16 « Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Méller, Pontus Ebelin, and Aaron Lefohn

SUPPLEMENTARY TO RANDOM-ACCESS NEURAL
COMPRESSION OF MATERIAL TEXTURES

B RENDERED QUALITY

In addition to the first figure in the main paper, Figures 14 and 15
show examples of rendered images using high-quality non-com-
pressed textures, textures compressed with our method (using the
lowest BPPC profile, NTC 0.2), and textures compressed with BC
high. For the latter, the two highest-resolution mip levels were cre-
ated through bilinear upscaling of the third mip level in order to
obtain an iso-storage comparison to our method. The rendered im-
ages, supported by the error images and values, show that NTC
achieves higher quality rendered images than the iso-storage ver-
sion of BC high. This is especially noticeable in Figure 15, which
also gives an indication that NTC does well on textures with text.

C ADDITIONAL QUANTITATIVE RESULTS

The following two subsections demonstrate how the quality of
NTC’s compressed images changes over the mipmap chain (Sec-
tion C.1) and how it differs for various texture types (Section C.2).

C.1 Mipmap Quality

The performance of a compression technique can vary based on the
frequency spectrum of the image and therefore perform differently
across mip levels. In Figure 21, we compare the per-mip-level PSNR
scores of NTC 0.2 to the BC high algorithm. Since there is a 16X
difference in storage cost between the algorithms, an iso-storage
comparison was conducted, resulting in the omission of the first
two mip levels for BC compression. PSNR values with our method
are either comparable to, or higher than BC depending on the mip
level, except for mip levels two and three where NTC shows slightly
worse PSNR scores.

C.2 Different Texture Type Compression Quality

Figure 20 presents the PSNR scores of NTC 0.20, computed on dif-
ferent types of textures in the material texture set, such as diffuse,
normals, etc. Given the similarities in data content between certain
texture types, such as ARM and ORM textures, as well as gloss
and specular textures, the results for these pairs were concatenated.
Additionally, texture types that occurred only once in our data set
(see Section J) were excluded. The results indicate that our proposed
method is able to compress different texture types at similar levels
of quality.

D COMPRESSION ARTIFACTS

Every texture compression algorithm degrades quality differently.
Particularly visible quality differences are called compression arti-
facts and we present a few typical examples in Figure 16. Block-based
compression methods commonly exhibit visible block artifacts (in-
set a). Methods that rely on heavy quantization tend to exhibit
banding artifacts, as illustrated in insets (b) and (c), and are often
characterized by a visible discoloration towards green or purple
hues, resulting from higher chroma quantization (inset b). These
artifacts are highly perceptible to the human eye, and modern image
compression techniques such as AVIF and JPEG XL, have prioritized
their removal, by producing blurry images instead (inset d).

, Vol. 1, No. 1, Article . Publication date: May 2023.

Since our feature vectors are quantized down to two or four bits
per feature, we specifically check for the presence of banding arti-
facts by compressing a synthetic gradient texture and do not observe
noticeable banding artifacts as shown in Figure 19. We attribute this
to the combination of smooth, bilinear interpolation and the higher
frequency learned interpolation (see Sections 4.1 and 4.3).

Figure 13 demonstrates the absence of visually objectionable arti-
facts with our compression method on an average case. In contrast,
we observe the presence of block artifacts on the ARM texture with
BC, especially for mip level 0. AVIF and JPEG XL produce sharper
results than NTC for the diffuse texture at mip level 0 but are sig-
nificantly blurrier or show some discoloration (JPEG XL) at mip
level 3. This is likely because with these methods, different mip
levels are compressed separately, and their spectral content does
not necessarily reduce proportionally to the resolution. These obser-
vations make a strong case for jointly compressing mip levels as we
do with NTC. Potentially, we could compress AVIF and JPEG XL by
allocating different rates for each mip as well as each texture, while
maintaining the overall storage constant. However, determining
suitable rates can be challenging, particularly as it can be material
specific. We do not include comparisons with heterogeneous rates
for this reason, and also because our proposed method does not aim
to compete directly with these image compression techniques.

