
High-Performance Graphics (2025)
A. Knoll and C. Peters (Editors)

Collaborative Texture Filtering

T. Akenine-Möller , P. Ebelin , M. Pharr , and B. Wronski

NVIDIA

Ground truth One-tap STF Wave Comm. STF Ours
PSNR / FLIP / CVVDP 28.7 / 0.045 / 9.18 37.0 / 0.033 / 9.55 85.4 / 0.0000033 / 10.0 1 2 4 8 1632

no
td

en
oi

se
d

m
ag

ni
fic

at
io

n

de
no

is
ed

te
xe

la
cc

es
se

s

PSNR / FLIP / CVVDP 37.4 / 0.033 / 9.36 45.8 / 0.019 / 9.87 71.2 / 0.0013 / 10.0 4 3218

Figure 1: During texture magnification, where previously only stochastic texture filtering (STF) was a viable option due to the expense of
texel evaluation, our algorithms often produce zero-error results at negligible cost. We compare original One-tap STF [PWSF24] and Wave
Communication STF [WPAM25] to our approach, both with and without DLSS [NVI25]. For this scene, one of our methods uses only 0.34
texel evaluations per pixel on average, compared to 4 for classic bilinear interpolation, and yet renders an image with extremely low error.
On the right, we show false color visualizations of the scene, where the color maps use black to indicate waves with at least one pixel that
uses minification. The top image shows magnification factors ranging from ∼ 0.0 to 9.1 (average: 4.3) and the bottom image illustrates how
many unique texels are needed per wave (8× 4 pixels) to achieve perfect bilinear filtering. The bottom color map uses brown to indicate
waves where this is not reached with ≤ 1 texel evaluation per pixel. For all the other waves, our method produces all 2×2 texels needed for
perfect bilinear filtering.

Abstract
Recent advances in texture compression provide major improvements in compression ratios, but cannot use the GPU’s texture
units for decompression and filtering. This has led to the development of stochastic texture filtering (STF) techniques to avoid the
high cost of multiple texel evaluations with such formats. Unfortunately, those methods can give undesirable visual appearance
changes under magnification and may contain visible noise and flicker despite the use of spatiotemporal denoisers. Recent
work substantially improves the quality of magnification filtering with STF by sharing decoded texel values between nearby
pixels [WPAM25]. Using GPU wave communication intrinsics, this sharing can be performed inside actively executing shaders
without memory traffic overhead. We take this idea further and present novel algorithms that use wave communication between
lanes to avoid repeated texel decompression prior to filtering. By distributing unique work across lanes, we can achieve zero-
error filtering using ≤ 1 texel evaluations per pixel given a sufficiently large magnification factor. For the remaining cases, we
propose novel filtering fallback methods that also achieve higher quality than prior approaches.

CCS Concepts
• Computing methodologies → Texturing; Image processing; Image compression;

Keywords: stochastic texture filtering, wave intrinsics.

1. Introduction

Stochastic texture filtering (STF) has recently reemerged as a use-
ful technique [PWSF24] for filtering texture representations such
as neural encodings [VSW∗23, FH24, KLM24, DBB∗25] that are
expensive to evaluate. Not only does it allow performing fewer
texel evaluations than traditional deterministic texture filtering re-

quires, but STF also allows efficient implementation of filtering af-
ter shading, where the filter is applied to the final shaded values
rather than the texture input. When shading functions have nonlin-
earities and textures are minified, filtering the final result can give
higher-quality images. However, when textures are magnified, fil-

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-6226-3170
https://orcid.org/0000-0003-3497-2943
https://orcid.org/0000-0002-0566-8291
https://orcid.org/0009-0005-0806-2307

2 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

tering after shading can introduce aliasing [PWSF24]; in that case
filtering of the texel values is preferable.

With native GPU texture formats, accessing all the texels needed
for the filter has limited cost since the cache hierarchy is effective at
greatly reducing the memory bandwidth used for redundant texture
lookups at nearby pixels. On the other hand, directly filtering cus-
tom texture formats in a shader is computationally expensive since
each pixel must produce every texel it needs. Caches give less ben-
efit: while they can still reduce the bandwidth, e.g., for reading net-
work weights used by multiple texel evaluations, they do not save
the redundant computation.

With the One-tap STF algorithm, each pixel always sam-
ples a single texel and filtering after shading is always per-
formed [PWSF24]. Recent work by Wronski et al. introduced a
Wave Communication STF algorithm that uses GPU wave-intrinsic
instructions to communicate texel values among groups of pixels
running in the same GPU wave [WPAM25]. This allows filter-
ing before shading under magnification, giving results significantly
closer to full texture filtering compared to One-tap STF without in-
creasing the number of texels evaluated. However, with Wave Com-
munication STF, each pixel independently determines which texel
to evaluate based on its own texture filter. Although Wronski et
al. introduced methods based on optimized blue noise samples and
stochastic sharing masks to increase the probability of pixels find-
ing novel texel samples at their neighbors, their method does not
guarantee that nearby pixels will not redundantly evaluate the same
texel. Under the GPU SIMT execution model, such redundant com-
putation evaluation does not necessarily harm performance; run-
time is generally determined by the maximum computation done in
any pixel in a wave, so having multiple lanes do the same computa-
tion has no additional runtime cost. However, redundantly evaluat-
ing the same texel does not give any new information necessary for
more accurate filtering; image quality could be further improved if
one could guarantee that different lanes produce unique texels.

In this work, we develop algorithms for collaborative texture fil-
tering (CTF) for when textures are magnified, where collections
of pixels communicate to determine their collective texel require-
ments and then ensure that each pixel evaluates a unique texel.
Each pixel then gathers the texels it needs for its filter from its lane
neighbors through efficient wave-intrinsic instructions. For moder-
ate (1.59× or 2.35×, depending on which of our methods is used)
or greater magnification with 32-lane waves, our approach guaran-
tees that each pixel has all the texels required for perfect bilinear
filtering. For lower magnification factors or with wider filters that
require more texels, all texels may not be available. In this case, we
have each pixel prioritize texels based on their contribution to its fil-
tered result, similarly to Wave Communication STF. However, for
such cases we propose a novel way of combining those texel values
that improves image quality compared to One-tap and Wave Com-
munication STF, with negligible additional computational cost.

For high magnification factors, only a few texels may be required
by all pixels in a wave. In this case, not only do we ensure that all
pixels have all texels needed for filtering, but there is an opportunity
for improved performance if the computation for texel evaluation
can be split across multiple lanes and performed in parallel.

Our primary contributions are:

• The introduction of three algorithms for collaborative texture fil-
tering across lanes in a wave, used to achieve perfect filtering
under magnification: List Merge, Box Sampling, and Mask Sam-
pling, spanning different design points that trade off computation
and the effectiveness of finding a minimal set of texels required.

• New fallback methods for when our techniques above are un-
able to provide all texels needed for perfect filtering, which
give higher quality output than One-tap STF [PWSF24] or Wave
Communication STF [WPAM25].

• Evaluation of our algorithms with bilinear, bicubic B-spline, and
Catmull–Rom filters, comparing performance and image quality
to One-tap STF and Wave Communication STF.

• Single-tap filtering for filters with both negative and positive
weights, such as the Catmull–Rom filter, without requiring more
expensive techniques such as positivization [PWSF24].

2. Previous Work

Stochastic texture filtering has seen previous use dating to the
1990s; see Pharr et al. [PWSF24] for an extensive history. When
textures are magnified, the filtering after shading normally per-
formed with STF can introduce aliasing; recent work by Wronski et
al. [WPAM25] addresses this issue by sharing texel samples across
groups of nearby pixels. When all texels required to filter a texture
at a pixel are available, it is possible to perform traditional filtering
for magnified textures, eliminating this aliasing. In general, even if
only some of the additional texels are available, such texel sharing
reduces error.

The sharing approach by Wronski et al. is based on wave intrin-
sics that allow efficient sharing of values between shader instances
at nearby pixels. Introduced in DirectX HLSL Shader Model 6.0,
wave intrinsics expose the notion of a wave of individual lanes that
are executing shader instances as a group, mirroring the underly-
ing GPU execution model [Mic21]. See the paper by Wronski et
al. for a more detailed introduction to the concept [WPAM25, Sec-
tion 2.3]. Because shader instances execute together, wave intrin-
sics can efficiently use vector registers for communication instead
of using local or off-chip memory. (While lanes may be mapped
to pixels, vertices, or other elements being processed by shaders,
we will sometimes use “pixels” interchangeably with “lanes.”) Our
work is inspired by that of Wronski et al. and our algorithms make
similar use of wave intrinsics.

Communication of data between executing shader instances has
been used for a variety of other high-performance graphics algo-
rithms, including in-place screen-space filtering [Pen11, MML12].
Communication between shading passes is also frequently per-
formed using off-chip memory; examples include ReSTIR, which
communicates samples between pixels, both spatially and tempo-
rally [BWP∗20], and post-processing antialiasing techniques like
TAA [Kar14,YLS20] and DLSS [NVI25] that temporally accumu-
late shaded pixel values.

The algorithms we introduce are based on pixels individually
identifying texels required for filtering and calculating a shared set
of texels that need to be produced for the wave. When this set of tex-
els does not exceed the number of pixels in the group, we distribute
the texel decoding cost between different pixels to avoid redundant

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering 3 of 16

texel evaluations. Tiled and clustered lighting algorithms [OBA12]
similarly communicate between local groups of pixels to determine
their spatial and directional bounds. Then, they use local group-
shared memory to collaboratively cull the light list to determine a
subset of lights that may contribute to the given pixel cluster’s shad-
ing. Also related are techniques like resolution-matched shadow
maps where shadow map lookup requests are written to mem-
ory and parallel compaction algorithms determine which shadow
quadtree pages to render [LSO07]. (Some virtual texturing algo-
rithms follow similar approaches.) Kenzel et al. propose to avoid
redundant work in compute-based rasterization pipelines by merg-
ing pixel coverage bit masks [KKSS18]. By using wave intrinsics
rather than groupshared or off-chip memory to organize texel re-
quests, our approach achieves high performance and does not re-
quire shaders to finish or synchronize execution before launching a
separate set of shaders to process requests.

