Comparison of di�erent methods at 0.5 BPPC, where we selected to show a texture set for which NTC’s PSNR was close to its average PSNR over all

texture sets in our 20 texture evaluation dataset. Recall that neither AVIF nor JPEG XL provide random access to the texture data. For visualization purposes,

the di�use images were exposure compensated with factor −1.0 and tone mapped with ACES [50]. Textures retrived from https://kaimoisch.com/free-textures/.
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1.0 BPPC
Original Original AVIF JPEG XL NTC
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Fig. 18. Comparison of di�erent methods at 1.0 BPPC, where we selected to show a texture set for which NTC’s PSNR was close to its average PSNR over all

texture sets in our 20 texture evaluation dataset. Recall that neither AVIF nor JPEG XL provide random access to the texture data. Textures retrived from

https://polyhaven.com/.
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F STORAGE COST

For completeness, we list the storage cost of NTC in Table 6 for our
di�erent compression pro�les and for di�erent texture set resolu-
tions.

G FAILED EXPERIMENTS

In the course of developing our method, we evaluated a few al-
ternative methods for neural compression. We found that these
methods, which are characterized by either increased complexity or
inferior quality, were unsuitable for the task of texture compression
of material textures. We present these �ndings below.
Warped Grids. Prior work [41] proposes to warp volumes with

a non-uniform transformation for better resource utilization com-
pared to a uniform grid. We hypothesized that a similar approach,
applied to images, could achieve some of the bene�ts of nonuniform
bit allocation of entropy coding. We found that the inclusion of
warping grids led to an increase in PSNR scores between 0.1 and
0.9 dB, depending on the scale of the warping grid used. However,
after compressing and quantizing the warp grid, all the observed
bene�ts could be achieved by simply allocating similar additional
amount of storage to our latent grids.
Nonuniform Quantization. We empirically observed that, prior

to quantization, the distribution of our grid values closely resem-
bles a truncated normal distribution. We tried adopting a normally
distributed quantization scheme, but did not observe any quality im-
provement. We attribute this outcome to the �ne-tuning of network
weights after the freezing of the latent grids, which might compen-
sate for the sub-optimal quantization distribution (see Section 4.2).

H USAGE OF OTHER COMPRESSORS

In this section, we describe which compressors we compare to and
their parameters. Note that BCx and ASTC are speci�cally targeting
texture compression/decompression on GPUs and are designed to
be random-access without entropy encoding. JPEG XL and AVIF are
more traditional image compressors and include entropy encoding,
which is a set of techniques that do not mesh well with the random
access requirement for textures. We have included them still, since
they are industry standards and because it may be worthwhile to
investigate how our method fares against such advanced techniques.
In fairness, it should be noted that neither JPEG XL nor AVIF were
likely designed to reach bitrates as low as 0.2 BPPC, which is NTC’s
lowest target. We have also used Basis/KTX2 [30], which is part
of the Khronos standard. This format also uses entropy encoding,
but during decompression, it can transcode to many existing block-
based texture compressions schemes, e.g., BCx, ETC, ASTC.

H.1 BCx Compression

For BCx compression [45], we performed a smaller investigation of
existing tools, including AMD’s Compressonator,1 NVIDIA’s Tex-
ture Tools,2 and Intel’s Fast ISPC Texture Compressor.3 We used
eight di�use textures, eight normal maps, seven displacement maps,

1https://gpuopen.com/compressonator/
2https://developer.nvidia.com/nvidia-texture-tools-exporter
3https://github.com/GameTechDev/ISPCTextureCompressor

Fig. 19. A colorful and (presumably) di�icult gradient texture compressed

with NTC 0.2 does not show visible banding, color posterization, or discol-

oration. Le�: Reference.Middle: Compressed. Right: FLIP error image and

corresponding color map.

ao

ARM
& ORM di�us

e

displa
cement

gloss
& specu

lar
metaln

ess norm
al

rough
ness

25

35

45

P
SN

R
(d
B
)

Fig. 20. Compression quality of di�erent material properties for NTC 0.2.

