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Fig. 1. A comparison between our method, our method with ReSTIR, path tracing (PT), and specular manifold sampling (SMS) in a scene containing a
two-sided refractive slab and a metallic reflective plane, both with normal variation to create caustic patterns. The scene is lit by two different-colored area

lights. With only 1 sample per pixel, our method significantly reduces the variance and the frame time compared to SMS. Combining our method with
ReSTIR’s spatiotemporal resampling produces a more converged rendering in real time. Our sample space partitioning uses 32 X 32 tiles and 3 X 3 trust regions.

Caustics rendering remains a long-standing challenge in Monte Carlo render-
ing because high-energy specular paths occupy only a small region of path
space, making them difficult to sample effectively. Recent work such as Spec-
ular Manifold Sampling (SMS) [Zeltner et al. 2020] can stochastically sample
these specular paths and estimate their unbiased weights using Bernoulli
trials. However, applying SMS in interactive rendering is non-trivial because
it is slow and delivers noisy images given a very limited time budget.

In this work, we extend SMS for high-quality caustic rendering in inter-
active settings using sample space partitioning. Our insight is that Newton
iterations, the main performance bottleneck of SMS, can be restricted to the
vicinity of the seed path, which can dramatically improve the performance.
We achieve this with tile-based sample space partitioning, which bounds
the manifold walk region and allows building a per-frame prior distribution
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that concentrates initial guesses around solutions. This reduces the cost
of SMS and improves its sampling quality. Applying spatiotemporal reuse
(ReSTIR) further amortizes the sample generation cost, greatly increasing the
effective sample count. As a result, we achieve significant variance reduction
compared to SMS in interactive rendering scenarios.
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1 Introduction

Caustics, light patterns produced by specular materials, have been a
challenge to render efficiently. Recent Specular Manifold Sampling
(SMS) [Zeltner et al. 2020] work provides a principled and unbi-
ased approach to directly sample caustic paths, overcoming several
limitations of prior techniques. For instance, bidirectional path trac-
ing [Veach and Guibas 1994, 1997] struggles with specular-diffuse-
specular (SDS) paths, while photon mapping methods [Hachisuka
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and Jensen 2009; Jensen 1996; Kern et al. 2024] introduce blurring
bias due to density estimation.

In this paper, we extend SMS for interactive rendering of caus-
tics, simultaneously improving its speed and quality. While SMS
can provide high-quality caustics for offline rendering, it incurs a
substantial amount of computation cost due to repeated Newton
iterations and the ray tracing it requires for identifying caustic paths
and estimating their sampling probabilities within a 2D primary
sample space. With limited sample budgets in interactive rendering,
SMS can exhibit excessive noise.

To minimize the cost of SMS, we introduce sample space partition-
ing, which divides the primary sample space into tiles to bound the
area considered during Newton iterations. Thereby, we significantly
reduce the number of Newton iterations (and the corresponding ray
tracing) by not only bounding the solution space but also requiring
fewer samples to estimate the sampling probability of found paths.

However, using tiles increases the variance when the convergence
basins—regions of initial guesses that converge to the same caustic
path —are large. We rectify this by constructing a per-frame prior
distribution via presampling the SMS solutions from a subset of
nearby pixels to identify convergence basin regions. Due to spatial
continuity, we can identify tiles where solutions are likely to exist for
a block of pixels. This prior enables importance sampling, allowing
us to start at the vicinity of solutions and improve the success
rate of finding a solution, thereby both reducing the variance and
improving the performance compared to SMS.

Finally, we apply spatiotemporal resampling (ReSTIR) [Bitterli
et al. 2020] to aggregate samples from different prior distributions
across frames to improve the final sample per frame towards a target
distribution that accounts for the energy of the light sources and
the attenuation effect of specular paths. ReSTIR helps amortizing
the cost of sample generation and inverse probability estimation
over frames as it only requires manifold shifts for reusing samples.

We evaluate our method in various scenes, including setups with
multiple reflective and refractive objects and light sources (Figure 1),
and observe substantial improvements over SMS, achieving faster
render times and significantly lower noise levels.

In summary, our main contributions are:

o Tile-based sample space partitioning that constrains the New-
ton solver to accelerate both specular path finding and inverse
probability estimation (Section 3).

o Per-frame prior distributions over tiles to importance sam-
ple seed paths around solutions to achieve higher sampling
efficiency (Section 4).

o Integration of spatiotemporal resampling that amortizes sam-
ple generation cost and enables rendering caustics at higher
effective sample counts (Section 5).