A characteristic of our approach is that each pixel does not neces-
sarily compute a texel value that it needs itself. This mirrors a com-
mon GPU programming technique, where threads may not have a
fixed association with data elements. Classic examples are high-
performance GPU scan and sorting algorithms [SHGO11,SHG09].

3. Collaborative Texture Filtering

In this section, we introduce a set of techniques that we call col-
laborative texture filtering (CTF). For simplicity, the majority of
our description is related to bilinear filtering, but as we will show
later on, it also extends to arbitrary filters, e.g., bicubic B-spline and
Catmull–Rom. In addition, we assume that each wave has 32 lanes
and is configured as 8×4 pixels. However, our methods generalize
to any wave size and can work even better at lower magnification
factors with larger waves. The key feature of all our algorithms is
that they aim to provide all the texels required for perfect, i.e., with
zero error, filtering with at most one texel evaluation per lane for
all the lanes in a wave.

All our new methods share the same general algorithm flow,
which is summarized as:

1. The lanes in the wave collaboratively collect information about
which texels are needed for perfect filtering.

2. Texel evaluation: each lane produces up to one texel based on
the information from the previous step.

3. Each lane gathers the texels it needs from across the wave and
filters them.

In step 2, we use the term producing a texel to include, e.g., a
regular texel access using the GPU texture unit, decompressing a
texel stored in a custom format, procedural generation, or travers-
ing a data structure to obtain the texel [KLM24]. Note also that we
sometimes use “produce a texel” interchangeably with “texel eval-
uation.”

In some cases, e.g., when the number of unique texels from step
one is too large, a fallback method is used. In general, one may fall
back to any filtering method, such as One-tap STF [PWSF24] or
Wave Communication STF [WPAM25], though we present novel
fallback methods in Section 3.4 that result in higher image quality.

Next, we describe three implementations of the algorithm flow

above: List Merge, Box Sampling, and Mask Sampling. Each has
different qualities, such as performance and success rate of perfect
filtering. A high-level description of them can be found in Figure 2.

3.1. List Merge

List Merge creates a list of the unique texels required by the wave.
This list is constructed in shared memory using a hierarchical list
merge algorithm. The texture coordinates in each lane determine
which N ×N texels are needed for filtering its texture. For now, we
will focus on the bilinear filter with 2×2 texture filtering footprint.
In this case, the integer coordinates of these four texels are put in a
list of length four in each lane.

As illustrated to the left in Figure 2, a hierarchical list merge is
then performed, using shared memory to store the lists during the
merge. This is similar to the hierarchical parallel sum described
by Hoobler [Hoo11], though instead of summing two values, we
merge two lists such that the list never contains any duplicate texel
coordinate pairs.

After the final list has been formed, we check if the number of el-
ements in the list is larger than the number of available lanes. If so,
perfect filtering with one texel evaluation per lane is not possible
and we revert to a fallback method (Section 3.4). Otherwise, each
lane first produces the texel whose index in the merged list is the
same as its lane index. After texels have been produced, each lane
loops over lanes in the wave to gather the texels that fall within its
filter footprint and then weights them using the original texture fil-
ter weights. This method has substantially worse runtime cost than
our other methods, and therefore we omit further details. We in-
clude it in the discussion because it provides an upper bound on the
success rate of when perfect filtering is possible and demonstrates
the goal we aim to more efficiently approximate.

3.2. Box Sampling

On the opposite spectrum of complexity to List Merge is a much
simpler alternative that we call Box Sampling, illustrated in the mid-
dle of Figure 2. In this method, each lane calculates an axis-aligned
bounding box (AABB) of the texels it needs for texture filtering.
The size of this local AABB depends on the texture filter—for ex-
ample 2×2 texels for bilinear and 4×4 for bicubic filtering. We use
those local bounds to compute a global AABB for the wave using
the WaveActiveMin() and WaveActiveMax() intrinsics.

If the area n of the global bounding box exceeds the number of
active lanes in the wave, we use one of the fallback methods (Sec-
tion 3.4). Otherwise, in cases where at least the first n texels are
active,† we use a simple bijective function to map from the active
lane index to coordinates within the bounding box by using mod-
ulo and division by the bounding box width. Each active lane with
an index < n uses this mapping to produce the corresponding texel
from the texture. Finally, each pixel uses WaveReadLaneAt()
instructions with the source lane index computed through inverse

† For cases when this is not true, we refer to the description in our supple-
mental (Section S2), where an additional mapping function is needed.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

WaveActiveMin() + WaveActiveMax()

WaveActiveBitOr(bitmask)

bounding box in texel integer coordinates

Form 2x2 texel integer coordinates per lane.

Use bounding box to encode 2x2 texels

lane 0 lane 1 lane 2 lane 3

in a local bitmask.

WaveActiveMin() + WaveActiveMax()

bounding box in texel integer coordinates

Form 2x2 texel integer coordinates per lane.
lane 0 lane 1 lane 2 lane 3

Form 2x2 texel integer coordinates per lane.
lane 0 lane 1 lane 2 lane 3

Mask SamplingBox SamplingList Merge

Use bijective function h(laneIdx, bitmask)
to find 2D texel integer coordinates.
Produce texel at those coordinates.
Gather 2x2 texels using h-1(coord, bitMask)

perfect bilinear filtering per lane

3,1 4,1

3,2 4,2

4,1 5,1

4,2 5,2

4,2 5,2

4,3 5,3

5,3 6,3

5,4 6,4
(3,1)(4,1)(3,2)
(4,2)

(4,1)(5,1)(4,2)
(5,2)

(3,1)(4,1)(3,2)
(4,2)(5,1)(5,2)

3,1 4,1

3,2 4,2

4,1 5,1

4,2 5,2

4,2 5,2

4,3 5,3

5,3 6,3

5,4 6,4

3,1 4,1

3,2 4,2

4,1 5,1

4,2 5,2

4,2 5,2

4,3 5,3

5,3 6,3

5,4 6,4
(4,2)(5,2)(4,3)
(5,3)

(5,3)(6,3)(5,4)
(6,4)

(4,2)(5,2)(4,3)
(5,3)(6,3)(5,4)
(6,4)

(3,1)(4,1)(3,2)
(4,2)(5,1)(5,2)
(4,3)(5,3)(6,3)
(5,4)(6,4)

Each lane uses its laneIdx as an index into the

List of unique texels
needed by this wave.

list and produces the corresponding texel.

Use WaveReadLaneAt() over the entire
wave to find each lane’s 2x2 texels needed

perfect bilinear filtering per lane

H
ie

ra
rc

hi
ca

l l
is

t m
er

ge

perfect bilinear filtering per lane

3,1

6,4

Use bijective function with laneIdx and
the bounding box to find 2D texel integer

coordinates.
Gather 2x2 texels and weight together.

and weight together.

coordinates. Produce texel at those

and weight together.

1,00,0 2,0

1,10,1 2,1

2,21,2 3,2

2,3 3,3

1,00,0

1,10,1

1,0

1,1

2,0

2,1 1,1 2,1

2,21,2 2,2 3,2

2,3 3,3

Figure 2: High-level overviews of our three algorithms for the bilinear filtering case, shown with only four lanes (in gray) and where
algorithm flow is downward. See our pseudocode in Section S1 for details of early outs to fallback methods. Shared memory is shown in
yellow, while cross-wave operations are green. List Merge performs a hierarchical list merge on the 2×2 texel integer coordinates per lane.
This gives a list of unique texels needed by the wave to be able to perform bilinear filtering in each lane. Box Sampling is our fastest technique
and uses an efficient bijective function to find which texel is produced by which lane. Mask Sampling creates a local bitmask where each bit
indicates a texel integer coordinate, and a set bit indicates that the texel is needed by the wave. Mask Sampling is exemplified using an 8×8
bitmask.

mapping from local coordinates inside the AABB to gather the tex-
els needed for its filter, and weights them to generate the pixel’s
perfectly-filtered value.

While Box Sampling is substantially simpler and faster than
List Merge, an AABB may include many unnecessary texels un-
der perspective projection or rotations around 45 degrees, resulting
in more frequent need of the fallback method and thus increased
error. To address this limitation, we propose a slightly more com-
plex hybrid method that increases the number of perfectly-filtered
waves without incurring the excessive cost of List Merge.

3.3. Mask Sampling

Similar to Box Sampling, Mask Sampling starts by creating an
AABB over the texel integer coordinates. If it is larger than 16×16
texels, then we use one of the fallback methods (Section 3.4).
Otherwise, we use a 16× 16 bitmask to encode which texels are
needed. This bitmask is stored using an uint64_t4 variable, i.e.,
4 ·64 = 256 = 16 ·16 bits. Each lane sets the four bits in the mask
corresponding to the 2× 2 texels it needs for bilinear filtering. We
then use WaveActiveBitOr() on these masks to find a wave
mask, called B, that contains a 1 for each texel the wave needs for
perfect bilinear filtering. If the number of bits set in the wave mask,
n, is larger than 32, we also call one of the fallback methods.