On average, our method produces results that are a bit blurrier
and sometimes less saturated than the uncompressed reference, but
significantly better than BCx compression. There are, however, some
more objectionable failure cases presented in Figure 12 in the main
paper. In example a) we observe strong distortion of the normal map
of the Ticket Machine texture. The compressed texture is very flat,
mostly sparse, and our optimization procedure fails to reconstruct
subtle details properly. In example b) (albedo of the dragon atlas ma-
terial), we observe discoloration of the texture. Since our approach is
specialized for each material, it can adapt to high frequency content,
such as detailed normal maps, or large color variations. However,
the most challenging materials have both kinds of features. In such
cases, we cannot reconstruct both features equally well given the
low BPPC rates. Typically, we observe that details and normal map
features are favored by our optimization because of their higher
variance, at the cost of other material textures. It is possible to bal-
ance the quality of material textures by adjusting the loss function
(Section 4.5). In scenarios where the material textures have a fixed
set of semantics, we can apply more robust texture specific optimiza-
tion, such as a loss in chrominance space, or optimization based on
appearance using differentiable renderering. The last two failure
cases (c and d) in Figure 12 correspond to unusual data in the source
materials. In example c) (Pine Forest Ground texture), the normal
maps seem to be misaligned with the albedo maps, producing leak-
age of details between channels. Example d) (metalness map of the
Metal Plates texture) shows strong banding in the source (reference)
texture, present only in a single material channel, and our method
blurs it and correlates with the other material channels.

Figures 17 and 18 show results of texture compression at other
BPPC targets than the ones shown in the main paper. We note that
the texture used to generate Figure 17 (Pine Forest Ground) is half the
size (4096 X 4096) of the texture used to generate Figure 18 (denim)
and the corresponding figure in the main paper. In Figure 17, we

Random-Access Neural Compression of Material Textures « 17

BC high. PNSR (1): 29.1 dB, ILIP (]): 0.14
1024 X 1024 at 4.0 MB.

NTC. PSNR (1): 36.0 dB, LIP ({): 0.08
4096 X 4096 at 3.8 MB.

reference: not compressed
4096 X 4096 at 171 MB.

Fig. 14. A rendered image of a closed book. The cutouts demonstrate quality using, from left to right, GPU-based texture formats (BC high) at 1024 x 1024
resolution, our neural texture compression (NTC) , and high-quality reference textures. Note that NTC provides two additional mipmap levels over BC high,
despite it using slightly less memory. The metrics, PSNR and ALIP, were computed for the cutouts and are shown above the respective image. The ALIP error

images, whose brightness is proportional to error, are shown in the upper right corners.

BC high. PNSR (1): 225 dB, ILIP (]): 0.27
1024 X 1024 at 4.0 MB.

NTC. PSNR (1): 35.8 dB, LIP (): 0.11
4096 X 4096 at 3.8 MB.

reference: not compressed
4096 X 4096 at 171 MB.

Y

Fig. 15. A rendered image of an open book. See Figure 14’s caption for details.

compare to the medium-low-rate JPEG XL and AVIF configurations,
as well as the ASTC compressor (using tiles of size 12 X 12, as
those lead to a mean BPPC closer to 0.50 for the evaluation data set
compared to tiles of size 10 X 10). Figure 18 compares the medium-
bitrate compressors. In the medium-bitrate case, it is difficult to spot
any differences between the compressed textures and the reference.
For the medium-low-rate case, differences become visible, most
notably for the higher level mipmap where ASTC 12 X 12 and AVIF
show block artifacts. Here, NTC 0.5 show slight color changes in
the diffuse texture. An added challenge of this texture set is that the
normal map is not aligned with the remaining textures.

E COMPARISON TO VECTOR QUANTIZATION

Vector quantization (VQ) is an alternate approach [78] to discretizing
the features, where each cell in a feature grid maps to an entry in

Fig. 16. Examples of typical compression artifacts. a) visible blocks b) pos-
terization and discoloration c) gradient banding d) detail loss and bluriness.

a learned codebook or dictionary. During inference, the feature
vectors can be replaced by a codebook index stored per grid cell.
Unfortunately, the codebook size grows exponentially with the
bitrate, making it prohibitively expensive to learn a codebook for
higher quality levels. Therefore, in order to compare VQ with scalar
quantization (SQ), we limit the size of the dictionary to 256 entries
and assume multiple dictionaries, such that the overall storage size is
the same. We only apply vector quantization to the higher resolution
grid Gy, which is quantized to a smaller number of bits, while G;
always uses scalar quantization with 12 channels and 4 bits.