2 Related Work

Caustics, especially ones formed by indirect specular-diffuse-
specular (SDS) transport, are difficult to render with common
path-space sampling techniques due to their high energy concen-
tration in a small region. We first review prior works on caustic
rendering and discuss their suitability for interactive rendering.
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Bidirectional methods. Bidirectional path tracing [Veach and
Guibas 1994] traces paths starting from light sources and can
directly splat the contribution from caustic paths to the image.
However, it cannot handle SDS paths. This limitation is overcome
by photon mapping [Jensen 1996], which has been widely used
to render caustics in production renderers [Burley et al. 2018;
D5Render 2023]. Photon mapping applies a blurring kernel to share
incident radiance of photons between nearby shading points. A
consistent estimator can be formed by progressively shrinking the
kernel radius [Georgiev et al. 2012; Hachisuka and Jensen 2009].
A limitation of bidirectional methods is that light subpaths are
not importance sampled based on the camera’s viewpoint, which
can reduce efficiency in complex scenes as many photons may
contribute little to the final image.

Path guiding, MLT, and resampling. A different category of meth-
ods is based on reusing information found from previous samples.
Path guiding methods use training samples to build local distri-
butions of incident radiance which are represented as histograms
[Miller et al. 2017], Gaussian/vMF mixtures [Ruppert et al. 2020;
Vorba et al. 2014], or a neural network [Dong et al. 2023; Miiller et al.
2018]. These methods can learn the incoming radiance distribution
very well and are widely adopted in offline rendering. Problems
of path guiding methods for interactive caustic rendering include
insufficient training samples, limited angular resolution, and the
expensive data structures they require. Metropolis Light Transport
(MLT) [Veach and Guibas 1997] and its variants [Hachisuka et al.
2014; Kaplanyan et al. 2014; Kelemen et al. 2002] can find high con-
tribution paths by exploring path space using MCMC mutations, but
have temporal instability that hinders their practical use [Fascione
et al. 2018]. ReSTIR [Bitterli et al. 2020; Lin et al. 2022] resamples
candidates spatiotemporally to approximate a target distribution
in real-time. However, it can spread high-energy fireflies of outlier
candidates into correlation blobs [Sawhney et al. 2024], which is
particularly problematic if the chance of finding caustics is too low.

Manifold walks and analytical methods. Originally developed as
an MCMC mutation of valid specular paths, manifold walks [Jakob
and Marschner 2012] allow solving for an admissible specular path
from an initially invalid path using an iterative Newton solver
scheme. Manifold next-event estimation (MNEE) [Hanika et al. 2015]
initializes manifold walks using a straight line connecting a shad-
ing point with a light source, enabling a unidirectional path tracer
to handle both direct and indirect (SDS) caustics, albeit finding at
most one solution. Specular manifold sampling (SMS) [Zeltner et al.
2020] generalizes MNEE by randomizing the choice of seed paths,
ensuring all admissible paths can be sampled. However, SMS is not
directly compatible with interactive rendering: The unbiased vari-
ant of SMS requires an unbounded number of Bernoulli trials to
determine the (inverse) probability of found solutions, while the
biased variant requires many samples to avoid energy loss.

A key problem of SMS is the high variance caused by its ran-
domized initialization. Follow-up methods proposed efficiency im-
provements via path-space pruning [Li et al. 2022; Wang et al. 2020],
guiding [Fan et al. 2023], or reusing neighboring specular paths as
seeds [Xu et al. 2023]. But these methods involve expensive data
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structures or long initialization times which are problematic for
interactive rendering.

Several approaches improve specular path sampling by modify-
ing or replacing the Newton solver. Jhang and Chang [2022] intro-
duce large mutations to correct problematic path configurations
to improve Newton solver success rates and Granizo-Hidalgo and
Holzschuch [2024a] use the Nelder-Mead algorithm to avoid calculat-
ing derivatives. They are orthogonal to our method. Fan et al. [2024]
propose iteration-free polynomial solvers, which are almost noise-
free but do not scale to longer specular chains. Granizo-Hidalgo
and Holzschuch [2024b] reduce the search space dimension but are
limited to fast rendering of water caustics.

Interactive caustic rendering. Interactive caustic rendering meth-
ods are mostly based on photon mapping and thus inherit its lim-
itations. Earlier work based on caustic mapping [Shah et al. 2007;
Wyman 2008] have strong assumptions about receiver geometry. A
recent ray-traced method [Ouyang 2023] relies on light-space guid-
ing for noise reduction, limiting supported light types. Noise can
also be reduced by combining photon gathering with ReSTIR [Kern
et al. 2024], but the bias of photon methods remains. Our method
is the first interactive caustic method to employ specular manifold
sampling, combining guiding, resampling, and solver modifications
in a novel way to enable unbiased caustics at interactive rates.

3 Sample space partitioning

Specular Manifold Sampling [Zeltner et al. 2020] provides an unbi-
ased sampling method for caustic paths, but at a substantial compu-
tation cost per individual Monte Carlo sample. Our sample space
partitioning method is designed to significantly reduce this cost.
In this section, we first describe the necessary details of SMS (Sec-
tion 3.1) and then present our extensions.