Otherwise, we know that there are n unique texels in this wave

and n ≤ 32, and for now we assume that the first n lanes are ac-
tive in the wave. We refer to the description in our supplemental
(Section S2) for cases when this is not true. If i < n, where i is
the current lane’s index, then lane i will produce a texel. One of
the texels marked by a 1 in the wave mask needs to be selected.
Hence, a mapping h is needed from lane index i to a requested one-
dimensional texel coordinate‡ t in the wave mask, B. We choose h
to map from i to the ith bit that is set in B, and call the function
t = h(i,B). The number t is in [0,255], and so can be mapped to lo-
cal two-dimensional coordinates in [0,15]2 and added to the upper
left integer coordinates of the AABB. These coordinates are then
used to produce the desired texel.

The final step is to gather texels from the lanes in the wave and
filter them. For each two-dimensional texel coordinate needed in a
lane, we compute the corresponding integer coordinate, t, and then
retrieve the desired texel from lane i = h−1(t,B), where the inverse
of finding the ith set bit is counting the set bits below bit t. This
is illustrated in Figure 3. All the texels needed for the current lane
are guaranteed to have been produced by the wave, and these are
weighted and the perfectly-filtered value is returned.

A 16 × 16 bitmask is sufficient for both bilinear and bicubic

‡ One can convert from two-dimensional coordinates, (tx, ty), to one-
dimensional as t = 16 · ty + tx.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering 5 of 16

01 1 1 0 1 1 0 01 1 1 0 1 1 0bits B:
bit no t: 67 5 4 3 2 1 0

4 3 2 1 0i:th bit no:

67 5 4 3 2 1 0

no set bits=2

Figure 3: Illustration of our bijective function t = h(i,B) used in
Mask Sampling. Assume the lane index i = 2, then h(2,B) = 4 since
the bit number of the 2nd set bit is 4, as illustrated by the left arrow.
Note that we start counting from 0, so the 0th set bit is at position 1
in the example above. To the right, we map from t = 4 to lane index
i by counting the number of set bits to the right of t = 4. The result
is 2, so h−1(4,B) = 2.

filters, though a smaller bitmask may be used to reduce register
pressure and computation, potentially at a cost in effectiveness.
We have found empirically that an 11× 11 bitmask stored in two
uint64_t variables is sufficient for the bilinear filter—it gives
identical results to the 16× 16 bitmask with 25–33% lower run-
time in our experiments. We use this variant for measurements in
Section 4.

3.4. New Fallback Methods

This section presents novel fallback methods that may be used to
handle the case when perfect filtering cannot be achieved (dis-
cussed in Section 4). In these methods, we attempt to make each
lane in the wave do useful work toward increasing the filtering qual-
ity.

In our fallback methods, each lane starts by computing the co-
ordinates of a texel using STF, i.e., randomly selecting a texel with
probability based on its corresponding filter weight. In our simplest
fallback variant, all lanes produce their corresponding STF texel ,
gather unique texels within the wave belonging to their filter foot-
prints and then weight those texels to form the final filtered result.
Assume that a texel value, pk, is produced for lane k. Each lane
i identifies N unique texels pi, with nonzero filter weights wi, that
contribute to its pixel’s filtered value. Then, we estimate each lane’s
filtered value as

ck =
N−1

∑
i=0

wipi +

(
1−

N−1

∑
i=0

wi

)
∑

N−1
i=0 pi

N
, (1)

where the first term represents the known filtered texel values
weighted by their corresponding filter weights. The second term
is an estimate of the missing texel values as an unweighted aver-
age of the known ones. This estimate would be unbiased if it were
not for the lane PDF mismatch [WPAM25]. For the case when we
only have one unique texel for lane i, we return a single value pi,
the same as the classic One-tap STF evaluation [PWSF24]. When
all texel values necessary for filtering a single lane are known and
present in the wave, the second term of the equation is zero and we
get perfect filtering with zero error.

An extension to the method above further improves quality.
We note that just like in the method described by Wronski et
al. [WPAM25], multiple lanes may plan to produce the same texel,
resulting in redundant work. To remove some of them, we represent
the set of texels to be produced using a bitmask, similar to Mask
Sampling. Before the actual STF texel evaluation, each lane sets

the bit corresponding to the coordinates of its STF texel. We then
use WaveActiveBitOr() to find a bitmask containing all texels
that the wave is set to produce. Counting the number n of set bits
in that mask gives us the number of unique texels that need to be
produced for this initial texel evaluation. The difference here com-
pared to Mask Sampling is that we only set one bit per lane, rather
than N ×N. We can then leverage the remaining 32− n lanes to
improve quality. The first n lanes each produce their corresponding
STF texel. The remaining 32− n lanes also produce texels, but we
let each of these stochastically select a texel from its filter footprint
that has not yet been produced by any of the first n lanes. These
evaluations are spread out evenly over the wave’s 32 lanes. When
n < 32, this is done with a simple mapping, i.e.,

l =
⌊

31(c−n)
31−n

⌉
, (2)

where l is the resulting lane number, c is the current lane number,
which in the case of the 32− n remaining lanes must be in [n,31],
and ⌊·⌉ rounds to the nearest integer. Our mapping ensures that
lanes 0 and 31 always are included when 32− n ≥ 2. When only
one lane is left, the equation above maps it to l = 0. Alternative
mappings are also possible. At this point all lanes in the wave have
produced a texel, and then weighting is again done as described by
Equation 1.

These fallback methods are biased, yet as shown in Section 4,
they provide superior quality compared to previous, unbiased alter-
natives. In the results section, we mark the use of the simpler fall-
back method described above with C, and the use of the extended
version with C+.

4. Results

We start by focusing on bilinear filtering for magnification, with
bicubic filtering evaluated in Section 4.2. Additional performance
considerations are discussed in Section 4.3. For visual results, we
refer to Figure 1, Figure 8, and our supplemental video.

All methods are implemented in the Falcor rendering frame-
work [KCK∗22]. To measure quality only on waves with mag-
nification, we use trilinear texture filtering for all waves that have
at least one pixel with minification. Performance is measured on
an NVIDIA RTX 5090 GPU. Quality results are aggregated over
five different textures; see Section S3.1 for images and discussion
of how image metrics were aggregated. Furthermore, as denoising
can be expected to be applied as a post-process to most rendering
algorithms, image sequences are denoised using the DLSS [NVI25]
spatiotemporal denoiser unless stated otherwise. We use its DLAA
mode, which does spatiotemporal denoising and antialiasing, but
no superresolution. Diagrams generated with non-denoised images
corresponding to ones presented in this section can be found in our
supplemental material. Our runtime performance measurements fo-
cus on the incremental costs of our algorithms and do not include
DLSS, which we assume is already in use.

We primarily use the ColorVideoVDP video quality met-
ric [MHA∗24] (CVVDP for short) to evaluate error; it attempts
to model spatiotemporal aspects of human vision to better corre-
spond to human judgment than simpler metrics such as PSNR. Col-
orVideoVDP’s output is in just-objectionable differences (JODs).

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

6 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

0 45 90
Rotation

1.00

1.59

2.35

M
ag

n
ifi

ca
ti

on
fa

ct
or

List Merge

Box Sampling

Mask Sampling

Figure 4: Plot of magnification factors where our algorithms are
unable to produce all texels necessary for perfect bilinear filtering
and need to rely on fallback methods (Section 3.4). This magnifica-
tion factor is a function of the rotation of the texel grid compared to
the screen pixel grid. The scene used was a rotated, textured quad,
with the camera set to view the quad’s center head on. Cases where
a fallback was necessary are indicated by colored areas. List Merge
and Mask Sampling are the most effective, achieving perfect filter-
ing around a magnification factor of 1.59 and above for all quad
orientations. (Note that both cover identical areas.) The success
rate of Box Sampling varies more with orientation, with a magni-
fication factor of at least 2.35 needed for perfect filtering at the
challenging case of a 45 degree rotation.

The maximum JOD value is 10, which corresponds to the image or
video being perceptually indistinguishable from the ground truth.
Table 1 also includes results with other image metrics as well as
error measurements of non-denoised sequences.

4.1. Bilinear Filtering

We start with results for bilinear texture filtering during magnifi-
cation, which are used to support the recommendations we make
in Section 5. While our algorithms are often able to produce per-
fect filtering, the degree of magnification is sometimes too low to
be able to produce all the required texels with one texture evalu-
ation per lane. In such cases, our fallback methods (Section 3.4)
are needed. For the bilinear filter, those cases are illustrated by the
colored regions in Figure 4. See Figure S8 in our supplemental ma-
terial for the bicubic counterpart.

Figure 5 plots the quality and performance of our new methods
and the state-of-the-art alternatives—One-tap STF [PWSF24] and
Wave Communication STF [WPAM25] both as standalone meth-
ods but also as fallback options for Box and Mask Sampling. Fig-
ures 6 and 7, discussed later in the section, give more detailed pre-
sentations of the algorithms’ quality and performance. List Merge
was not considered because Mask Sampling reaches the same suc-
cess rate of achieving perfect filtering (Figure 4) while incurring
a smaller runtime cost. The diagrams also contain combinations
of our proposed fallback methods with Box and Mask Sampling
as main methods. In all of our results, the fallback method used is
indicated in parenthesis, e.g., “Mask Sampling (C+)” is Mask Sam-
pling with our C+ technique as fallback. This combination is what

we call “Ours” in Figure 1. The scenes used for our evaluation are
described in our supplemental material. The one used for Figure 5
and Table 1 contains a range of magnification factors to make it
similar to a realistic use case.

Considering Figure 5 and Table 1, we see that our methods pro-
vide higher-quality results than One-tap STF and Wave Communi-
cation STF, though One-tap STF is the fastest method. Following
the Pareto frontier in Figure 5, we see that combining Box Sam-
pling with One-tap STF as a fallback gives a large increase in qual-
ity compared to One-tap STF by itself without significantly increas-
ing runtime cost. Our fallback methods may then increase qual-
ity further, though with a small performance cost. Mask Sampling
paired with One-tap STF and Wave Communication STF fallbacks
are not quality/performance-efficient options. Those combinations
are therefore excluded in the remainder of the paper.

