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Figure 1: Our new conditional RIS theory enables new types of unbiased subpath reuse by resampling in conditional probability spaces. To
show the theory has practical use, we prototype an algorithm resampling multiple ReSTIR-driven path suffixes in a photon map like final gather.
While our proof-of-concept is unoptimized, we compare with two state-of-the-art methods without conditional resampling, including a final
gather using West et al.’s [2022] marginal multiple importance sampling (MMIS) and full-path resampling using Lin et al.’s [2022] ReSTIR PT
sample code. The Tower Bridge [Pobursky 2021] is lit by the Shanghai Bund probe; the camera sees an almost entirely indirectly lit region.
ReSTIR PT is very fast, but complex lighting plus specular surfaces can cause large spatiotemporal correlations, boiling, and color shifts (left
inset). While currently more expensive, our subpath resampling gives spatiotemporally stable results without visible correlations. Compared to an
MMIS gather, our prototype improves quality given a similar ray budget. (Bottom) Below each image we show (𝑥, 𝑡) plots taken from videos
(without movement); rows come from sequential video frames, so temporal correlations appear as vertical blobs and spatial correlations show up
as horizontal blobs. All techniques are unbiased, converging to reference in time, but results here use only one full path per-pixel for integration.

ABSTRACT
Recent work on generalized resampled importance sampling (GRIS)
enables importance-sampled Monte Carlo integration with random
variable weights replacing the usual division by probability density.
This enables very flexible spatiotemporal sample reuse, even if
neighboring samples (e.g., light paths) have intractable probability
densities. Unlike typical Monte Carlo integration, which samples
according to some PDF, GRIS instead resamples existing samples.
But resampling with GRIS assumes samples have tractable marginal
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contribution weights, which is problematic if reusing, for example,
light subpaths from unidirectionally-sampled paths. Reusing such
subpaths requires conditioning by (non-reused) segments of the
path prefixes.

In this paper, we extend GRIS to conditional probability spaces,
showing correctness given certain conditional independence be-
tween integration variables and their unbiased contributionweights.
We show proper conditioning when using GRIS over randomized
conditional domains and how to formulate a joint unbiased contri-
bution weight for unbiased integration.

To show our theory has practical impact, we prototype a mod-
ified ReSTIR PT with a final gather pass. This reuses subpaths,
postponing reuse at least one bounce along each light path. As in
photon mapping, such a final gather reduces blotchy artifacts from
sample correlation and reduced correlation improves the behavior
of modern denoisers on ReSTIR PT signals.

https://github.com/DQLin/ReSTIR_PT
https://polyhaven.com/a/shanghai_bund
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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1 INTRODUCTION
Various recent theoretical advancements have improved the state
of the art in Monte Carlo integration significantly, particularly
for light transport in real-time rendering. Generalizations of re-
sampled importance sampling (RIS) [Talbot et al. 2005] enable un-
biased sample reuse between complicated integration domains,
leading to reservoir-based spatiotemporal importance resampling
(ReSTIR) [Bitterli et al. 2020], which promises to amortize path
tracing costs over large numbers of pixels, both within and across
frames.

A key aspect of ReSTIR’s speed and unbiasedness is careful
multiple importance sampling (MIS) weight computation [Veach
and Guibas 1995b], as each spatiotemporal neighbor acts as a unique
sampler. If reusing samples from differing domains, correct MIS
weights are vital to harmonizing supports to avoid under- and
over-counting different regions of the integration domain.

West et al. [2022] extended MIS to marginal PDFs (MMIS), where
probability densities are not pointwise evaluable. This seems vital
in generalized resampled importance sampling (GRIS) [Lin et al.
2022], which replaces the notion of a PDFwith unbiased contribution
weights (UCW) that are, by definition, not pointwise evaluable. But
GRIS theory does not handle conditional unbiased contribution
weights, limiting the sample reuse available to ReSTIR.

In this paper, we extend the generalized resampled importance
sampling theory to handle conditional probability spaces. This
enables (iteratively) driving conditioning and conditioned variables
using previous RIS- or ReSTIR-based samples. This was motivated
by a practical problem: in ReSTIR PT [Lin et al. 2022], challenging
light paths’ next event estimation (NEE) queries are often occluded.
We wondered if we could replace these single-segment NEE queries
with important, multi-segment subpaths reused from neighbors.