3.1 SMS preliminaries

Let [x1,X2...,Xp] represent the vertices along a specular light path.
Given a shading point x; (usually the first non-specular vertex sam-
pled on the camera subpath) and a sampled emitter vertex x,, SMS
starts by sampling a seed path X = [x2, ..., Xp—1] and then performs
a manifold walk [Jakob and Marschner 2012] that iteratively mod-
ifies X via alternating Newton iterations and ray tracing to find a
valid caustic path formed by specular reflections or refractions. We
denote a solution path after this process successfully converges as
X*. SMS assumes a discrete set of solutions, ignoring symmetric
scene constructions with a continuous 1D subspace of solutions.

Because the rest of the vertices are uniquely determined from
a sampled x, according to the specular constraints!, the sample
space is only 2D (e.g. representing directions from x; to x) and
can be visualized on a plane (Figure 2). For convenience, the 2D
primary sample space U = [0, 1)? for x; is used to parameterize the
light paths: seed X and the solution X* can be written as u and u*,
respectively, such that u,u* € U.

!The original implementation of SMS explicitly marks objects as caustic "casters" and
sets a fixed n for each object, using deterministic refraction behavior on dieletrics.

/. /.
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Fig. 2. lllustration of 2D sample space U partitioned into N X N =10 x 10
tiles. The example has two solutions u* (blue and green dots) with their
corresponding shaded convergence basins. Left: Example seeds u (black
dots) with their 3x3 trust regions R (u) (red boxes). Manifold walks that step
outside are terminated early (crosses). Right: This shrinks the convergence
basins to their intersection with the 3 X 3 conditional sample spaces C(u*)
and the inverse probability estimate can be restricted to those subregions.

After sampling a solution, the estimate of the caustic irradiance
can be expressed as

(Ei(x1)) =

Le(xp) Tr(x; & X © xp)

p(xn) P(X")
where Le(xy) is the emitted radiance from xp, the throughput
Tr(x; © X* © X5) summarizes reflectance and geometric terms
between the vertices, p(xp,) is the PDF of sampling x,, and P(x") is
the probability of sampling the admissible specular path X*. This
path sampling probability equals the area of the convergence basin
of the path, the region in 2D primary sample space formed by all
seeds u that converge to the same caustic path X*:

PE) = [u p(w) P(u’u) du, @

where p(u) is the PDF for sampling the seed and P(u*|u) € {0, 1}
is a binary conditional probability, determining whether the seed u
converges to u” via iterations of the manifold walk.

SMS uses a uniform seed PDF p(u) = 1 and estimates the integral
P(X*) numerically using Bernoulli trials [Booth 2007; Qin et al.
2015] to get an unbiased contribution weight (UCW) Wg+ such that
its expected value is the reciprocal of the probability, i.e. E[Wg] =
1/P(X"). More specifically, each Bernoulli trial begins with a random
u and checks if it converges to u* using a manifold walk. Wg+ is
estimated as the number of Bernoulli trials performed until a random
u that converges to u* is found. The expected number of required
trials is 1/P(X"), which is costly when the probability is small, i.e.
for solution paths with small convergence basins. As a result, SMS
can involve a large number of Newton iterations, each involving the
generation of a new path via ray tracing, making it an expensive
sampling technique.

, 1)

3.2 Motivation

To summarize, SMS consists of two phases: (1) the main sampling
phase where the Newton solver is run once to find an admissible
path, and (2) the inverse probability estimate using a sequence of
Bernoulli trials, each involving another run of the Newton solver.

SA Conference Papers 25, December 15-18, 2025, Hong Kong, Hong Kong.
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Assuming K solutions, the expected number of Newton solver invo-
cations is therefore

K K
1
1+ Z Py E[#trials for k-th solution] =1+ Z Pr—=1+K, (3)
k=1 =

where Py is the probability of sampling the k-th solution (Eq. 2).

The iterative Newton solver itself quickly becomes the compu-
tational bottleneck, especially on GPUs. Each iteration involves
computing partial derivatives of the path geometry (for estimating
a step towards the solution) and multiple ray tracing operations (to
re-project the specular vertices onto the geometry).

Our main optimization goal is to reduce the total number of
Newton iterations. We achieve this by introducing trust regions,
which limit the manifold walks to the vicinity of their starting
location. This further allows the inverse probability estimate to
be constrained to a conditional sample space and requires fewer
expected Bernoulli trials.

3.3 Trust regions and conditional sample probabilities

We define trust regions R(u) ¢ U surrounding all seed paths u.
The Newton solver is modified to terminate early in case it steps
outside of it, which cuts down the number of Newton iterations
for computationally costly cases that would either diverge or only
converge slowly?.

For a practical implementation, we partition U into N X N regular
tiles and define the trust region R (u) as the 3 X 3 neighborhood of
closest tiles around u (with periodic wrapping), see Figure 2 (left).
By increasing N we can shrink the trust region size in U .

Conversely, only seeds that start within that same neighborhood
around u* can successfully converge and we can limit our search
space accordingly. We call this the conditional sample space C(u*).
In our case, C(u*) = R(u*), the 3 X 3 closest tiles around u*. Effec-
tively, the convergence basin of u* shrinks based on the intersection
with C(u*), see Figure 2 (right).