In Table 1, we complement the quality results presented in Fig-
ure 5 with the PSNR and FLIP [ANA∗20] image quality metrics,
as well as measurements for non-denoised sequences. Our meth-
ods give significantly higher quality than the state-of-the-art algo-
rithms. Denoising reduces the quality gap between our and prior
techniques, which are designed to be used with denoising.

In order to analyze quality and performance as magnification
varies, we next consider a scene where the camera is set up to view
a rotated quad’s center head on. Given the results in Figure 4, we
rotated the quad 45 degrees, as that is the most challenging case.
Figure 6 shows how quality varies as magnification increases. Mask
Sampling achieves perfect filtering at lower levels of magnification
than Box Sampling while previous algorithms do not achieve this
for any level of magnification. For additional quality results, in-
cluding convergence rates and maximum errors, see Section S3 in
our supplemental material.

Figure 7 shows how the runtime cost of the methods changes
during the same animation using a single lookup with a standard
RGBA texture. We can see that our extended fallback method (C+)
contributes a large portion of the total runtime cost for the variants
that use it. This is likely due to its implementation requiring more
registers than simpler alternatives. As magnification increases, the
less our algorithms need to resort to fallback methods, which re-
duces their runtime cost.

4.2. Bicubic Filtering

Our comparisons so far have focused on the bilinear filter due to its
ubiquity in real-time rendering. However, our methods also work
with arbitrary discrete filters. Figure 8 shows visual results and
error measurements using a bicubic B-spline filter as well as the
Catmull–Rom filter. The results parallel those in Figure 1, with
our algorithm giving significantly higher quality than previous ap-
proaches.

The Catmull–Rom filter includes negative weights. To sample
such filters, One-tap STF uses a Monte Carlo technique called pos-
itivization [PWSF24]. Positivization requires sampling the positive
and negative lobes of the filter separately, thus requiring that two
texels per lane are produced. Our method not only provides much
higher quality (perfect filtering with zero error for sufficiently large

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering 7 of 16

2 4 6 8 10 12
Runtime cost (µs/Mpixel)

8.8

9.0

9.2

9.4

9.6

9.8

10.0

C
ol

or
V

id
eo

V
D

P
(J

O
D

)

One-tap STF

Wave Communication STF

Box Sampling (One-tap STF)

Box Sampling (Wave Comm. STF)

Box Sampling (C)

Box Sampling (C+)

Mask Sampling (One-tap STF)

Mask Sampling (Wave Comm. STF)

Mask Sampling (C)

Mask Sampling (C+)

Figure 5: Pareto frontier (dashed line) indicating the most
quality/performance-efficient algorithm alternatives. The corre-
sponding PSNR range for this plot was approximately 35–67 dB.

1.00 1.20 1.40 1.80 2.00 2.201.59 2.35 2.50
Magnification factor

9.4

9.5

9.6

9.7

9.8

9.9

10.0

C
ol

or
V

id
eo

V
D

P
(J

O
D

)

One-tap STF

Wave Communication STF

Box Sampling (One-tap STF)

Box Sampling (Wave Comm. STF)

Box Sampling (C)

Box Sampling (C+)

Mask Sampling (C)

Mask Sampling (C+)

Figure 6: Quality at different magnification factors. As indicated
by Figure 4, perfect bilinear filtering is achieved for magnifica-
tion factors above 2.35 for all the methods we propose. Mask
Sampling achieves perfect filtering at lower magnification fac-
tors than Box Sampling. STF quality declines as magnification
increases due to increased aliasing and error from filtering after
shading [PWSF24].

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Magnification factor

0

5

10

15

20

R
u

nt
im

e
co

st
(µ

s/
M

p
ix

el
)

One-tap STF (2.4)

Wave Communication STF (5.9)

Box Sampling (One-tap STF) (2.7)

Box Sampling (Wave Comm. STF) (4.6)

Box Sampling (C) (5.2)

Box Sampling (C+) (11.4)

Mask Sampling (C) (8.4)

Mask Sampling (C+) (11.4)

Figure 7: Performance for an NVIDIA RTX 5090 under different
levels of magnification. The numbers in parentheses show the al-
gorithms’ average runtime costs. For reference, running at 60 FPS
at 2560× 1440 corresponds to 4741 µs/Mpixel, indicating that all
methods consume a tiny fraction of total frame time.

magnification factors), but also reduces the number of texels pro-
duced to ≤ 1 per lane. We make no distinction between positive
and negative weights and the types of filters other than computing
absolute values of filter weights used for sampling probabilities in
our fallback method.

4.3. Performance with Expensive Texture Decompression

In this section, we first present performance results using an ex-
isting neural texture decompressor and then consider DCT decom-
pression, where our techniques can be applied to further reduce the
cost of texel evaluation by distributing work for a single texel across
multiple lanes.

4.3.1. Neural Texture Decompression

To evaluate how our algorithms perform with neural texture com-
pression [VSW∗23] (NTC), we added Box Sampling with One-
tap STF as fallback into the ntc-renderer in the NTC SDK.§

We rendered the scene FlightHelmet and zoomed in on a part of
the helmet such that the magnification factor was > 2.35 for every
pixel. All NTC evaluations used inference on sample, i.e., texels
were decompressed when needed by the renderer. The renderer ran
at 7.7 µs/Mpixel without any texel evaluation, and with one NTC
evaluation per pixel using One-tap STF, it used 89 µs/Mpixel. Our
Box Sampling with One-tap STF as fallback ran at 93 µs/Mpixel.
(Recall also that rendering at, for example, 2560× 1440 pixels at
60 FPS is equivalent to 4741 µs/Mpixel.) Due to the level of mag-
nification, our method produced an image with zero error, while
One-tap STF generated noisy images. We also implemented full
bilinear filtering where 2× 2 NTC texels were decompressed for
each pixel. Performance was 516 µs/Mpixel with the same image
quality as our method but more than 4× higher runtime.

4.3.2. DCT Decompression

When there are more active lanes in a wave than needed texels,
there is an opportunity to distribute the work required for producing
a texel value across multiple lanes rather than having a single lane
produce each texel value; this can give improved performance. As
a proof-of-concept, we implemented a simple block-based discrete
cosine transform (DCT) compressed texture representation where
decompressing a block requires 8×8 matrix multiplications.

For a baseline, we decompress each texel in a single lane, first
decoding the red channel, then green and blue. We then added an
optimized path for when ten or fewer texels are needed in a 32-lane
wave—in that case, lanes decompress just a single color channel
and color channels are then assembled into full RGB texel values
via wave intrinsics. With a test scene with a plane viewed at an an-
gle where this optimization was applicable at roughly half of the
pixels, we saw a 1.64× speedup. When all pixels had sufficiently
large magnification factors, we measured a 2.5× speedup. Similar
performance improvements may be available for neural compres-
sion techniques [VSW∗23,FH24,KLM24,DBB∗25], where neural
network evaluation could be distributed across multiple lanes when

§ https://github.com/NVIDIA-RTX/RTXNTC

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/NVIDIA-RTX/RTXNTC

8 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

Table 1: Error metrics averaged across sequences. ↓ indicates lower is better, ↑ indicates higher is better. For each entry, the first number
(black) shows results without denoising while the second number (non-black) shows results with denoising.

One-tap STF
[PWSF24]

Wave Comm. STF
[WPAM25]

Box Sampling
(One-tap STF)

Box Sampling
(Wave Comm.)

Box Sampling
(C)

Mask Sampling
(C)

Box Sampling
(C+)

Mask Sampling
(C+)

PSNR (↑) 28.57 | 34.94 34.93 | 42.60 42.92 | 52.15 48.04 | 56.63 51.99 | 60.06 58.02 | 65.50 58.40 | 65.56 59.48 | 66.58

ColorVideoVDP (↑) 8.792 | 8.848 9.618 | 9.806 9.887 | 9.931 9.941 | 9.985 9.973 | 9.996 9.987 | 9.998 9.989 | 9.999 9.990 | 9.999

FLIP (↓) 0.0501 | 0.0328 0.0375 | 0.0224 0.0034 | 0.0040 0.0028 | 0.0036 0.0018 | 0.0027 0.0003 | 0.0016 0.0006 | 0.0018 0.0002 | 0.0015

Bicubic B-spline Bicubic Catmull–Rom
Ground truth One-tap STF Wave Comm. STF Mask Sampl. (C) Ground truth One-tap STF Mask Sampl. (C)

PSNR / FLIP / CVVDP 26.7 / 0.057 / 8.83 34.5 / 0.043 / 9.24 48.0 / 0.0071 / 9.87 PSNR / FLIP / CVVDP 27.3 / 0.060 / 8.81 46.9 / 0.0064 / 9.88

no
td

en
oi

se
d

de
no

is
ed

PSNR / FLIP / CVVDP 35.5 / 0.044 / 9.06 44.5 / 0.026 / 9.80 55.0 / 0.0062 / 9.96 PSNR / FLIP / CVVDP 36.1 / 0.044 / 9.23 53.3 / 0.0061 / 9.95

Figure 8: Visual comparison and error measurments with the bicubic B-spline and Catmull–Rom filters. All three error metrics indicate that
our method achieves very high quality, both with and without denoising. For Catmull–Rom filters with negative weights, our method requires
0.88 texel evaluations per pixel, while One-tap STF requires two texel evaluations to sample the positive and negative lobes of the filter
separately. Wave Communication STF does not support filters with negative weights.

idle ones are available. However, a full performance evaluation is
out of the scope of this paper and left for future work.