Table 7 shows a comparison of SQ and VQ for a 4k texture using
our lowest bitrate configuration (NTC 0.2) where each grid cell in
G stores 16 bits. In the case of SQ, we use 8 channels which are
quantized to 2 bits while in the case of VQ, we use two 256-entries
dictionaries, which are referenced by two 8-bit indices respectively.
We compare SQ against two variants of VQ: VQ-8 has 8 channels per
dictionary entry, which is similar to the size of the feature vector
used in SQ, while VQ-16 uses 16 channels per dictionary entry and
a correspondingly larger input layer in the decoder network. The
PSNR for all three quantization options are within 0.5 dB of each
other. VQ-8 has slightly lower PSNR than SQ, while VQ-16 has a
slightly higher PSNR, but with a higher cost for the input layer of the
network. The training time for both VQ-8 and VQ-16 is more than
2.5x that of SQ. Given its simplicity and the significantly shorter
training time, we choose scalar quantization for compression.

, Vol. 1, No. 1, Article . Publication date: May 2023.

18 « Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Maller, Pontus Ebelin, and Aaron Lefohn

Original Original ASTC 12 x 12 AVIF 0> JPEG XL
=}
&
a S
<
g
3}
3
G2
=}

mip 3

normal map
mip 0

mip 3

displacement map
mip 0

mip 3

specular map
mip 0

mip 3

mip 0

roughness map
.
-
2
;
;

mip 3
I.'-
iy
i

o = £ : -

Fig. 17. Comparison of different methods at 0.5 BPPC, where we selected to show a texture set for which NTC’s PSNR was close to its average PSNR over all
texture sets in our 20 texture evaluation dataset. Recall that neither AVIF nor JPEG XL provide random access to the texture data. For visualization purposes,
the diffuse images were exposure compensated with factor —1.0 and tone mapped with ACES [50]. Textures retrived from https://kaimoisch.com/free-textures/.

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://kaimoisch.com/free-textures/

Random-Access Neural Compression of Material Textures « 19

1.0 BPPC
JPEG XL

Original

diffuse map

normal map

displacement map

Fig. 18. Comparison of different methods at 1.0 BPPC, where we selected to show a texture set for which NTC’s PSNR was close to its average PSNR over all
texture sets in our 20 texture evaluation dataset. Recall that neither AVIF nor JPEG XL provide random access to the texture data. Textures retrived from

https://polyhaven.com/.

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://polyhaven.com/

20 « Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Méller, Pontus Ebelin, and Aaron Lefohn

F STORAGE COST

For completeness, we list the storage cost of NTC in Table 6 for our
different compression profiles and for different texture set resolu-
tions.

G FAILED EXPERIMENTS

In the course of developing our method, we evaluated a few al-
ternative methods for neural compression. We found that these
methods, which are characterized by either increased complexity or
inferior quality, were unsuitable for the task of texture compression
of material textures. We present these findings below.

Warped Grids. Prior work [41] proposes to warp volumes with
a non-uniform transformation for better resource utilization com-
pared to a uniform grid. We hypothesized that a similar approach,
applied to images, could achieve some of the benefits of nonuniform
bit allocation of entropy coding. We found that the inclusion of
warping grids led to an increase in PSNR scores between 0.1 and
0.9 dB, depending on the scale of the warping grid used. However,
after compressing and quantizing the warp grid, all the observed
benefits could be achieved by simply allocating similar additional
amount of storage to our latent grids.

Nonuniform Quantization. We empirically observed that, prior
to quantization, the distribution of our grid values closely resem-
bles a truncated normal distribution. We tried adopting a normally
distributed quantization scheme, but did not observe any quality im-
provement. We attribute this outcome to the fine-tuning of network
weights after the freezing of the latent grids, which might compen-
sate for the sub-optimal quantization distribution (see Section 4.2).