Analogous to Eq. (2), the probability of sampling a given solution
with the modified Newton solver is

PR = /C o PP ) du, @

where the binary conditional probability P¢ (u*|u) now only con-
siders successful manifold walks that stay inside C(u*). This can
further be factored into

p(u)
c@) P(C(u"))

with marginal probability P(C(u*)) = fC (u*) p(u)du. With a uni-
form seed PDF p(u), this can be evaluated in closed-form with our
tiling scheme®, while only the inverse of the conditional probability
integral in Eq. (5) remains to be estimated using Bernoulli trials.
This is beneficial because it also scales down the expected number
of Bernoulli trials by a factor of P(C(u*)) and leads to a lower

P/(x") = P(C(u")) Pe(ulu)du, (5

%I deally, the mapping between sample and world space is continuous. This is true when
sampling vertices based on directions but not necessarily with surface-based sampling.
3Other trust region constructions and seed PDFs are possible as well, as long as we can
evaluate the integral and draw samples proportional to the density.
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Fig. 3. Illustration of building the prior distributions. Left: Screen space is
partitioned into B X B pixel blocks where we select a number of pixels (black
dots) to find admissible caustic paths via manifold walks. Right: Sample
space visualized for the center of the pixel block, with three solutions and
their convergence basins marked (blue, green, yellow). Solutions found from
within the pixel block (black dots) tend to be spatially coherent and we
aggregate the union of all corresponding sample space tiles as 7 c U.
During rendering we will place samples inside 7 with higher probability.

number of expected Newton solver invocations, compared to Eq. (3):

& ’ : & ’ P(Ck)
1+ Z P E[#trials for k-th sol.] =1+ Z PL—;

k=1 k=1 k

<1+K. (6)

PI,< is the probability of sampling the k-th solution (Eq. (4)) and
P(Cy) is a shorthand for the marginal probability of that solution.

3.4 Trade-off between variance and performance

All modifications so far were designed to improve the performance
of SMS, by reducing both the number of Newton iterations and
Bernoulli trials. However, decreasing the size of trust regions (i.e.,
choosing large N) lowers the Newton solver success rate for finding
admissible paths compared to the original SMS (i.e., using N = 1).
To make SMS effective for interactive rendering, we need to strike
a balance between the individual sample cost and the expected
variance. The next section discusses how to improve both aspects at
the same time, using prior knowledge about the sample locations.

4 Per-frame prior distributions

We will now counteract the variance increase from Section 3 by
constructing a simple importance sampling distribution on top of
the sample space partitioning scheme. We start with the simplified
case of a single specular object and a point light source (Section 4.1)
before extending the concept to more general cases (Section 4.2).

4.1 Building and sampling from prior distributions

Before rendering each frame we run a brief precomputation step to
identify regions of sample space where solutions are most likely to
occur. As observed by Xu et al. [2023], solutions and their conver-
gence basins are highly correlated for nearby shading points; we
exploit this by sharing information between pixels in screen space.

For each B X B pixel block (B = 16 in our implementation), we
map threads to random pixels and use manifold walks—unrestricted
by trust regions in this case—to try and find admissible caustic paths
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from the corresponding shading points to the light source. We mark
all sample space tiles where solutions were found as important and
store their union 7 C U per block, see Figure 3. We use 128 threads
by default and increase that to 256 for more difficult cases (Figure 1).

When rendering the actual frame, we sample seed paths inside
7T more often, which increases the likelihood of converging to a
solution. Our new seed path PDF is

p(u)=apr(u)+(1-a)py(w), ™
where the uniform density p 7 (u) in 7 is mixed with the uniform
density pq (u) in U to ensure unbiased coverage of all possible
solutions. We use & = 0.8 as a mixing weight in practice.

We experimented with additionally weighting the PDF of tiles
in 7 by the irradiance of their corresponding solution. However,
irradiance estimates require Bernoulli trials and the added cost dur-
ing the precomputation step did not translate into higher sampling
efficiency overall.

Importance sampling is applied on top of the conditional sample
space concept from Section 3.3. Eq. (5) still holds with the new seed
path PDF (Eq. (7)) and the marginal probability integral still has a
simple closed-form solution

* 2
#(I NC(u")) t(l-a %
#(1) N2
where #(+) is the number of tiles in the region.
Samples drawn for the Bernoulli trials when estimating the in-
verse probability are also still restricted based on the conditional
sample space: they are sampled uniformly, either inside the intersec-
tion of 7 and C(u*), or the entirety of C(u*) based on an adjusted
mixing weight

P(C(u*)) =a (®)

o —a #(I N C(u")) 1 )
- #(I) P(C(u*))

4.2 Extension to multiple lights and specular objects

While the precomputation from Section 4.1 could be repeated for
all pairs of light sources and specular objects in a given scene, the
computational cost and memory requirement would scale poorly.
Instead, we keep the precomputation budget fixed but allow each
sample inside the pixel block to pick a random light-object pair, as
well as a position x5 on that light source. We can then aggregate
important tiles that were found for the same light-object pairs, which
we store in linked lists indexed by the unique light-object pair?.