Finally, we note that our method can similarly reduce the com-
putational cost even with traditional texture representations. Pharr
et al. [PWSF24] discussed how STF can be used to accelerate
common expensive material evaluation techniques requiring mul-
tiple material samples, such as triplanar mapping. Our method can
be used to similarly distribute sampling of different axis-aligned
planes between lanes in a wave, or, in general, even different mate-
rial samples.

5. Discussion and Limitations

Our results in Section 4.1 suggest that Mask Sampling gives the
highest quality independent of whether denoising is used, though
Box Sampling does almost as well with a lower runtime cost. This
makes Box Sampling our general recommendation. However, be-
cause Mask Sampling gives a more accurate estimate of which tex-
els are required for perfect filtering, it is an attractive alternative
when combined with larger filters (Section 4.2) where the fallback
method may be necessary less often or with decompression meth-
ods that split decompression work across lanes (Section 4.3).

We have shown that our algorithms guarantee perfect filtering
with small discrete texture filters above modest magnification fac-
tors and also do so with larger texture filters at higher magnification
factors (Section S3.6). This is a natural outcome, since more texels
are needed for larger texture filters. For perfect filtering at lower
magnification rates, all of our methods can easily be extended to
generate more than one texel per lane. We have verified experimen-
tally that for a screen-aligned quad with magnification factor 1.0,
the bilinear filter requires no more than 54 unique texels (occuring

at, e.g., 30◦ rotation of the quad) for 8×4 waves. Hence, ≤ 2 texel
evaluations are sufficient to always succeed at returning a perfectly
bilinearly-filtered value when all pixels in a wave undergo magni-
fication. Similar analysis for larger filters is left for future work.

While we focused our work on the application of magnification
filtering, we found that our fallback methods apply to modest mini-
fication filters and trilinear filtering as well, effectively performing
filtering before shading. We have decided not to include those re-
sults following the recommendations of Pharr et al. [PWSF24], as
well as common real-time rendering practice of negative MIP bias-
ing and relying on post-shading spatiotemporal reconstruction fil-
ters [Kar14]. Filtering before shading changes the appearance of
rendered objects under minification, reduces the perceived texture
sharpness, and can lead to aliasing.

One limitation of our algorithms is a consequence of their re-
liance on obtaining complete enumerable sets of texels to filter.
Pharr et al. [PWSF24] proposed a second family of stochastic tex-
ture filtering for continuous and potentially infinite filters, based on
filter importance sampling. Determining the complete set of tex-
els required for perfect filtering is inherently impossible for any
filter with an infinite spatial support, which makes our methods in-
applicable. To use our algorithms with such filters, truncation and
windowing would be necessary, which would lead to approxima-
tion errors. Furthermore, computing multiple filter weights is sig-
nificantly more costly than sampling the filter PDF in the case of
commonly used filters, such as the Gaussian kernel.

6. Conclusions and Future Work

Our family of techniques effectively addresses the shortcomings
of stochastic texture filtering during magnification for commonly-
used texture filters. Above small magnification factors, they achieve

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering 9 of 16

zero error while having a small computational cost, generating no
more than one texel per lane.

While we briefly investigated techniques to increase parallelism
for decompression when few unique texels are required (Sec-
tion 4.3.2), further work in this direction may give even greater
performance improvements in such cases. Extensions to other de-
compressors may give similar performance benefits.

In our approach, we rely on inter-wave communication to min-
imize performance overhead. However, this limits the number of
GPU threads collaboratively producing texels to the wave size and
limits the applicability of our algorithm to small texture filters. In
future work, it might be worth extending our approach to a hy-
brid between wave communication and using shared memory with
larger compute shader launch groups.

Acknowledgments

Many thanks to Tomáš Davidovič for help with details of Fal-
cor internals and to Johannes Deligiannis for help with integrat-
ing our techniques with the NTC SDK. Magnus Andersson, Ras-
mus Barringer, Anders Lindqvist, James Player, and Robert Toth
all helped with code optimizations. Thanks also to Aaron Lefohn
and NVIDIA Research for supporting this work.

Thanks to PolyHaven for the Aerial Rocks, Dirt, and Painted
Concrete texture sets and to ambientCG for the Bricks and Rails
texture sets.

References
[ANA∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-

KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: FLIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 3, 2 (2020), 15:1–23. 6, 12

[BWP∗20] BITTERLI B., WYMAN C., PHARR M., SHIRLEY P.,
LEFOHN A., JAROSZ W.: Spatiotemporal Reservoir Resampling for
Real-Time Ray Tracing with Dynamic Direct Lighting. ACM Transac-
tions on Graphics 39, 4 (July 2020). doi:10/gg8xc7. 2

[DBB∗25] DUPUY J., BENYOUB A., BELCOUR L., MERECKI M.,
CHAMBON T.: Intel Co-Presents Cooperative Vectors with Microsoft.
Game Developers Conference, 2025. [Online; accessed 2025-03-25]. 1,
7

[FH24] FUJIEDA S., HARADA T.: Neural Texture Block Compression.
In Workshop on Material Appearance Modeling (2024), Hardeberg J. Y.,
Rushmeier H., (Eds.), The Eurographics Association. 1, 7

[Hoo11] HOOBLER N.: High Performance Post-Processing. In Game
Developers Conference (2011). 3

[Kar14] KARIS B.: High-Quality Temporal Supersampling. Advances in
Real-Time Rendering in Games, SIGGRAPH Courses 1, 10.1145 (2014),
2614028–2615455. 2, 8

[KCK∗22] KALLWEIT S., CLARBERG P., KOLB C., DAVIDOVIČ T.,
YAO K.-H., FOLEY T., HE Y., WU L., CHEN L., AKENINE-MÖLLER
T., WYMAN C., CRASSIN C., BENTY N.: The falcor rendering frame-
work. BSD-Licensed Github Repository, August 2022. 5

[KKSS18] KENZEL M., KERBL B., SCHMALSTIEG D., STEINBERGER
M.: A High-Performance Software Graphics Pipeline Architecture for
the GPU. ACM Transactions on Graphics 37, 4 (2018), 1–15. 3

[KLM24] KIM D., LEE M., MUSETH K.: NeuralVDB: High-Resolution
Sparse Volume Representation Using Hierarchical Neural Networks.
ACM Transactions on Graphics 43, 2 (2024), 20:1–21. 1, 3, 7

[LSO07] LEFOHN A. E., SENGUPTA S., OWENS J. D.: Resolution-
Matched Shadow Maps. ACM Transactions on Graphics 26, 4 (Oct.
2007), 20–37. 3

[MHA∗24] MANTIUK R. K., HANJI P., ASHRAF M., ASANO Y.,
CHAPIRO A.: ColorVideoVDP: A Visual Difference Predictor for Im-
age, Video and Display Distortions. ACM Transactions on Graphics 43,
4 (2024), 129:1–20. 5, 12

[Mic21] MICROSOFT: HLSL Shader Model 6.0. https://learn.
microsoft.com/en-us/windows/win32/direct3dhlsl/
hlsl-shader-model-6-0-features-for-direct3d-12,
2021. [Online; accessed 2024-09-11]. 2

[MML12] MCGUIRE M., MARA M., LUEBKE D.: Scalable Ambient
Obscurance. In High Performance Graphics (2012), pp. 97–103. 2

[NVI25] NVIDIA: DLSS 4: Transforming Real-Time Graphics with
AI. https://research.nvidia.com/labs/adlr/DLSS4/,
2025. Technical Report. 1, 2, 5, 15

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clustered De-
ferred and Forward Shading. In High Performance Graphics (2012),
pp. 87–96. 3

[Pen11] PENNER E.: Shader Amortization Using Pixel Quad Message
Passing. In GPU Pro 2. CRC Press, 2011, pp. 349–366. 2

[PWSF24] PHARR M., WRONSKI B., SALVI M., FAJARDO M.: Fil-
tering After Shading with Stochastic Texture Filtering. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 7, 1 (2024),
14:1–20. 1, 2, 3, 5, 6, 7, 8, 13, 14, 15

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing Efficient
Sorting Algorithms for Manycore GPUs. In IEEE International Sympo-
sium on Parallel & Distributed Processing (2009), pp. 1–10. 3

[SHGO11] SENGUPTA S., HARRIS M. J., GARLAND M., OWENS J. D.:
Efficient Parallel Scan Algorithms for Many-Core GPUs. In Scientific
Computing with Multicore and Accelerators, Jakub Kurzak D. A. B.,
Dongarra J., (Eds.). 2011, pp. 413–442. 3

[VSW∗23] VAIDYANATHAN K., SALVI M., WRONSKI B., AKENINE-
MÖLLER T., EBELIN P., LEFOHN A.: Random-Access Neural Com-
pression of Material Textures. ACM Transactions on Graphics 42, 4
(2023), 88:1–25. 1, 7

[WPAM25] WRONSKI B., PHARR M., AKENINE-MÖLLER T.: Im-
proved Stochastic Texture Filtering Through Sample Reuse. Proceed-
ings of the ACM on Computer Graphics and Interactive Techniques 8, 1
(2025). arXiv:2504.05562. 1, 2, 3, 5, 6, 8, 13, 14, 15

[YLS20] YANG L., LIU S., SALVI M.: A Survey of Temporal Antialias-
ing Techniques. Computer Graphics Forum 39, 2 (2020), 607–621. 2

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10/gg8xc7
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/hlsl-shader-model-6-0-features-for-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/hlsl-shader-model-6-0-features-for-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/hlsl-shader-model-6-0-features-for-direct3d-12
https://research.nvidia.com/labs/adlr/DLSS4/
http://arxiv.org/abs/2504.05562

10 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

Supplemental Material:
Collaborative Texture Filtering

This supplemental material includes:

• Detailed code showing example implementations of the Box
Sampling and Mask Sampling algorithms.