To demonstrate our theory, we add a final gather to ReSTIR PT.
We shoot paths unidirectionally from the camera, update them via
ReSTIR, but only reuse a portion, discarding (at least) one segment
from the start before reuse. This requires conditional ReSTIR; sub-
paths are conditioned by the (discarded) prefixes initially used to
generate the paths. The algorithm remains unbiased.

Our specific theoretical contributions include:
• Extending the definition of unbiased contribution weights
to allow conditional and joint UCWs.
• Demonstrating how to do conditional RIS and ReSTIR.

• A general MIS scheme for integrating by paths reused with
conditional shift mappings—without knowing PDFs.
• A framework for spatiotemporal improvement and reuse of
unidirectionally sampled suffix paths.
• Finding similarity between ReSTIR PT and photon mapping
algorithms, allowing a final gather for reducing correlations.

This finishes the evolution begun by Lin et al. [2022] to allow replac-
ing PDFs in Monte Carlo integration (𝑓 (𝑋 )/𝑝 (𝑋 )) with unbiased
contribution weights (𝑓 (𝑋 )𝑊𝑋 ). Now, UCWs can exist in condi-
tional probability spaces,𝑊𝑋 |𝑍 , depend jointly on multiple variates,
and be marginalized with respect to specific random variables.

2 KEY CHALLENGE IN RIS AND RESTIR
Before exploring prior work and our new theory, let’s review the key
difficulty for sample reuse in resampling (e.g., Talbot et al. [2005]
and follow ups). In theory, sample reuse is great; the question is “can
we?” Considering the high-dimensionality, it is not clear unrelated
paths can help integrate over the same domain. Path dimensionality
may vary and it is unclear if path measures match; arbitrary sample
reuse can feel a bit like asking, “how many grams are in a meter?”

Thus, the work designing ReSTIR [Bitterli et al. 2020; Lin et al.
2022] focused on a few key issues:

• Knowing the sampling domains,
• Matching domains between samples for reuse,
• Shifting samples’ domains to enable more reuse,
• Ensuring we sample the full integration domain, and
• Avoiding double counting parts of the domain.

Discarding sampling domain data is one reason why post-process
denoising is fundamentally biased; how can one ensure unbiased-
ness when averaging final pixel colors that estimate different inte-
grands?

We extend ReSTIR, asking “can we reuse part of a path?” This
means readdressing these issues, as subpath reuse makes the do-
mains conditional. For example, if reusing from the 4th path vertex,
that subpath was picked relative to the now unused 3rd vertex.

A key difference between our work and prior methods for sam-
pling conditional spaces (e.g., West et al. [2022]) is that we enable a
streaming compute model, where reservoirs store individual sam-
ples representing aggregations of many (sub-)paths.

3 PREVIOUS WORK AND BACKGROUND
Prior research explores methods for both path reuse and path fil-
tering. Here, we define path reuse as reusing entire samples. Sim-
ple methods copy all neighbor path vertices to the current pixel
[Bekaert et al. 2002; Ouyang et al. 2021]. Gradient domain rendering
added shift mappings, allowingmore complex sample reuse between
integration domains [Bauszat et al. 2017; Hua et al. 2019]. Similar
reuse ideas arise in Metropolis techniques [Veach and Guibas 1997].

Path filtering usually suggests a biased smoothing, typically at
path vertices, that connects one path’s prefix to other path suffixes
[Binder et al. 2019; Keller et al. 2014; West et al. 2020]. West et al.
[2022] noted path filtering can be unbiased, albeit cost prohibitive
due to many connections needed in the filtering kernel. We show
suffix resampling yields high quality while borrowing just one
suffix.

https://doi.org/10.1145/3610548.3618245
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Generally, our theory fits into this reuse and filtering space
but allows conditional reuse of subpaths (similar to Tessari et al.
[2017] or West et al. [2022]) in the context of resampled importance
sampling [Lin et al. 2022], where reused subpaths come from large
sample aggregations (reservoirs) from spatiotemporal neighbors.

To demonstrate practical benefits of our theory, we build a proof-
of-concept final gather to connect multiple path prefixes to one
or more suffixes. Such gathering is not new, per se, being used
in photon mapping [Jensen 2001] and path filtering [Binder et al.
2019]. Deng et al. [2021] and West et al. [2022] also showed itera-
tive gathering (or multi-vertex filtering) to be valuable; our theory
may enable such ideas in the context of real-time GPU-accelerated
ReSTIR variants.