At any given shading point during rendering, we then either pick
from this set of pairs (with probability «), or randomly from the
whole scene (otherwise), followed by picking the position on the
light. Conditioned on all of these, we then finally try sampling an
admissible caustic path connecting the two.

4.3 Discussion

The combination of our tiled sample space partitioning and prior
distribution improves both performance and image quality com-
pared to the original SMS. Importance sampled seeds tend to start
close to solutions, requiring fewer Newton iterations and Bernoulli

4The previous assumption of coherent solutions in U only holds for small light sources.
To support large area lights or environment maps, they would need to be subdivided
into multiple lights with smaller coherent extents.

trials. The smaller convergence basins due to the trust regions also
avoid a lot of wasted computation in scene regions without any
caustics, similar to the selective activation in Fan et al. [2023].

Overall we mitigate the primary source of fireflies in caustic sam-
pling while keeping a low construction overhead. Residual noise
remains due to (1) limited resolution and accuracy of the prior distri-
bution, and (2) not considering the emitted energy of different light
sources. As a last step, we incorporate spatiotemporal resampling
to get closer to the ideal target distribution in practice.

5 Spatiotemporal Resampling

We have combined SMS with sample space partitioning to obtain
an efficient caustic sampler and, while it does not perform per-
fect importance sampling, it effectively avoids high-energy fireflies.
This makes the generated samples good candidates to feed into a
resampling algorithm that further improves the distribution. The
similarity of specular paths across nearby pixels [Xu et al. 2023]
also allows us to leverage the power of ReSTIR [Bitterli et al. 2020]
to harvest a large number of candidate samples with spatiotemporal
reuse.

5.1 GRIS preliminaries

Generalized Resampled Importance Sampling (GRIS) [Lin et al. 2022]
takes candidate samples X; from different domains Q; and maps
them to the target domain Q with bijective shift mapping functions
T; : Q; — Q. The goal is to resample from the candidates to move
the sample distribution towards a target distribution proportional
to a function p(y). By computing the shift mapping V; = T;(X;),
the target function value p(Y;), the Jacobian determinant of the
shift mapping |9T;/0X;|, and incorporating the UCW of X;, the
resampling weights can be evaluated as

wi = m; (Y;)p(Yi) Wy,

T
— . 10
< (1)
Here, m;(y) are resampling MIS weights ensuring coverage over Q
with Z?ﬁl [y € Ti(supp X;)]mi(y) = 1. A sample Y is then chosen
from Y; with probabilities proportional to w;, with UCW

1 M
Wyzmgwl’. (11)

As Var[Y}; wi] — 0, the distribution of Y moves towards p, and
f(Y)Wy yields a low-variance estimate of /Q f(y)dy (usually a path
integral) for f ~ p.

GRIS can be iteratively chained, reusing samples across pixels and
frames—an idea underpinning ReSTIR, where each pixel maintains a
reservoir (X, Wy, c¢) that carries information required for resampling.
A rendered frame begins with path-traced samples, followed by
phases of temporal and then spatial resampling, each updating the
reservoirs. These are then used both for shading and as candidate
samples for the next frame via motion vectors. The confidence
weight c (initialized as 1) is updated by summing the ¢ values of
input reservoirs used as candidates. It scales the importance of a
domain in m; similar to multi-sample MIS, but is capped to limit
unconstrained temporal correlation.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.
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While ReSTIR improves sampling efficiency, its convergence is
hindered if the initial sampling distribution is poor, or the shift
mappings are inaccurate. In this work, we enhance both: we gen-
erate high-quality initial samples and apply manifold shift map-
pings [Jakob and Marschner 2012; Lehtinen et al. 2013] in GRIS,
leveraging spatiotemporal coherence of solutions. The resulting
technique is more effective at rendering caustics than prior meth-
ods, e.g., ReSTIR PT [Lin et al. 2022], that use path tracing for the
initial samples and rely on random replay to shift caustic paths.

5.2 GRIS for SMS paths

Focusing on caustic sampling, we define the domain Q of interest
of a pixel to be all specular paths that can be sampled by SMS.
The samples ¥ = [X*,x,] contain a vertex x, € L on the set
of all emissive surfaces, and an admissible specular subpath X* €
S(x1,x,) from the discrete set of solutions connecting the two
path endpoints. For simplicity, we consider the case of perfectly
specular delta BSDFs, i.e. with zero roughness. With the notation
in Section 3.1 and defining p as the BSDF at x1, the integrand we
want to solve is

N A D (12
X €S (x1,Xn)
with
FR) = plxt, 00, 0] Tr(x1 © F o x)le(xa) . (13)

Eq. (12) integrates over all emissive points x, and accumulates the
energy from all discrete caustic solutions towards x;.

To estimate this integral, we sample an admissible specular path
% € Q with our technique from Sections 3 and 4 before computing
its UCW Wy = Wg+ /p(x,) with Bernoulli trials.