• Details on the edge remapping technique used at silhouette edges
where not all of the wave’s lanes are active.

• More information about the scenes, textures, and metrics used
for evaluation.

• Additional evaluation and results.

S1. Code

For simplicity, we omit clamping of out-of-bounds texture coordi-
nates in the code below and we do not include an implementation of
List Merge, since it performs poorly and is not a realistic alternative
for use in real applications. (Recall that it was mostly included be-
cause it computes the number of texels needed for perfect filtering
exactly, which was useful for evaluating the other approaches.)

S1.1. Box Sampling

The following helper functions are used in the implementation of
Box Sampling for bilinear filtering, which follows.

1 int2 LaneIdxToCoord(uint laneIdx,

2 int2 waveUpperLeftIntCoords,

3 uint bbWidth)

4 {

5 uint laneY = laneIdx / bbWidth;

6 uint laneX = laneIdx % bbWidth;

7 return waveUpperLeftIntCoords + int2(laneX, laneY);

8 }

9
10 uint CoordToLaneIdx(int2 coord,

11 int2 waveUpperLeftIntCoords,

12 uint bbWidth)

13 {

14 coord -= waveUpperLeftIntCoords;

15 return coord.x + coord.y * bbWidth;

16 }

17
18 bool LanesLowerThanCountActive(uint count)

19 {

20 uint activeLanesMask = WaveActiveBallot(true).x;

21 uint desiredActiveMask = (count == 32) ? 0xFFFFFFFF : (1 <<

count) - 1;

22
23 return (activeLanesBitMask & desiredActiveMask) ==

desiredActiveMask;

24 }

Inside the shader that accesses the texture, the following code im-
plements Box Sampling:

1 uint2 txDim;

2 texture.GetDimensions(txDim.x, txDim.y);

3 float2 floatCoords = uv * txDim - float2(0.5f);

4 int2 upperLeftIntCoords = int2(floor(floatCoords));

5 int2 lowerRightIntCoords = upperLeftIntCoords + int2(1, 1);

6 float2 stCoords = floatCoords - upperLeftIntCoords;

7
8 // Compute bounding box of texel integer coordinates

9 int2 waveUpperLeftCoords = WaveActiveMin(upperLeftIntCoords);

10 int2 waveLowerRightCoords = WaveActiveMax(lowerRightIntCoords);

11 int2 bbSize = waveLowerRightCoords - waveUpperLeftCoords + 1;

12
13 int activeTexelsNeeded = bbSize.x * bbSize.y;

14 bool requiredLanesActive = LanesLowerThanCountActive(

activeTexelsNeeded);

15
16 if (activeTexelsNeeded > 32 || !requiredLanesActive)

17 return fallBackMethod();

18
19 uint curLaneIdx = WaveGetLaneIndex();

20 float4 texelValue = float4(0.0f);

21
22 if (curLaneIdx <= activeTexelsNeeded) {

23 uint2 texCoords = LaneIdxToCoord(curLaneIdx,

24 waveUpperLeftCoords, bbSize.x);

25 texelValue = texture[texCoords];

26 }

27
28 float4 bilinWeights = computeBilinearWeights(stCoords);

29
30 float4 filteredColor = float4(0.0f);

31 [unroll]

32 for (int i = 0; i < 4; i++) {

33 int2 texelCoords = int2(upperLeftIntCoords.x + (i % 2),

34 upperLeftIntCoords.y + (i / 2));

35 uint laneIdx = CoordToLaneIdx(texelCoords, waveUpperLeftCoords,

bbSize.x);

36 filteredColor += WaveReadLaneAt(texelValue, laneIdx) *
bilinWeights[i];

37 }

38 return filteredColor;

The first six lines of code compute various coordinates from the tex-
ture dimensions and (u,v)-coordinates. Among these are the upper
left coordinates of the 2× 2 filter footprint needed for bilinear fil-
tering and (s, t)-coordinates which are local coordinates inside the
2× 2 region and are in [0,1]. Next, we use WaveActiveMin()
and WaveActiveMax() to compute an axis-aligned bounding
box over the texel coordinates that are needed for the entire wave.

Next, we check whether the number of needed texels is less than
or equal to the number of active lanes in the wave and if all of the
lanes are active. For each texel-producing lane, we then use a sim-
ple linearly-ordered mapping LaneIdxToCoord() to compute
its texel coordinates. Producing a texel in this example is done here
via a regular texel fetch using texture[]. Finally, we iterate over
the texture filtering footprint, gathering and accumulating the nec-
essary texels using the CoordToLaneIdx() and WaveRead-
LaneAt() functions. We note that the same algorithm works for
any texture filter: the only changes required are the calculations
of upperLeftIntCoords, lowerRightIntCoords, com-
puteBilinearWeights, and the final unrolled loop extent.

S1.2. Mask Sampling

Code for Mask Sampling with a 16×16 mask is shown below.

1 uint2 txDim;

2 texture.GetDimensions(txDim.x, txDim.y);

3 floatCoords = uv * txDim - float2(0.5f);

4 int2 upperLeftIntCoords = int2(floor(floatCoords));

5 int2 lowerRightIntCoords = upperLeftIntCoords + int2(1, 1);

6 float2 stCoords = floatCoords - upperLeftIntCoords;

7
8 // Compute bounding box of texel integer coordinates

9 int2 waveUpperLeftCoords = WaveActiveMin(upperLeftIntCoords);

10 int2 waveLowerRightCoords = WaveActiveMax(lowerRightIntCoords);

11 int2 bbSize = waveLowerRightCoords - waveUpperLeftCoords + 1;

12 uint2 deltaCoords = upperLeftIntCoords - waveUpperLeftIntCoords;

13
14 if (bbSize.x > 16 || bbSize.y > 16)

15 return fallBackMethod();

16

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering 11 of 16

17 // Set the 2x2 bits corresponding to the 2x2 texels needed.

18 uint64_t4 mask = uint64_t4(0);

19 set2x2Bits(upperLeftIntCoords - waveUpperLeftIntCoords, mask);

20
21 // Compute the ORed mask across the entire wave.

22 uint64_t4 waveMask;

23 waveMask.x = WaveActiveBitOr(mask.x);

24 waveMask.y = WaveActiveBitOr(mask.y);

25 waveMask.z = WaveActiveBitOr(mask.z);

26 waveMask.w = WaveActiveBitOr(mask.w);

27
28 uint curLaneIdx = WaveGetLaneIndex();

29 uint activeTexelsNeeded = countbits(waveMask);

30 uint activeLanesMask = WaveActiveBallot(true).x; // # active lanes

31
32 if (activeTexelsNeeded > countbits(activeLanesBitMask))

33 return fallBackMethod();

34
35 float4 curPixelTexelValue;

36 int2 sampledTexelIntCoords;

37 float4 color = float4(0.0f);

38 float4 bilinWeights = computeBilinearWeights(stCoords);

39
40 // Does this lane needs to produce a texel?

41 if (curLaneIdx <= activeTexelsNeeded) {

42 uint2 deltaTexCoords = bijectiveFunctionH(curLaneIdx, waveMask);

43 sampledTexelIntCoords = waveUpperLeftIntCoords + deltaTexCoords;

44 curPixelTexelValue = texture[sampledTexelIntCoords];

45 }

46
47 // Compute 1D local texture coordinate:

48 uint t = (deltaCoords.y << 4) + deltaCoords.x;

49 // Read the 2x2 texels needed for this pixel and weight together.

50 uint i0 = inverseBijectiveFunctionH(t, waveMask);

51 color += bilinWeights.x * WaveReadLaneAt(curPixelTexelValue, i0);

52 uint i1 = inverseBijectiveFunctionH(t+1, waveMask);

53 color += bilinWeights.y * WaveReadLaneAt(curPixelTexelValue, i1);

54 uint i2 = inverseBijectiveFunctionH(t+16, waveMask);

55 color += bilinWeights.z * WaveReadLaneAt(curPixelTexelValue, i2);

56 uint i3 = inverseBijectiveFunctionH(t+16+1, waveMask);

57 color += bilinWeights.w * WaveReadLaneAt(curPixelTexelValue, i3);

58 return color;

The first six lines of code are the same as for Box Sampling. The
mask is stored in an uint64_t4, which has 16 · 16 = 256 bits,
and so lines 14–15 call the fallback method if either of the bound-
ing box dimensions is larger than 16. Lines 18–26 first set the 2×2
bits of the texels needed by the current lane in mask using a func-
tion set2x2Bits(); then it is OR of all of these over the entire
wave using WaveActiveBitOr() that gives the full wave mask,
waveMask.

Lines 28–33 compute how many texels are needed by counting
the set bits in waveMask and use WaveActiveBallot(true)
to find a bitmask of the active lanes in the wave. As with Box Sam-
pling, the fallback method is called if the number of texels needed
is more than the number of active lanes in the wave. Past this point,
we know there are a sufficient number of active lanes and that Mask
Sampling will succeed at getting all 2×2 texels needed by each ac-
tive lane in the wave to perform perfect bilinear filtering.