Interestingly, conditional subpath reuse resembles bidirectional
path tracing [Lafortune andWillems 1993; Veach and Guibas 1995a]
without sampling from lights. Camera paths find key lights; sub-
paths hitting a light are reused for neighbor pixels as light subpaths.
Another view of our prototype is as an unbiased radiance cache,
in contrast to prior work that adds bias by estimating density of
virtual point lights (traced from the camera) [Segovia et al. 2006] or
applying ReSTIR to reuse biased light probes [Majercik et al. 2021].

3.1 Multiple Importance Sampling
Many learn multiple importance sampling (MIS) through the lens of
Veach and Guibas’s [1995b] example joining light and BSDF samples
into an improved estimator. Crucially, MIS allows weighing samples
reused across varying integrands and integration domains. Elvira
et al. [2019] and Deng et al. [2019] pushed such reuse, ultimately ex-
panding MIS [West et al. 2020] to enable randomly selected subsets
of uncountable continuums of sampling techniques.

Many MIS methods require readily evaluable PDFs for each esti-
mator used. Such PDFs are not available when resampling [Talbot
et al. 2005]; Lin et al. [2022] showed MIS weights can be computed
using RIS’s target functions that only approximate estimator PDFs.

West et al. [2022] introduced marginal MIS, allowing combining
sampling methods whose probability distributions are known only
conditionally, given some random variables. This enables MIS be-
tween conditional PDFs. In this paper we further allow combining
and chaining such conditional distributions using RIS and ReSTIR.

3.2 RIS and ReSTIR
Resampled importance sampling (RIS) [Talbot et al. 2005] and
reservoir spatiotemporal importance resampling (ReSTIR) [Bitterli
et al. 2020] propose that neighbor sample distributions likely ap-
proximate the current integrand better than any analytic distribu-
tion. With iterative spatiotemporal bootstrapping, ReSTIR basically
draws samples from approximately perfect distributions (see De-
vroye [1986]).

Similar ideas appear elsewhere, e.g. Metropolis [Veach and
Guibas 1997] or simpler path reuse methods [Bekaert et al. 2002],
but ReSTIR dramatically accelerates this with streaming compu-
tation via weighted reservoir sampling [Chao 1982]. Essentially,
ReSTIR allows massive sample amortization, spreading cost over
many pixels, without correspondingly higher storage costs.

This builds on the RIS estimator [Talbot et al. 2005], where 𝑓 is
our integrand (typically the path contribution function):

⟨𝐼 ⟩ris =
1
𝑁

𝑁∑︁
𝑖=1


𝑓 (𝑌𝑖 )
𝑝 (𝑌𝑖 )

1
𝑀

𝑀∑︁
𝑗=1

𝑝 (𝑋𝑖 𝑗 )
𝑝 (𝑋𝑖 𝑗 )

 . (1)

Here, each of the 𝑁 samples 𝑌𝑖 is resampled from𝑀 independent
candidates 𝑋𝑖 𝑗 from some distribution with PDF 𝑝 . The 𝑋𝑖 𝑗 are
reweighted by some target function 𝑝 , and the 𝑌𝑖 are drawn from
the 𝑋𝑖 𝑗 proportional to their new weights. These 𝑁 samples then
estimate 𝑓 via Monte Carlo importance sampling.

Standard Monte Carlo estimators sum over samples of the form
𝑓 (𝑌𝑖 )/𝑝 (𝑌𝑖 ), but the RIS estimator sums samples 𝑓 (𝑌𝑖 )𝑊𝑌𝑖 , where

𝑊𝑌 =
1

𝑝 (𝑌 )
1
𝑀

𝑀∑︁
𝑗=1

𝑝 (𝑋 𝑗 )
𝑝 (𝑋 𝑗 )

. (2)

Equation 2 includes another Monte Carlo estimator 𝑝 (𝑋 𝑗 )/𝑝 (𝑋 𝑗 ).
Replacing it by RIS estimator 𝑝 (𝑋 𝑗 )𝑊𝑋 𝑗

allows chaining RIS esti-
mates, which is the key idea behind ReSTIR [Bitterli et al. 2020].

Sample reuse in RIS that leads to these weights𝑊 is one exam-
ple of a more general idea, that of unbiased contribution weights
introduced by Lin et al. [2022]:

Definition 3.1. An unbiased contribution weight (or UCW) for
random variable 𝑋 , is any real-valued random variable 𝑊𝑋 for
which

E[𝑓 (𝑋 )𝑊𝑋 ] =
∫
supp(𝑋 )

𝑓 (𝑥) d𝑥, (3)

for any integrable function 𝑓 : Ω → R.