H USAGE OF OTHER COMPRESSORS

In this section, we describe which compressors we compare to and
their parameters. Note that BCx and ASTC are specifically targeting
texture compression/decompression on GPUs and are designed to
be random-access without entropy encoding. JPEG XL and AVIF are
more traditional image compressors and include entropy encoding,
which is a set of techniques that do not mesh well with the random
access requirement for textures. We have included them still, since
they are industry standards and because it may be worthwhile to
investigate how our method fares against such advanced techniques.
In fairness, it should be noted that neither JPEG XL nor AVIF were
likely designed to reach bitrates as low as 0.2 BPPC, which is NTC’s
lowest target. We have also used Basis/KTX2 [30], which is part
of the Khronos standard. This format also uses entropy encoding,
but during decompression, it can transcode to many existing block-
based texture compressions schemes, e.g., BCx, ETC, ASTC.

H.1 BCx Compression

For BCx compression [45], we performed a smaller investigation of
existing tools, including AMD’s Compressonator,! NVIDIA’s Tex-
ture Tools,? and Intel’s Fast ISPC Texture Compressor.> We used
eight diffuse textures, eight normal maps, seven displacement maps,

Lhttps://gpuopen.com/compressonator/
Zhttps://developer.nvidia.com/nvidia- texture-tools-exporter
Shttps://github.com/GameTechDev/ISPCTextureCompressor

, Vol. 1, No. 1, Article . Publication date: May 2023.

Fig. 19. A colorful and (presumably) difficult gradient texture compressed
with NTC 0.2 does not show visible banding, color posterization, or discol-
oration. Left: Reference. Middle: Compressed. Right: ALIP error image and
corresponding color map.

SLIATL:

25 T

a0 RM qyffuse ment
ARM &0 & d“s"\ace %\oss & sp

'S
1)
L

PSNR (dB)
o
@

T
e&:\)\"g‘em\“ess 90(‘“3\ r()\,g‘(\(\es's’

Fig. 20. Compression quality of different material properties for NTC 0.2.
The orange lines show the median PSNR value for the respective texture

types.

and seven roughness textures for this evaluation. The diffuse, nor-
mal, and displacement maps were from PolyHaven, and the rough-
ness textures from ambientCG. The average PSNR for these three
compressors over all textures were within +0.2 dB. While the ISPC
texture compressor had the highest average score, we could not find
a command line tool version of it, and compressing a large number
of high-resolution texture sets, including mipmaps, manually with
their GUI was was prohibitively expensive.

For one-channel textures, e.g., roughness and displacement maps,
AMD’s tool wrote incorrect output files, so we always used NVIDIA’s
tool for those. For the diffuse textures and normal maps, AMD’s tool
produced slightly better result, so we used AMD’s tool for those.
The highest parameter setting was used for NVIDIA’s tool, while
we used two refine steps for BC1 (AMD) and quality 0.25 for BC7
(AMD). Going above those settings, mostly increased compression
times but not quality.

H.2 ASTC Compression

For ASTC [55], we used the texture tool from ARM, who developed
ASTC,* with the -exhaustive flag, which provided best quality.
Note that we used the two most aggressive variants of ASTC, which
compressed 12 x 12 and 10 X 10 tiles. All variants store 16 bytes per
tile, so using 12 X 12 tiles gives 128 - 8/(12 - 12) =~ 0.89 bits per pixel
for a three-channel texture. Furthermore, note that, in Figure 9 in
the main paper, the ASTC results show average BPPC of around 0.5.
This is a consequence of storing BPPC over an entire texture set,
which may include both one- and three-channel textures. The same
holds for other methods.