In lines 41–45, the lanes with lane number less than the num-
ber of needed texels produce a texel, which in this example sim-
ply does a texture lookup using the GPU’s texture unit. The bi-
jective function h(i,B) (Figure 3) is used to compute local tex-
ture coordinates, which are added to the wave’s upper left coor-
dinates and the lookup is performed at the end. Line 48 com-
putes the local one-dimensional texture coordinate of the upper
left texel for the current lane. Since we know that the current lane
wants the 2×2 texels starting from upperLeftIntCoords, we

bilinear ground truth Mask Sampling w/o Mask Sampling with
edge remapping edge remapping

Figure S1: Left: bilinear ground truth filtering near a triangle
edge. Middle: if we require the first n lanes to be active if n tex-
els are needed, then the fallback is often used and results may be
noisy. Right: with the remapping technique described in Section S2,
we only need n active lanes across the wave and this problem is
largely eliminated.

can transform that to 2×2 one-dimensional texture coordinates as
{t, t + 1, t + 16, t + 16+ 1}, where t + 1 identifies the texel to the
right of t, and t + 16 the texel below t, since the mask is 16× 16
bits. These coordinates are then fed to the inverse of the bijective
function, i.e., h−1(t,B), and then the texel is produced from that
lane and weighted, with perfect bilinear filtering as a result.

Similar to Box Sampling, we note that the algorithm above
works for any texture filter, only requiring changes to the calcula-
tions of upperLeftIntCoords, lowerRightIntCoords,
computeBilinearWeights, set2x2Bits, and the final un-
rolled loop.

S2. Edge Remapping

Close to a triangle edge against the background, a wave will typi-
cally not have all of its lanes active. So far, we have assumed that at
least the first n lanes are active when n texels are needed and so the
mappings from lanes to texels in Box and Mask Sampling may end
up with inactive lanes being assigned to generate texels but then not
actually doing so. In such cases, we may use the fallback method
introduced in Section 3.4 of the main paper, though that can give
artifacts as shown in the middle in Figure S1.

Alternatively, we can map lanes to texels more carefully, ac-
counting for inactive lanes. Assume for now that the size of a wave
is 8: if all lanes are active, then we have the active lane mask
11111111. In that case Mask Sampling, for example, can sim-
ply use its bijective function, t = h(i,B), to map a lane index into
a texel coordinate. This fails if the active lane mask is, for exam-
ple, 11101010. Still, if only four lanes are needed, then we can
see that since the number of bits in the mask is ≥ 4, it should be
possible to run the algorithm anyway.

If we enumerate the needed texels from 0 to n−1 with a number
i, then we need a way to map that number into a lane number in the
active lane mask where there is a 1. This can be done with the same
bijective function as is used in Mask Sampling. We simply use h()

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

12 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

PAINTED-
AERIALROCKS BRICKS DIRT CONCRETE RAILS

D
iff

us
e

N
or

m
al

m
ap

Figure S2: The textures used in our image quality measurements.

once again, i.e., we remap so the texel number is remapped to lane
index as h(i,A), where A is the active lane mask. This technique
can also be applied to Box Sampling.

On the right of the Figure S1, we present the result of our edge
remapping, which substantially improves the image quality. How-
ever, it is still sometimes necessary to use the fallback method. This
can happen, for example, when two texels are needed (e.g., due to
clamping), but there is only a single active lane in the wave.

S3. Additional Evaluation Details and Results

In this section, we provide specifics about the scenes and textures
used in the paper as well as the image quality metrics we used. We
also present additional quality results.

S3.1. Scenes and Textures

We used two primary scenes and six textures for evaluation.

The first test scene consisted of a single quad, and a camera po-
sitioned directly above the quad’s center, viewing it head on. The
degrees of freedom used for this scene was the camera’s distance to
the quad, which set the effective magnification factor, the quad’s ro-
tation around the axis corresponding to the camera’s viewing direc-
tion, as well as the texture used for the quad. The quad was shaded
with a simple shading algorithm that only considered diffuse and
normal textures, with lighting defined by a single light vector. This
scene was used for Figures 4, 6, S4, S5, S7, S6, and S8, as well as
Table S1.

To analyze the behavior of our algorithms with partially active
waves and texture discontinuities, our second scene included 4×4
tessellated spheres in addition to the quad. The camera started some
distance away from the quad so that a small amount of minification
occurred, and then moved toward the spheres and back. The spheres
and the quad used the same texture, though the version used on
the spheres was a low-resolution version of the texture, so that we
would have magnification also on the spheres. Each mesh in this
scene was shaded using the same shading algorithm as the quad in
the first scene. In total, the camera animation was 6 seconds long

and rendered at 60 frames per second. It is shown in our supple-
mental video. This scene was used for Figures 5 and S3, as well as
Table 1. A version similar to this scene, but with different camera
animations and number of spheres, was used for Figures 1 and 8.

The resolution of the images we rendered was 1600×1600, and
the field of view of the camera was 45 degrees.

The five textures used throughout the results section of this
work were the diffuse and normal textures for the AERIALROCKS,
BRICKS, DIRT, PAINTEDCONCRETE, and RAILS sets. This set of
textures shows variety in both diffuse and normal content, includ-
ing both high- and low-frequency information. Each texture image
has a resolution of 4096×4096 and we present them in Figure S2.

S3.2. Metric Specifics

Our results contain PSNR values as well as output from the Col-
orVideoVDP [MHA∗24] and FLIP metrics [ANA∗20].

For single images, PSNR was computed as usual by

PSNR(G,T) =−10log(MSE(G,T)), (S1)

where G is the ground-truth image, T is the test image, and MSE is
mean-squared error. Both ground-truth and test images were in lin-
ear sRGB space. In cases where we have N image sequences, each
containing M frames, we take the average of the individual frame
pairs’ MSEs before computing PSNR. That is, if Ĝi = {Gi

j}
M−1
j=0

and T̂i = {Ti
j}

M−1
j=0 are the sets of M ground-truth and test frames

for sequence i, i ∈ {0,1, . . . ,N −1}, we compute PSNR as

PSNR
(
{Ĝi}N−1

i=0 ,{T̂i}N−1
i=0

)
=−10log

(
1

NM

N−1

∑
i=0

M−1

∑
j=0

MSE(Gi
j,T

i
j)

)
.

(S2)

Notice that the computation in Equation S2 gives the same result as
that in Equation S1 when only a single frame pair is considered.

The ColorVideoVDP model requires information about the as-
sumed observer’s viewing conditions and display. We use the

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering 13 of 16

default settings, and set the assumed number of frames dis-
played per second to 60 for all our image sequences. The re-
producibility information provided when running the metric was
“ColorVideoVDP v0.4.2, 75.4 [pix/deg], Lpeak=200, Lblack=0.2,
Lrefl=0.3979 [cd/m^2], (standard_4k).” ColorVideoVDP’s output
is in Just-Objectionable Differences (JOD) units, scaled to have a
maximum value of 10. Only if the reference and test images/se-
quences are visually indistinguishable under the assumed viewing
conditions is the JOD value of the test equal to 10. In cases where
we compute one JOD over a set of image sequences, that JOD is
the average of the JODs for each individual sequence. Using the
notation introduced above, we have

ColorVideoVDP
(
{Ĝi}N−1

i=0 ,{T̂i}N−1
i=0

)
=

1
N

N−1

∑
i=0

ColorVideoVDP
(

Ĝi, T̂i
)
.

(S3)

Note that ColorVideoVDP is also able to compare single images.
We use this capability for the results in Figure 6.

Like ColorVideoVDP, FLIP requires information about the as-
sumed observer’s viewing conditions. In particular, it takes the ob-
server’s distance to the display as well as the display’s width (in me-
ters and in pixels). To match the assumptions for ColorVideoVDP
and FLIP, we use the information provided by ColorVideoVDP for
its standard_4k display, namely a distance to display of 0.7472
meters and a display width of 0.664 meters and 3840 pixels. As

FLIP acts on single images, and not image sequences, the FLIP er-
ror we present for multiple image sequences is the average of each
frame pairs’ FLIP error, i.e.,

FLIP
(
{Ĝi}N−1

i=0 ,{T̂i}N−1
i=0

)
=

1
NM

N−1

∑
i=0

M−1

∑
j=0

FLIP(Gi
j,T

i
j).

(S4)

S3.3. Quality Comparison Without Denoising

In this section, we present diagrams showing quality/performance
efficiency and the quality as a function of magnification corre-
sponding to the main paper’s Figures 5 and 6, but without denois-
ing the evaluated sequences. The results are shown in Figures S3
and S4. Furthermore, in Figure S5 and Table S1, we examine how
the maximum image error differs between the considered algo-
rithms.

We start by noting that the same methods lie on the Pareto fron-
tier, independent of whether the sequences are denoised (Figures 5
and S3). Furthermore, in Figure S4, as also shown in Figure 4,
we again see that our algorithms provide perfect bilinear filtering
above a magnification threshold (1.59 for Mask Sampling and 2.35
for Box Sampling), while the One-tap STF [PWSF24] and Wave
Communication STF [WPAM25] algorithms are unable to achieve
that for any magnification factor due to their inherently stochastic
nature. At lower magnification factors, where our algorithms are
unable to reach perfect filtering and must use fallback alternatives,
they still give higher quality than the prior techniques. (A compar-
ison between our fallback methods and the state-of-the-art algo-
rithms is included in Section S3.5.) Furthermore, both Figures S3

2 4 6 8 10 12
Runtime cost (µs/Mpixel)

8.8

9.0

9.2

9.4

9.6

9.8

10.0

C
ol

or
V

id
eo

V
D

P
(J

O
D

)

One-tap STF

Wave Communication STF

Box Sampling (One-tap STF)

Box Sampling (Wave Comm. STF)

Box Sampling (C)

Box Sampling (C+)

Mask Sampling (One-tap STF)

Mask Sampling (Wave Comm. STF)

Mask Sampling (C)

Mask Sampling (C+)

Figure S3: Pareto frontier (dashed line) indicating the most
quality/performance-efficient algorithms when rendering without
denoising. Runtime cost was measured on an NVIDIA RTX 5090.
Our new fallback algorithms are marked with C and C+. The PSNR
range for this plot was 29–59 dB.