Note that throughout the paper, we denote random variables
with capitals 𝑋 and ordinary variables with lower case 𝑥 .

Unlike traditional Monte Carlo sampling, where samples must
be drawn from tractable PDFs 𝑝 , UCWs allow use of more complex
distributions. Regular PDFs act as UCWs using𝑊𝑋 = 1/𝑝𝑋 (𝑋 ), but
any random variable can be a UCW as long as E[𝑊𝑋 |𝑋 ] = 1/𝑝𝑋 (𝑋 ).

While standard PDFs 𝑝 can also come in conditional, marginal,
or joint forms, prior ReSTIR work did not enable UCWs with such
forms [Bitterli et al. 2020; Lin et al. 2022, 2021]. We extend UCWs
to conditional probability spaces, allowing resampling in those
domains. Such needs arise in complex rendering algorithms, e.g., if
one wants to reuse only part of a previously sampled light path.

4 CONDITIONAL UCWS
A conditional PDF 𝑝𝑋 |𝑌 can be seen as the PDF of𝑋 in a conditional
probability space where random variable 𝑌 receives a specified
value. Here 𝑌 is constant, so 𝑓 /𝑝𝑋 |𝑌 estimates the conditional
expectation E[𝑓 /𝑝𝑋 |𝑌 |𝑌 ]. But what if we only have an unbiased
estimate of 1/𝑝𝑋 |𝑌 , e.g., by conditional RIS (Section 5)?

The estimator 𝑓 /𝑝𝑋 |𝑌 has the conditional expectation

E

[
𝑓 (𝑋 )

𝑝𝑋 |𝑌 (𝑋 |𝑌 )

����𝑌 ] = ∫
supp(𝑋 |𝑌 )

𝑓 (𝑥) d𝑥, (4)

where supp(𝑋 |𝑌 ) contains values 𝑋 possible with positive PDF
given 𝑌 , 𝑝𝑋 |𝑌 (𝑋 |𝑌 ) > 0. Here 𝑓 may depend on 𝑌 , as 𝑌 is fixed.

This E [·|𝑌 ] can be interpreted as a traditional expectation in the
conditional probability space where 𝑌 has fixed value. We observe



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Markus Kettunen, Daqi Lin, Ravi Ramamoorthi, Thomas Bashford-Rogers, Chris Wyman

that applying UCWs in such a conditional space naturally leads to
a definition of conditional unbiased contribution weights.

Definition 4.1. A conditional unbiased contribution weight
𝑊𝑋 |𝑌 for random variable𝑋 , given𝑌 , is any real-valued random
variable𝑊𝑋 |𝑌 for which

E[𝑓 (𝑋 )𝑊𝑋 |𝑌 |𝑌 ] =
∫
supp(𝑋 |𝑌 )

𝑓 (𝑥) d𝑥, (5)

for any integrable function 𝑓 : Ω → R.

Similar to traditional UCWs, an immediate follow-up is that
𝑊𝑋 |𝑌 has conditional expectation E[𝑊𝑋 |𝑌 | 𝑋,𝑌 ] = 1/𝑝𝑋 |𝑌 (𝑋 |𝑌 ).

4.1 Joint UCWs
Knowing a marginal PDF 𝑝𝑌 and a conditional PDF 𝑝𝑋 |𝑌 allows un-
biased integration with pairs (𝑋,𝑌 ): the product 𝑝𝑌 (𝑦) 𝑝𝑋 |𝑌 (𝑥 |𝑦)
yields the joint PDF 𝑝𝑋,𝑌 (𝑥,𝑦). Does knowing𝑊𝑌 and𝑊𝑋 |𝑌 allow
unbiased integration? Let us approach this with an example.

We integrate 𝑓 (𝑥,𝑦) over the unit square with points (𝑋1, 𝑋2),
with 𝑋2 sampled conditionally on 𝑋1. Multiplying 𝑓 by 𝑊𝑋2 |𝑋1
estimates the conditional expectation

E
[
𝑓 (𝑋1, 𝑋2)𝑊𝑋2 |𝑋1 |𝑋1

]
=

∫
supp(𝑋2 |𝑋1 )

𝑓 (𝑋1, 𝑥2) d𝑥2, (6)

which integrates over 𝑋2 for the fixed 𝑋1. The right-hand-side
expression only depends on 𝑋1, so now multiplying by𝑊𝑋1 yields
the integral over the full square:

E
[
E
[
𝑓 (𝑋1, 𝑋2)𝑊𝑋2 |𝑋1 |𝑋1

]
𝑊𝑋1

]
=∫

supp(𝑋1 )