The orange lines show the median PSNR value for the respective texture

types.

and seven roughness textures for this evaluation. The di�use, nor-
mal, and displacement maps were from PolyHaven, and the rough-
ness textures from ambientCG. The average PSNR for these three
compressors over all textures were within ±0.2 dB. While the ISPC
texture compressor had the highest average score, we could not �nd
a command line tool version of it, and compressing a large number
of high-resolution texture sets, including mipmaps, manually with
their GUI was was prohibitively expensive.

For one-channel textures, e.g., roughness and displacement maps,
AMD’s tool wrote incorrect output �les, sowe always usedNVIDIA’s
tool for those. For the di�use textures and normal maps, AMD’s tool
produced slightly better result, so we used AMD’s tool for those.
The highest parameter setting was used for NVIDIA’s tool, while
we used two re�ne steps for BC1 (AMD) and quality 0.25 for BC7
(AMD). Going above those settings, mostly increased compression
times but not quality.

H.2 ASTC Compression

For ASTC [55], we used the texture tool from ARM, who developed
ASTC,4 with the -exhaustive �ag, which provided best quality.
Note that we used the two most aggressive variants of ASTC, which
compressed 12 × 12 and 10 × 10 tiles. All variants store 16 bytes per
tile, so using 12 × 12 tiles gives 128 · 8/(12 · 12) ≈ 0.89 bits per pixel
for a three-channel texture. Furthermore, note that, in Figure 9 in
the main paper, the ASTC results show average BPPC of around 0.5.
This is a consequence of storing BPPC over an entire texture set,
which may include both one- and three-channel textures. The same
holds for other methods.

4https://github.com/ARM-software/astc-encoder
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Table 6. Storage cost of NTC textures based on the compression profile and texture resolution. The network parameter size depends on the compression

profile, but is constant for di�erent texture sizes. Storage cost is independent of the input channel count.

NTC 0.2 NTC 0.5 NTC 1.0 NTC 2.25

Resolution 2k×2k 4k×4k 8k×8k 2k×2k 4k×4k 8k×8k 2k×2k 4k×4k 8k×8k 2k×2k 4k×4k 8k×8k

NW (kB) 24 24 24 27 27 27 25 25 25 27 27 27
Grids (MB) 0.875 3.5 14.935 2.125 8.5 36.269 4.25 17.0 72.534 9.5 38.0 162.135
Total (MB) 0.899 3.524 14.959 2.152 8.527 36.296 4.275 17.025 72.559 9.527 38.027 162.162

Table 7. PSNR values with scalar quantization (SQ-8) and vector quantiza-

tion (VQ-8, VQ-16) a�er optimization for 30k steps.

SQ-8 VQ-8 VQ-16

27.4 dB 27.28 dB 27.63 dB

H.3 JPEG XL

For JPEG XL [2], we used the reference implementation5 and its
precompiled executables (v0.8.0) from November 2022.6 We started
by performing lossless compression, and if that succeeded in reach-
ing the target bitrate, our compression script exited. Otherwise, our
script performed a binary search to �nd the quality setting that
provided the sought-after bits per pixel per channel (BPPC). To re-
duce compression times, we did an early-out if the compression rate
was within 2.5% of the target compression rate. We used the second
highest value (8) for the e�ort parameter, since going to 9 (high-
est) provided little to no additional quality, but further increased
compression times.

H.4 AVIF

For AVIF [13], we used precompiled executables using v0.11.1.7

Similar to JPEG XL, our compression script for AVIF started by
attempting to do lossless compression and exited if that reached the
target compression rate. For all compression with AVIF, we used
the “constant quality” -a end-usage=q �ag, since this is common
practice, and we also used quantization settings –min 0 –max 63.
Next, our script performed a binary search on the -a cq-level

quantization parameter without chroma subsampling. For very low
bitrates, such 0.2 BPPC, this setting did not always reach the target.
In those cases, our script continued with a new binary search with
chroma subsampling enabled (–yuv 420). In the end, the �le with
the resulting bitrate closest to the target bitrate was selected. We
used –speed 3 since that resulted in reasonable compression times
and going lower did not substantially improve image quality.