*https://github.com/ARM-software/astc-encoder

https://gpuopen.com/compressonator/
https://developer.nvidia.com/nvidia-texture-tools-exporter
https://github.com/GameTechDev/ISPCTextureCompressor
https://github.com/ARM-software/astc-encoder

Random-Access Neural Compression of Material Textures « 21

Table 6. Storage cost of NTC textures based on the compression profile and texture resolution. The network parameter size depends on the compression
profile, but is constant for different texture sizes. Storage cost is independent of the input channel count.

| NTC 0.2 | NTC 0.5 | NTC 1.0 | NTC 2.25
Resolution | 2kx2k 4kx4k 8kx8k | 2kx2k 4kx4k 8kx8k | 2kx2k 4kx4k 8kx8k | 2kx2k 4kx4k 8kx8k
NW (kB) 24 24 24 27 27 25 25 25 27 27 27
Grids (MB) | 0.875 35 14935 | 2125 8.5 36.269 | 4.25 170 72534 9.5 380 162135
Total (MB) | 0.899 3524 14959 | 2152 8527 3629 | 4275 17.025 72559 | 9527 38.027 162.162

Table 7. PSNR values with scalar quantization (SQ-8) and vector quantiza-
tion (VQ-8, VQ-16) after optimization for 30k steps.

SQ-8 | VQ-8 | VQ-16
27.4 dB | 27.28 dB | 27.63 dB
H.3 JPEG XL

For JPEG XL [2], we used the reference implementation® and its
precompiled executables (v0.8.0) from November 2022.° We started
by performing lossless compression, and if that succeeded in reach-
ing the target bitrate, our compression script exited. Otherwise, our
script performed a binary search to find the quality setting that
provided the sought-after bits per pixel per channel (BPPC). To re-
duce compression times, we did an early-out if the compression rate
was within 2.5% of the target compression rate. We used the second
highest value (8) for the effort parameter, since going to 9 (high-
est) provided little to no additional quality, but further increased
compression times.

H.4 AVIF

For AVIF [13], we used precompiled executables using v0.11.1.”
Similar to JPEG XL, our compression script for AVIF started by
attempting to do lossless compression and exited if that reached the
target compression rate. For all compression with AVIF, we used
the “constant quality” -a end-usage=q flag, since this is common
practice, and we also used quantization settings -min @ -max 63.
Next, our script performed a binary search on the -a cq-level
quantization parameter without chroma subsampling. For very low
bitrates, such 0.2 BPPC, this setting did not always reach the target.
In those cases, our script continued with a new binary search with
chroma subsampling enabled (-yuv 420). In the end, the file with
the resulting bitrate closest to the target bitrate was selected. We
used —speed 3 since that resulted in reasonable compression times
and going lower did not substantially improve image quality.

H.5 Basis/KTX2

For Basis,® we downloaded the code in early January 2023, and
compiled it to use OpenCL for faster compression. The flags we use
for compression are: -opencl -ktx2 -uastc -uastc_rdo_l 1.0
-comp_level 6, where 6 offers the best image quality and takes the
longest to compress. All our results uses the file size of the output
from the compressor. For image quality, however, we unpacked the

Shttps://github.com/libjx1/libjxl
Chttps://artifacts.lucaversari.it/libjxl/libjx]/latest/
"https://github.com/AOMediaCodec/libavif
8https://github.com/BinomialLLC/basis_universal

—— NTC (0.2 BPPC)

457 BC high L
g /\\//\/\/
&~
& 35 /\/
~

25 T T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11

Mip level

Fig. 21. Comparison of iso-storage compression quality at each mip level
between our algorithm and the high-rate BC configuration, where we have
used two fewer mipmap levels (0 and 1) to reach the same storage cost.

basis file and had their decompressor transcode them to BC4 and
BC7, respectively, since those are the formats that we compare to
in the main paper.

I ERROR AND QUALITY METRICS ON TEXTURE SETS
AND MIP CHAINS

For reproducibility and future research, this section documents how
our quality and error metrics were computed for texture sets and
mip chains.

Given is a compressed texture set (including mip chains) T =
{T8, 15,12, .., T TS T T% - Thi =1} with N tex-
tures and M mip levels, where mip j of texture i has resolution
wj X hj X c;. The values in the textures are assumed to be in [0, 1].
For each mip level, j, we concatenate the corresponding textures,
creating a tensor T/ of shape wj X hj X ¢, where ¢ = }; c;. The
same concatenation is done for the reference texture set, R, which
contains the same number of textures as T.