∫
supp(𝑋2 |𝑋1 )

𝑓 (𝑥1, 𝑥2) d𝑥2 d𝑥1 . (7)

Is it then true that whenever we have random variables 𝑋1 and 𝑋2
with UCWs𝑊𝑋1 and𝑊𝑋2 |𝑋1 , then 𝑓 (𝑋1, 𝑋2)𝑊𝑋1𝑊𝑋2 |𝑋1 unbiasedly
estimates the integral of 𝑓 over the joint support of (𝑋1, 𝑋2), making
𝑊𝑋1𝑊𝑋2 |𝑋1 a joint UCW for (𝑋1, 𝑋2)? The answer is no.

Without care, this key subtlety can lead to bias (see the supple-
mental document Section S.1.2 for an example). The expectation of
estimator 𝑓 (𝑋1, 𝑋2)𝑊𝑋1𝑊𝑋2 |𝑋1 can be written

E
[
E
[
𝑓 (𝑋1, 𝑋2)𝑊𝑋1𝑊𝑋2 |𝑋1 |𝑋1

] ]
, (8)

which differs from Equation 7. To yield the correct expectation,𝑊𝑋1
must move to the outer expectation. This requires𝑊𝑋1 be condition-
ally independent of 𝑓 (𝑋1, 𝑋2)𝑊𝑋2 |𝑋1 given 𝑋1, i.e., the expressions
must not depend on the same random variables, except for 𝑋1. This
can be achieved by the following rule:

Theorem 4.1. If 𝑋2 and𝑊𝑋2 |𝑋1 are conditionally independent of
𝑊𝑋1 , given 𝑋1, then

𝑊𝑋1,𝑋2 =𝑊𝑋1𝑊𝑋2 |𝑋1 (9)

is a joint unbiased contribution weight for 𝑋 = (𝑋1, 𝑋2).

If 𝑋2 and𝑊𝑋2 |𝑋1 share dependencies with𝑊𝑋1 , besides 𝑋1, then
UCWs𝑊𝑋1 and𝑊𝑋2 |𝑋1 must be conditional on them, i.e., integration
must succeed if we treat shared random variables as constant.

5 CONDITIONAL RIS AND INTEGRATION
As in Talbot et al. [2005] and Lin et al. [2022], our new conditional
unbiased contribution weights can be computed with RIS. In this
case, reused samples’ domains often will not cover the full support
of integrand 𝑓 . Consider random variable 𝑋1 and some dependent
random variables arranged into a vector 𝑍 , and 𝑋1’s conditional
UCW𝑊𝑋1 |𝑍 (for example, 𝑋1 could be a path suffix and 𝑍 could be
its prefix). By definition, this UCW can integrate any function 𝑓 ,
potentially dependant on Z, in the conditional support supp(𝑋1 |𝑍 ):

E
[
𝑓 (𝑋1)𝑊𝑋1 |𝑍 |𝑍

]
=

∫
supp(𝑋1 |𝑍 )

𝑓 (𝑥1) d𝑥1 . (10)

But if supp(𝑋1 |𝑍 ) does not cover 𝑓 ’s support, our estimate is biased.
Ensuring unbiasedness requires at least one sample covering oth-
erwise uncovered regions where 𝑓 (𝑥) ≠ 0. We add one canonical
sample 𝑋2 (see Lin et al. [2022]), with UCW𝑊𝑋2 |𝑍 and known to
cover 𝑓 ’s entire support; the sampling procedure may depend on 𝑍 .

Combining 𝑓 (𝑋1)𝑊𝑋1 |𝑍 and 𝑓 (𝑋2)𝑊𝑋2 |𝑍 gives an unbiased es-
timate if we appropriately pick MIS weights. If samples were in one
domain with known PDFs, we could use the balance heuristic,

𝑚𝑖 (𝑥 |𝑍 ) =
𝑝𝑖 (𝑥 |𝑍 )

𝑝1 (𝑥 |𝑍 ) + 𝑝2 (𝑥 |𝑍 )
, (11)

to give the unbiased estimate

𝑚1 (𝑋1 |𝑍 ) 𝑓 (𝑋1)𝑊𝑋1 |𝑍 + 𝑚2 (𝑋2 |𝑍 ) 𝑓 (𝑋2)𝑊𝑋2 |𝑍 . (12)

The conditional notation𝑚𝑖 (·|𝑍 ) has no deeper meaning: we could
denote𝑚𝑍,𝑖 (𝑥) as a parametrized function family (e.g., West et al.
[2020, 2022]). For future brevity, we occasionally implicitly drop
this dependency on 𝑍 . (In fact, we had already dropped it from 𝑓 ).