H.5 Basis/KTX2

For Basis,8 we downloaded the code in early January 2023, and
compiled it to use OpenCL for faster compression. The �ags we use
for compression are: -opencl -ktx2 -uastc -uastc_rdo_l 1.0

-comp_level 6, where 6 o�ers the best image quality and takes the
longest to compress. All our results uses the �le size of the output
from the compressor. For image quality, however, we unpacked the

5https://github.com/libjxl/libjxl
6https://artifacts.lucaversari.it/libjxl/libjxl/latest/
7https://github.com/AOMediaCodec/libavif
8https://github.com/BinomialLLC/basis_universal
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Fig. 21. Comparison of iso-storage compression quality at each mip level

between our algorithm and the high-rate BC configuration, where we have

used two fewer mipmap levels (0 and 1) to reach the same storage cost.

basis �le and had their decompressor transcode them to BC4 and
BC7, respectively, since those are the formats that we compare to
in the main paper.

I ERROR AND QUALITY METRICS ON TEXTURE SETS
AND MIP CHAINS

For reproducibility and future research, this section documents how
our quality and error metrics were computed for texture sets and
mip chains.
Given is a compressed texture set (including mip chains) T =

{

T
0
0,T

1
0,T

2
0, . . . ,T

"−1
0 , . . . ,T0

#−1
,T1

#−1
,T2

#−1
, . . . ,T"−1

#−1

}

with# tex-
tures and " mip levels, where mip 9 of texture 8 has resolution
F 9 × ℎ 9 × 28 . The values in the textures are assumed to be in [0, 1].
For each mip level, 9 , we concatenate the corresponding textures,
creating a tensor T9 of shape F 9 × ℎ 9 × 2 , where 2 =

∑

8 28 . The
same concatenation is done for the reference texture set, R, which
contains the same number of textures as T.
We compute the peak signal-to-noise ratio (PSNR) of T by sum-

ming the squared error over the mip chain and dividing by the total
number of values in the tensor, yielding its mean squared error
(MSE). That is, the PSNR is computed as

PSNR(R,T) = −10 log

(

∑

9 (R
9 − T

9 )2

2
∑

9 F 9ℎ 9

)

. (1)

Computing LPIPS [88] for a texture set is a slightly more involved
operation, as it requires 3-channel input. We consider a texture

T
9

8
. If it only has a single channel, we repeat its channels to give

a 3-channel texture, T̃9

8
. If T9

8
has three channels, we let T̃9

8
= T

9

8
.

We then normalize the texture so that its values are in [−1, 1], as

is required by LPIPS, creating T̄ = 2T
9

8
− 1. The same procedure is
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used to create R̄ 9

8
. Next, we compute LPIPS between the two tensors

T̄
9

8
and R̄

9

8
. LPIPS yields an aggregate number ; 9

8
= LPIPS

(

R̂
9

8
, T̂

9

8

)

for the texture. We multiply the result by the number of channels 28 ,
e�ectively making a 3-channel texture worth three times as much as
a single-channel texture when computing LPIPS over the texture set.
Note that this is similar to the PSNR computations above. In addition,
we multiply the result by the number of texels in the texture. We
again sum the results over all levels of the mip chain and divide by
the total number of values in the texture set. Formally, we have

LPIPS(R,T) =

∑

8

∑

9 F 9ℎ 928;
9

8

2
∑

9 F 9ℎ 9
. (2)

We note that LPIPS was computed using the net=’alex’ LPIPS
model, as proposed by the authors of the metric. Furthermore, LPIPS
requires images that have resolutions of at least 32×32. For textures
smaller than this, we apply zero-padding to make their sizes 32× 32.
The structural similarity index (SSIM) [81] is a single-channel

measure, providing a quality index between 0 and 1, where higher is
better. To instead report errors, we compute 1−SSIM.We get an SSIM
value for each channel in each texture in the mip chain. Similarly to
the other two metrics, we weigh the result by the number of texels
on the current mip level and normalize by the number of values in
the texture set to get the �nal result. We get