1.00 2.001.25 1.50 2.502.351.59
Magnification factor

30

50

70

90

110

∞
P

S
N

R
(d

B
)

One-tap STF

Wave Communication STF

Box Sampling (One-tap STF)

Box Sampling (Wave Comm. STF)

Box Sampling (C)

Box Sampling (C+)

Mask Sampling (C)

Mask Sampling (C+)

Figure S4: Quality as a function of magnification, without denois-
ing. As indicated by Figure 4, perfect bilinear filtering is achieved
above magnification factor 2.35 for our methods. Colored discs
mark that an algorithm has achieved perfect bilinear filtering at
the corresponding magnification factor, resulting in infinite PSNR.
At that and higher magnification factors, perfect bilinear filtering
occurs for that algorithm. The small black circle marks a case when
perfect bilinear filtering is achieved at a magnification lower than
the limits indicated by the disks. This situation can arise for certain
magnification and rotation combinations.

and S4 show that Mask Sampling yields higher-quality results than
Box Sampling. We also confirm our earlier findings that the Mask
Sampling quality increase comes at a performance trade-off, as Box
Sampling is the faster of the two.

Finally, we consider the plots in Figure S5 and the results in Ta-
ble S1, where the plots show the maximum errors produced by the
algorithms we consider, and the table shows the averages of the
curves in those plots. We generated these results using the same
simple magnification setup as explained in Section S3.1, with the

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

14 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

One-tap STF Wave Communication STF Box Sampling (One-tap STF) Box Sampling (Wave Comm. STF) Box Sampling (C) Box Sampling (C+) Mask Sampling (C) Mask Sampling (C+)

0 45 90
Degrees of rotation

120

140

160

180

200

(a) Magnification factor: 1.15

0 45 90
Degrees of rotation

120

140

160

180

200

(b) Magnification factor: 1.35

0 45 90
Degrees of rotation

0

50

100

150

200

(c) Magnification factor: 1.55

Figure S5: Maximum errors (scaled to [0,255]) produced by the compared algorithms for rotations by r ∈ [0,90] degrees, given three different
levels of magnification. The legend is included above the plots. Note that the y-axis for the rightmost plot differs from that in the other two.
The errors from Box and Mask Sampling in Figure S5a are the same, but the curves for Box Sampling are offset by 0.5 for visibility. As
implied by Figure 4, at magnification factors larger than 1.59, the maximum error of Mask Sampling is zero for all rotations, while Box
Sampling requires more magnification (2.35 or higher) to produce perfect bilinear filtering.

Table S1: Average maximum errors (scaled to [0,255]) across the rotations used in Figure S5, for each of the different magnification factors
used in that figure. One-tap STF is the algorithm by Pharr et al. [PWSF24], Wave Comm. is short for Wave Communication STF and is the
algorithm by Wronski et al. [WPAM25], Box is short for Box Sampling, and Mask is short for Mask Sampling.

Zoom
One-tap

STF
Wave

Comm.
Box

(One-tap STF)
Box

(Wave Comm.)
Box
(C)

Box
(C+)

Mask
(C)

Mask
(C+)

1.15 174 163 174 163 161 147 161 147

1.35 172 157 172 156 152 137 150 135

1.55 174 153 154 135 132 117 7 6

quad rotating between [0,90] degrees for each measurement. For
low magnification, Box and Mask Sampling perform the same (the
Box Sampling curves in Figure S5a are offset slightly for visibil-
ity). As magnification increases, Mask Sampling starts producing
lower errors than Box Sampling, when both use the same fallback
method. At a magnification factor of 1.55, Mask Sampling is able
to produce perfect bilinear filtering for most rotations, while Box
Sampling requires higher magnification to do so (see Figure 4).
The more complex fallback method (C+) often give lower maxi-
mum errors than the simpler, faster one. These results agree with
Figure S4.

S3.4. Convergence Analysis

We also analyzed whether or not the output of our algorithms con-
verges to the ground-truth image when we increase the number of
samples drawn per pixel (SPP), or how large the bias is if they do
not; see Figure S6, which shows PSNR as a function of SPP. For
these results, we once again use the same simple, rotated quad and
set of textures described in Section S3.1. For a given SPP-value,
PSNR was computed over a set of magnification factors in the
[1.0,2.5] range, as that is approximately the range where one or
more of our algorithms are unable to produce perfect bilinear fil-
tering (see Figure 4). Figure S6 shows that our algorithms achieve
better results, though they also show some bias, similar to One-tap
STF [PWSF24] and Wave Communication STF [WPAM25]. This

1 2 4 8 16 32 64 128 256 512 1024
Samples per pixel

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

P
S

N
R

(d
B

)

One-tap STF

Wave Communication STF

Box Sampling (One-tap STF)

Box Sampling (Wave Comm. STF)

Box Sampling (C)

Box Sampling (C+)

Mask Sampling (C)

Mask Sampling (C+)

Figure S6: Plot of the error convergence of the considered algo-
rithms when compared to perfect bilinear filtering. The scene used
was the first scene described in Section S3.1. Ten magnification fac-
tors in the range [1.0,2.5] were used for each PSNR value.

is a consequence of the difference between filtering after shading
and filtering before shading, as discussed by Pharr et al. [PWSF24].

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering 15 of 16

S3.5. Fallback Evaluation

In extreme cases, every wave could contain a silhouette edge, which
means that the fallback (Section 3.4) would be called for every
pixel. We therefore present image quality results for our fallback
methods as a function of magnification factor in Figure S7, both
without and with denoising.

Even our simplest proposed fallback (C) provides better image
quality than both One-tap STF [PWSF24] and Wave Communica-
tion STF [WPAM25]. We also note that without DLSS (top dia-
gram), our C+ method continues to increase the image quality for
higher magnification factors, while that happens to a lesser extent
for the other methods. This is a consequence of C+ leveraging un-
used lanes to produce more unique texels and as magnification in-
creases there are more and more unused lanes that can be used
to increase image quality. For the comparisons with denoised se-
quences, since we apply denoising both to the ground-truth and the
test sequence and the latter almost is identical to the former (see the
high PSNR values for high magnification in Figure S7a), the small
errors become slightly larger, spatially, due to the slight blur caused

0 5 10 15 20 25 30
Magnification factor

30

40

50

60

70

80

P
S

N
R

(d
B

)

One-tap STF

Wave Comm. STF

Our (C)

Our (C+)

(a) Not denoised.

0 5 10 15 20 25 30
Magnification factor

30

40

50

60

70

80

P
S

N
R

(d
B

)

One-tap STF

Wave Comm. STF

Our (C)

Our (C+)

(b) Denoised.

Figure S7: Evaluation of image quality as a function of magnifica-
tion factor for all the different fallback methods. For both without
and with denoising (DLSS [NVI25]), our algorithms provide supe-
rior quality compared to the other methods.

by the denoiser. Presumably, this results in lower PSNR values for
the C+ method after denoising compared to before. Although the
dB difference caused by these differences is large, the per-pixel
errors in the denoised sequences are very small: at high magnifica-
tion, the largest errors for the C+ method are 1–2 when scaled to the
[0,255] range. However, we note that the denoised results for C+
show significantly worse quality than the non-denoised ones around
magnification factor 7–8. While inspecting the data, we found that
the quality decrease originated from the RAILS results, where er-
rors became slightly larger for those magnification factors despite
the image content not changing drastically. This was due to the de-
noised C+ images being marginally more blurry than the ground
truth at those magnification factors. For the other textures, this ef-
fect was not observed.

S3.6. Additional Bicubic Results

Finally, we measured the amount of magnification that is needed to
achieve perfect bicubic filtering with each of List Merge, Box Sam-
pling, and Mask Sampling, given 32 lanes per wave. Figure S8a is
the bicubic counterpart to Figure 4. That is, it shows how much
magnification is needed at different rotations of a quad to achieve
perfect bicubic filtering with 32 or fewer texture lookups per wave.
Figure S8b is similar, but assumes that we are able to do two tex-
ture lookups per lane, so that we instead need 64 or fewer lookups
per wave. The figures show that perfect bicubic filtering with our
methods requires significantly more magnification if we only allow
one lookup per pixel. If two lookups are allowed, we see that the
required magnification factor is closer to that for perfect bilinear
filtering, despite the four times larger filter area.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

16 of 16 T. Akenine-Möller, P. Ebelin, M. Pharr, B. Wronski / Collaborative Texture Filtering

0 45 90
Rotation

1.00

2.00

3.00

4.00

5.00

6.00

7.03

M
ag

n
ifi

ca
ti

on
fa

ct
or

List Merge (Bicubic)

Box Sampling (Bicubic)

Mask Sampling (Bicubic)

(a) Texel lookups per lane: 1.

0 45 90
Rotation

1.00

1.59

1.90

M
ag

n
ifi

ca
ti

on
fa

ct
or

List Merge (Bicubic)

Box Sampling (Bicubic)

Mask Sampling (Bicubic)

(b) Texel lookups per lane: 2.

Figure S8: Illustration of the minimum degree of magnification necessary to achieve perfect filtering under different rotations of the quad
for perfect bicubic filtering. Below those magnification factors, our algorithms need to rely on fallback methods (Section 3.4). Cases where
a fallback was necessary are indicated by colored areas. The scene used was the first one described in Section S3.1. The results in the left
diagram are based on producing no more than one texel per lane, while those in the right diagram allow up to two texels per lane. Notice
that List Merge and Mask Sampling both cover identical areas in both figures. Like in the bilinear case, the success rate of Box Sampling is
lower than that of the other two techniques.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