We follow the common approach [Lin et al. 2022; Ouyang
et al. 2021] to define p(X) = f(%X). We apply manifold shift
mappings [Lehtinen et al. 2013] to reuse samples from other pixels
(domains). This shift mapping T;(X",x,) = (X"/,x,) preserves
the emissive vertex x, from the base path in Q;° and shifts the
specular subpath according to the changed shading point x;. This is
accomplished with a manifold walk, starting at seed X", that tries to
find a solution in the current pixel. In case it successfully converges
to a solution X*’ in Q, we also need to perform the inverse shift
mapping Tl._1 to verify invertibility to the original X*. Since the
shift mapping does not involve a density change®, the Jacobian
determinant of the mapping is 1.

For the resampling MIS weights m;, we choose the generalized
pairwise heuristic as recommended by Lin et al. [2022], which re-
quires additionally shifting the sample from the current pixel to
each neighboring pixel i. This results in a total of four manifold
walks for each neighbor pixel we reuse from.

For the general case of glossy non-delta BSDFs, we follow prior
work by extending our sampling technique to offset manifolds [Jakob
and Marschner 2012]. This replaces the shading normal in the spec-
ular constraint with a sampled half vector and updates the corre-
sponding tangent space. To reuse a path, we shift its offset manifold

SWe reuse the light space coordinates to allow temporal reuse with moving lights.
®We assume light sources do not change their areas over time.
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first by replaying the random numbers associated with the half
vector generation, before performing a manifold walk on the shifted
offset manifold. By sampling the normal distribution function (NDF),
this generates the same half vectors as the base path, but requires
only storing the RNG seed. The Jacobian determinant of this shift in
area measure is not 1, but can be easily computed [Lin et al. 2022].
Our method can also handle indirect caustics, e.g. in SDS paths.
Non-delta vertices in the prefix path before x; can either be shifted
using random replay as in ReSTIR PT [Lin et al. 2022], or kept
independent as in Suffix ReSTIR [Kettunen et al. 2023]. The manifold
shift is then applied only in the conditional space created by x.

5.3 Performance of manifold shift mappings

Prior work in gradient domain path tracing [Hua et al. 2019; Ket-
tunen et al. 2015] avoided manifold shift mappings due to their cost
and instead opted for simpler ones like half-vector copy or random
replay. This assessment, however, needs to be re-evaluated in the
context of SMS and ReSTIR. First, shifts like half-vector copy are
prone to fail for difficult scenes (e.g., scenes with tiny light sources)
where SMS shows its advantage. Second, each reuse in ReSTIR in-
volves only a constant number of manifold walks—but effectively
inherits many historical samples that do not require running more
manifold walks for their generation or inverse probability estimate.
This latter behavior is actually similar to the original manifold ex-
ploration technique [Jakob and Marschner 2012], a result of the
similarity between ReSTIR and MCMC [Sawhney et al. 2024].

To further optimize the performance of resampling, we borrow
ideas from our trust region method. Although, instead of enforcing
a trust region, we simply limit the maximum number of Newton
iterations for shift mappings to a small number (we use 5 in our
results). This avoids wasted computation for mappings between dis-
tant specular paths that are prone to failure, and remains unbiased.

6 Results

We implemented our method in the Falcor framework [Kallweit et al.
2022] and ran the experiments on a PC with an i9-13900K CPU and
RTX 4090 GPU. We test with the REFLECTIVE PLANE, the DOUBLE-
REFRACTIVE SLAB, and the SWIMMING PooL scenes from Zeltner
et al. [2020]. The REFLECTIVE PLANE and the DOUBLE-REFRACTIVE
SiaB are lit with a small area light while the SwiMmMING PooL uses a
high-frequency environment light. We first compare our method
against prior work, then we validate its building blocks. All images
are rendered at 1920x 1080 resolution and we report RMSE compared
to high-SPP path traced references.

Comparisons against previous methods. Figure 1 shows results
on a composite scene that contains both the plane and the slab
and includes two area lights. Our method outperforms SMS in both
speed and quality by leveraging trust regions and prior distributions.
Combined with ReSTIR, our method delivers high-quality caustics
at only 1 SPP by aggregating samples from different light sources,
shapes, and specular solutions.

Figure 4 shows rendering comparisons of our method against
PT and ReSTIR PT [Lin et al. 2022]. Our method uses 1 SPP to
produce significantly better results, and ReSTIR further improves
our results while adding a small amount of overhead. With higher
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Table 1. Statistics and timings for different stages of our algorithm on scenes in Figures 1 and 4 (“Ours + ReSTIR” has the additional resampling stage). In the
manifold sampling stage, we provide a comparison between our sample space partitioning and the original SMS.