1 − SSIM(R,T) = 1 −

∑

8

∑

9 F 9ℎ 928SSIM
(

R
9

8
,T

9

8

)

2
∑

9 F 9ℎ 9
, (3)

where SSIM
(

R
9

8
,T

9

8

)

computes SSIM for each channel in the texture

and returns the average. The SSIM computations include �ltering
with an 11 × 11 Gaussian kernel. We do not apply the kernel for
images that are smaller than the kernel.
When we report LPIPS and SSIM errors over the entire data set,

we take the mean of the errors computed for each texture set in
the data set. For PSNR, we compute the average of the per-texture
MSE values retrieved during the computation of the PSNR values.
The aggregate PSNR is then computed using that average. Note that
neither of these three aggregate error and quality values consider
the resolution of the textures in the texture set nor the total number
of channels present within it. The e�ect of this is that each texture
in our diverse texture set has the same impact on the aggregate
score. Furthermore, note that the computations in Equations 1-3
gives more weight to the lower levels (i.e., higher resolutions) of the
mip pyramid compared to the higher. The reasoning behind this is
that the lower levels will cover more pixels when used in rendered
images.

Finally, we note that when we, for Figure 21, compute the average
quality for mip level< over the entire data set, we aggregate over
all available mips at that level, independently of their resolution.
Consider the aggregate error value for the second mip level, for
example. Despite the second mip level of a texture with resolution
1024 × 1024 having resolution 512 × 512 while the second mip level
of a 4096 × 4096 texture has resolution 2048 × 2048, we add both
of their error values into the aggregate for the second mip level,
without weighting based on resolution.

J EVALUATION TEXTURE SET DETAILS

Figures 22-24 show the twenty texture sets included in our evalua-
tion set. The sizes of the textures range from 2048 × 2048 to 8192 ×

8192. The textures were either created by the authors or retrieved
from in-house or external sources. The external sources were: ambi-
entCG (https://ambientcg.com/), EISKO© (https://www.eisko.com/),
KaiMoisch (https://kaimoisch.com/free-textures/), and PolyHaven
(https://polyhaven.com/). Consisting of only a di�use texture, the
“gradient 4k” texture set contains the fewest number of channels
(three). This texture set is the only one created by the authors and
is provided as a di�cult case. The “Louise 4k” set contains the most
channels (12 in total, consisting of di�use: 3, normal: 3, roughness:
1, subsurface: 1, ambient occlusion: 1, displacement: 1, gloss: 1, and
specular: 1). Grayscale textures that were stored as RGB were con-
verted to one-channel textures and constant textures were removed.
EISKO and KaiMoisch provided 16-bit textures, which we converted
to 8-bit before we used them.

The normal maps were originally provided as three-channel tex-
tures. We note that the BC5 format is a two-channel format targeting
normal maps, under the assumption that the third component can
be computed if the normals are of unit length. Intially, we planned
to convert all normal maps to two channels, but found that the ma-
jority of the normal maps did not have normals of unit length. Since
the length of the normal sometimes is used to store another property
(for �ltering normals, for example), we left them as three-channel
textures to avoid changing the intent of the texture artists. However,
since the quality of the normals is often extremely important, we
used the higher-quality BC7 format (instead of BC1).

We create the mipmap chains with a high-quality Lanczos down-
sampling �lter and stop when we have reached the level with a
resolution of 4 × 4 pixels, since that is the tile size of most block-
based GPU compression schemes.
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Fig. 22. Texture sets number 1.
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Fig. 23. Texture sets number 2.
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Fig. 24. Texture sets number 3. Animatable Digital Double of Louise by EISKO© (www.eisko.com).
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