We compute the peak signal-to-noise ratio (PSNR) of T by sum-
ming the squared error over the mip chain and dividing by the total
number of values in the tensor, yielding its mean squared error
(MSE). That is, the PSNR is computed as

(RS = T/)2
25()) . W

PSNR(R,T) = —lolog(5 A

Computing LPIPS [88] for a texture set is a slightly more involved
operation, as it requires 3-channel input. We consider a texture
T{ . If it only has a single channel, we repeat its channels to give
a 3-channel texture, T{ VIf T{ has three channels, we let T{ = T{ .
We then normalize the texture so that its values are in [—1, 1], as
is required by LPIPS, creating T = ZT{ — 1. The same procedure is

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://github.com/libjxl/libjxl
https://artifacts.lucaversari.it/libjxl/libjxl/latest/
https://github.com/BinomialLLC/basis_universal

22« Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Méller, Pontus Ebelin, and Aaron Lefohn

used to create R{ . Next, we compute LPIPS between the two tensors
T/ R/ : J— nJ

T; and R;. LPIPS yields an aggregate number I; = LPIPS (Ri , Tl.)
for the texture. We multiply the result by the number of channels c;,
effectively making a 3-channel texture worth three times as much as

a single-channel texture when computing LPIPS over the texture set.

Note that this is similar to the PSNR computations above. In addition,
we multiply the result by the number of texels in the texture. We
again sum the results over all levels of the mip chain and divide by
the total number of values in the texture set. Formally, we have

i 3 wihjeil]

LPIPS(R, T) = i
Jj It

@
We note that LPIPS was computed using the net="alex’ LPIPS
model, as proposed by the authors of the metric. Furthermore, LPIPS
requires images that have resolutions of at least 32 x 32. For textures

smaller than this, we apply zero-padding to make their sizes 32 x 32.

The structural similarity index (SSIM) [81] is a single-channel
measure, providing a quality index between 0 and 1, where higher is
better. To instead report errors, we compute 1-SSIM. We get an SSIM
value for each channel in each texture in the mip chain. Similarly to
the other two metrics, we weigh the result by the number of texels
on the current mip level and normalize by the number of values in
the texture set to get the final result. We get

3 35 wihjeiSSIM (R{T{)

1-SSIM(RT) =1— , (3

czjwj-hj

where SSIM (R{ , Tf) computes SSIM for each channel in the texture
and returns the average. The SSIM computations include filtering
with an 11 X 11 Gaussian kernel. We do not apply the kernel for
images that are smaller than the kernel.

When we report LPIPS and SSIM errors over the entire data set,
we take the mean of the errors computed for each texture set in
the data set. For PSNR, we compute the average of the per-texture

MSE values retrieved during the computation of the PSNR values.

The aggregate PSNR is then computed using that average. Note that
neither of these three aggregate error and quality values consider
the resolution of the textures in the texture set nor the total number
of channels present within it. The effect of this is that each texture
in our diverse texture set has the same impact on the aggregate
score. Furthermore, note that the computations in Equations 1-3
gives more weight to the lower levels (i.e., higher resolutions) of the
mip pyramid compared to the higher. The reasoning behind this is
that the lower levels will cover more pixels when used in rendered
images.

Finally, we note that when we, for Figure 21, compute the average
quality for mip level m over the entire data set, we aggregate over

all available mips at that level, independently of their resolution.

Consider the aggregate error value for the second mip level, for
example. Despite the second mip level of a texture with resolution
1024 x 1024 having resolution 512 X 512 while the second mip level
of a 4096 X 4096 texture has resolution 2048 x 2048, we add both
of their error values into the aggregate for the second mip level,
without weighting based on resolution.

, Vol. 1, No. 1, Article . Publication date: May 2023.