Prior Construction (Ours) Manifold Sampling (SMS / Ours) Resampling ("Ours+ReSTIR")

Sample Newtons  Time Sample Newtons Bernoulli Newtons Time Temporal Spatial
Success Rate  Per Sample  (ms) | Success Rate Per Sample Per Solution  Per Solution (ms) Time (ms) Time (ms)
DOUBLE-REFRACTIVE SLAB | 11.7% 11.08 343 | 94%/21.6% 8.76/182  4.24/143 67.42/867  3841/1242 | 253 | 4.60
REFLECTIVE PLANE \ 8.0% 19.16 171 | 81%/194% 19.15/485  66.9/9.25 118272/39.05 12030/26.00 | 2.82 | 3.92
SwIMMING Poor, | 124% 5.67 072 | 10.8%/347% 573/530  6.10/202  4267/17.03  882/996 | 168 | 2.07
PLANE AND StaB (Figure 1) | 11.7% 16.17 1062 | 105%/34.7% 1578/2.67 21.09/175  14492/9.05 117.02/41.69 | 442 | 20.02
SLAB Ours + ReSTIR

ReSTIR PT SMS Ours Reference

Ours + ReSTIR

SPP/Time / RMSE: 18/24 ms/14.834 2/24s/5.078 /40ms/ 1.141 /17s/0515 1/24ms/0.137

PT ReSTIR PT SMS Qurs __Ours + ReSTIR Reference

55/35ms/4.783 4/36ms/5.093 1/118ms/0.893

SPP / Time / RMSE:

PT ReSTIRPT _____SMS

SPP / Time / RMSE: 10/18 ms/5.053  2/26ms/5.211 2/ 21 ms /032 1/13ms /2580 1718 ms/2.025

Fig. 4. Comparison between our method and prior work in two different scenes. The reference is generated with path tracing at high SPP. For "Ours + ReSTIR",
we use the ReSTIR parameters recommended by Wyman and Panteleev [2021], setting the maximum cap for temporal reuse at ¢ = 20, and randomly reusing
one spatial neighbor in a 30-pixel radius to dither out temporal correlation.

frame times, SMS exhibits higher variance; Path Tracing struggles method, we partition the sample space with 16 X 16 tiles (N = 16)
finding any solutions via naive BSDF sampling; and ReSTIR PT and set the trust region size to be 3 X 3 tiles. For both SMS and our
spreads the small number of outlier paths found by path tracing method, we set the maximum number of Bernoulli trials as 128. This

spatiotemporally to create distracting correlation artifacts. For our

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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SLAB (W/o prior) SLAB_(W/ prior)

— 8 x 8tiles (13 ms)
0 —— 16x16 tiles (9 ms)
— 32x32 tiles (7 ms)
—— 64x64 tiles (5 ms)

— 8x 8tiles (21 ms)
—— 16x16 tiles (18 ms)
— 32x32 tiles (15 ms)
—— 64x64 tiles (13 ms)

=5

0

= m{=
3

T T
) 10 20 30

RMSE

Time (s Time (s) 1'0 2’” 30
Fig. 5. Convergence plots for our method without (left) and with (right)
prior distributions. Each case is tested with 4 varying tiling resolutions N.
The RMSE numbers are computed on a rendered crop of the caustic from
the Slab scene, accumulated at different time stamps.

SLAB

Fig. 6. When keeping a fixed trust region size of 3 X 3, increasing the tiling
resolution makes the trust region smaller, which brings better quality for
coherent regions (solutions are close to each other for nearby shading points)
while reducing the quality in incoherent regions.

clamping is theoretically biased, but it is enough for our method to
deliver unbiased quality in our tests.

Prior distributions parameters. Figure 5 shows ablations with and
without our prior distributions at different tiling resolutions N.
Larger N partitions the sample space into more tiles and shrinks
the trust regions. Without the prior distribution (left plot), larger N
accelerates performance at 1 SPP but increases variance and slows
convergence. With the prior distribution (right plot), the frame
times increase, but the variance reduction is significant. The optimal
convergence speed occurs at N = 16 and N = 32, which we use in
the other results.

Figure 6 shows the visual effects of the tiling resolution N on
the prior distributions. A smaller trust region (larger N) generally
improves performance and can help to specify the location of solu-
tions more accurately, potentially improving the quality. In contrast,
increasing N without the prior distribution only increases variance.
However, if the trust regions become too small, important tiles found
by neighboring pixels cannot be reused effectively, decreasing the
sampling efficiency. This effect is especially severe in cases where
solutions among nearby pixels vary sharply.
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0.4

0.0

Ours, 32 trials, 19 ms Ours, 128 trials, 28 ms
Fig. 7. False-color visualization of the pixel-wise absolute error using dif-
ferent maximum Bernoulli trials. 5000 frames are accumulated to judge
the converged quality. The corresponding references are computed using
SMS with 1024 trials and accumulating 10000 frames. This shows our tiling
technique can achieve unbiased results with a smaller maximum number of
Bernoulli trials while insufficient Bernoulli trials bring energy loss.

Trust regions reduce Bernoulli trials. Figure 7 visualizes the energy
loss given a fixed Bernoulli trial budget for our method and SMS. An
insufficient number of Bernoulli trials brings energy loss. Our trust
region generally yields a larger conditional probability and requires
less Bernoulli trials to estimate the inverse probability. Therefore,
our method reaches unbiased results more quickly compared to SMS
in practice.