J EVALUATION TEXTURE SET DETAILS

Figures 22-24 show the twenty texture sets included in our evalua-
tion set. The sizes of the textures range from 2048 X 2048 to 8192 X
8192. The textures were either created by the authors or retrieved
from in-house or external sources. The external sources were: ambi-
entCG (https://ambientcg.com/), EISKO®© (https://www.eisko.com/),
KaiMoisch (https://kaimoisch.com/free-textures/), and PolyHaven
(https://polyhaven.com/). Consisting of only a diffuse texture, the
“gradient 4k” texture set contains the fewest number of channels
(three). This texture set is the only one created by the authors and
is provided as a difficult case. The “Louise 4k” set contains the most
channels (12 in total, consisting of diffuse: 3, normal: 3, roughness:
1, subsurface: 1, ambient occlusion: 1, displacement: 1, gloss: 1, and
specular: 1). Grayscale textures that were stored as RGB were con-
verted to one-channel textures and constant textures were removed.
EISKO and KaiMoisch provided 16-bit textures, which we converted
to 8-bit before we used them.

The normal maps were originally provided as three-channel tex-
tures. We note that the BC5 format is a two-channel format targeting
normal maps, under the assumption that the third component can
be computed if the normals are of unit length. Intially, we planned
to convert all normal maps to two channels, but found that the ma-
jority of the normal maps did not have normals of unit length. Since
the length of the normal sometimes is used to store another property
(for filtering normals, for example), we left them as three-channel
textures to avoid changing the intent of the texture artists. However,
since the quality of the normals is often extremely important, we
used the higher-quality BC7 format (instead of BC1).

We create the mipmap chains with a high-quality Lanczos down-
sampling filter and stop when we have reached the level with a
resolution of 4 X 4 pixels, since that is the tile size of most block-
based GPU compression schemes.

https://ambientcg.com/
https://www.eisko.com/
https://kaimoisch.com/free-textures/
https://polyhaven.com/

Random-Access Neural Compression of Material Textures « 23

MetalPlates013 8k PavingStone 4k ‘Wo0d063 8k DirtCloth 4k Fabric1003 8k Ink1004 8k Metal1001 8k

roughness

A\

displacement

ambient occlusion

metalness

masks

Fig. 22. Texture sets number 1.

, Vol. 1, No. 1, Article . Publication date: May 2023.

24 .« Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Méller, Pontus Ebelin, and Aaron Lefohn

Bark_Mulch_Ground 8k Gravel_Ground 4k Pine_Forest_Ground 4k Sand_Footprints 8k ceramic_roof_01 8k denim 8k painted_concrete 8k Beverage 2k

diffuse

normal

e

roughness

displacement

ambient occlusion

specular

Fig. 23. Texture sets number 2.

, Vol. 1, No. 1, Article . Publication date: May 2023.

Random-Access Neural Compression of Material Textures « 25

TicketMachineA1 4k gradient 4k Louise 4k Dragon atlas 4k

ARM/ORM normal diffuse

roughness

face

ambient

displacement

gloss

specular

Fig. 24. Texture sets number 3. Animatable Digital Double of Louise by EISKO® (www. eisko.com).

, Vol. 1, No. 1, Article . Publication date: May 2023.

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Traditional Texture Compression
	2.2 Traditional and Neural Image Compression
	2.3 Neural Rendering and Materials

	3 Motivation
	4 Neural Material Texture Compression
	4.1 Feature Pyramid
	4.2 Simulated Quantization
	4.3 Sampling and Concatenation
	4.4 Network
	4.5 Optimization Procedure and Loss Function

	5 Implementation
	5.1 Compression
	5.2 Decompression
	5.3 Filtering

	6 Results
	6.1 Evaluation Data Set
	6.2 Compared Methods
	6.3 Quantitative Results
	6.4 Qualitative Results
	6.5 Performance

	7 Discussion
	7.1 Compression Across Texture Channels and Mip Levels
	7.2 Limitations
	7.3 Future Work

	8 Conclusion
	Acknowledgments
	References
	A Handling Divergence
	B Rendered Quality
	C Additional Quantitative Results
	C.1 Mipmap Quality
	C.2 Different Texture Type Compression Quality

	D Compression artifacts
	E Comparison to Vector Quantization
	F Storage Cost
	G Failed Experiments
	H Usage of Other Compressors
	H.1 BCx Compression
	H.2 ASTC Compression
	H.3 JPEG XL
	H.4 AVIF
	H.5 Basis/KTX2

	I Error and Quality Metrics on Texture Sets and Mip Chains
	J Evaluation Texture Set Details