Validation of ReSTIR. We utilize ReSTIR to aggregate spatiotem-
poral samples. ReSTIR provides a dramatic overall noise reduction,
which benefits from the temporal reuse. However, for incoherent
regions where the solution paths of neighboring pixels differ a lot,
correlation artifacts (in the form of blocky noise patterns) can arise
due to inaccurate motion vectors. In these cases, spatial reuse is
useful to reduce correlation and variance (Figure 8).

Comparisons to ReSTIR-FG. ReSTIR-FG [Kern et al. 2024] reuses
temporal caustic photons within a given radius for density estima-
tion without applying shift mappings. As a result, reuse fails when
no temporal photons fall within the neighborhood of the current
shading point. Moreover, the lack of bijective shift mappings leads
to visible lagging artifacts in dynamic scenes. Our method achieves
more robust temporal reuse by doing bijective shift mappings. Fig-
ure 9 presents an equal-time comparison between our method and
ReSTIR-FG under camera motion.

Statistic Analysis. Table 1 reports statistics and timings for the
test scenes shown in Figures 1 and 4. Compared to SMS, our method
increases the rate of successfully sampling a solution by introduc-
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Fig. 8. A comparison between SMS, our method, and two ReSTIR variants
used in conjunction with our method. With only temporal resampling ("Ours
+ Temporal") noise reduction is significant overall. But difficult regions
(e.g., "edges" of caustics) cause visible correlation artifacts. Adding spatial
reuse ("Ours + ReSTIR") lowers the variance further and improves the noise
characteristics.

SLAB

ReSTIR-FG

& Ours + ReSTIR

Fig. 9. An equal-time (24 ms) comparison between our method and ReSTIR-
FG under camera motion. ReSTIR-FG traces 10 million photons per frame
but fails to reuse temporal caustic photons beyond its radius, leading to
visible temporal artifacts. In contrast, our method employs shift mappings
with bijectivity checks, enabling more robust temporal reuse.

ing prior distributions, which in turn improves image quality. It
also reduces the average number of Newton iterations per SMS
sample (including failed samples) by constraining the solver, and
lowers per-solution cost by decreasing Bernoulli trials via inverse
probability estimation in the conditional space. In the SwWiMMING
Poor, our method is slightly slower than SMS because it samples
more solutions and needs more overall Newton iterations. We also

PooL Reference

=
2
o
]
[
=
&
&

Fig. 10. A failure case where our prior distribution fails to provide useful
information for the sampled light sources. In this situation, the sampling
quality may be worse than SMS, due to the reduced probability of sampling
valid solutions.

noticed that thread divergence becomes larger when there are mul-
tiple objects with different numbers of bounces in Figure 1, which
significantly increases the cost of each stage.

Limitations. Our method reverses the sampling quality reduction
from limited Newton iterations by introducing priors. However, if
the prior distribution fails to cover a sampled light—object pair due
to insufficient samples, the probability of finding a solution drops
and the variance increases. Figure 10 illustrates such a case, where
the sampled environment light texels are not covered by the prior
distribution. The shadowed region is mainly lit by low-frequency
texels of the environment map, but these texels are undersampled
during prior construction. In such cases, we fall back to sample-space
partitioning without priors, which has a lower solution probability
and thus higher variance.

7 Conclusion and future work

We introduced a sample space partitioning method that simulta-
neously improves runtime cost and quality of Specular Manifold
Sampling. By restricting the Newton solver to a vicinity of its start-
ing location, and importance sampling these regions using a prior
distribution, our method effectively culls unnecessary computa-
tion. We share the prior distribution among nearby image pixels to
amortize the cost of generating the distribution. And we take the
reuse concept further by incorporating spatiotemporal resampling
(ReSTIR), aggregating samples over space and time to reduce the
variance to a very low level, producing high-quality caustics in real
time. As an improvement of unbiased SMS, our method does not
suffer from energy loss and can use 1 SPP inputs for low-cost sample
generation, unlike prior work [Xu et al. 2023] that presamples initial
guesses to seed biased SMS.

We favor speed over quality in building prior distribution, ignor-
ing solution energy to avoid Bernoulli trials in presampling. Future
work may explore ways to build better prior distributions at a simi-
lar low cost. Choosing the size of the trust regions adaptively, or at
non-uniform resolution across the scene, could also lead to further
benefits.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.
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Performance-wise, the repeated ray tracing during the manifold
walks still takes a lot of time and thread divergence can still be large
due to different numbers of Newton iterations and Bernoulli trials
required for the random sampling happening for pixels in the same
warp. Future work may explore better surface parameterizations
so that manifold walks can directly operate in a space that does
not require re-projections via ray tracing. A more consistent UV
parameterization would also improve the efficiency of our prior
distribution. Lastly, how to better schedule the workload of SMS with
ReSTIR on GPUs to relieve thread divergence and boost performance
is an interesting future direction as well.
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