In practice, samples 𝑋𝑖 often arise via resampling, making an
unmodified balance heuristic unusable as we use UCWs with un-
known PDFs 𝑝𝑖 . Lin et al. [2022] used ReSTIR target functions 𝑝𝑖
as PDF proxies for MIS, enabling sample reuse between domains
via shift mappings and their Jacobians. Below, we borrow and ex-
pand on Lin et al. [2022] by interpreting their expressions with an
implicit 𝑍 dependency and in a conditional probability space.

5.1 Resampling
Above, we enabled unbiased integration in conditional probability
spaces via conditional UCWs. Next, we outline our conditional RIS
(CRIS) that generalizes GRIS [Lin et al. 2022].

Take inputs 𝑋𝑖 ∈Ω𝑖 with conditional UCWs𝑊𝑋𝑖 |𝑍 , where sam-
ples 𝑋𝑖 and domains Ω𝑖 may both conditionally depend on 𝑍 . We
must shift 𝑋𝑖 into integrand 𝑓 ’s domain Ω with conditioned shift
mappings, evaluating 𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 |𝑍 ), e.g., transforming a neighbor
pixel’s suffix path to start from a path prefix in the current pixel
(see Section 6).

Then we resample a 𝑌 by picking from 𝑌𝑖 in proportion to resam-
pling weights𝑤𝑖 =𝑚𝑖 (𝑌𝑖 )𝑝 (𝑌𝑖 )𝑊𝑋𝑖 |𝑍

��𝑇 ′
𝑖

��, similarly to GRIS. This
gives a (now conditional) unbiased contribution weight:𝑊𝑌 |𝑍 =

1
𝑝 (𝑌 )

∑
𝑤𝑖 , where𝑤𝑖 and 𝑝 may (implicitly) depend on 𝑍 . Together,

𝑌 and𝑊𝑌 |𝑍 integrate properly in 𝑌 ’s conditional support:

E
[
𝑓 (𝑌 )𝑊𝑌 |𝑍 |𝑍

]
=

∫
supp(𝑌 |𝑍 )

𝑓 (𝑦) d𝑦. (13)
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If seeking an unbiased estimate for the integral, we must ensure
supp(𝑌 |𝑍 ) covers supp(𝑓 ), e.g., using a canonical input sample.
Then, regardless of 𝑍 , we have E

[
𝑓 (𝑌 )𝑊𝑌 |𝑍 |𝑍

]
=
∫
Ω 𝑓 (𝑦) d𝑦.

We can also use 𝑌 to resample iteratively, chaining multiple
RIS passes to implement ReSTIR. We need to know supp(𝑌 |𝑍 ) to
properly evaluate other samples’ MIS weights. A canonical sample
ensures supp(𝑌 |𝑍 ) = supp(𝑝), with 𝑝 implicitly depending on 𝑍 .

5.2 Integration in the General Case
We now generalize Equation 12, borrowing samples from other
domains by shift mapping. Our MIS weights use the different input
domains’ target functions 𝑝𝑖 (e.g., suffix path radiances) as proxies
for unknown conditional PDFs.

We derive the formula by a shortcut: GRIS provides estimate
𝑓 (𝑋 )𝑊𝑋 |𝑍 by selecting 𝑋 randomly from the inputs, but we sum
probability times contribution over the choices. Similarly to Lin
et al.’s [2022] offline estimator, this reduces color noise, but is
equivalent for scalar-valued 𝑓 when choosing 𝑝 = 𝑓 .

We assume𝑀 inputs 𝑋𝑖 in different domains, conditioned by 𝑍 ,
and shift them into 𝑓 ’s domain via 𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 |𝑍 ). The generalized
conditional UCW estimator, given 𝑍 , is then

⟨𝐼𝑍 ⟩ =
𝑀∑︁
𝑖=1

𝑚𝑖 (𝑌𝑖 |𝑍 ) 𝑓 (𝑌𝑖 |𝑍 )𝑊𝑋𝑖 |𝑍 |𝑇
′ (𝑋𝑖 |𝑍 ) |, (14)

for MIS weights 𝑚𝑖 , integrand 𝑓 (e.g., suffix radiance), pre-shift
conditional UCW𝑊𝑋𝑖 |𝑍 , and shift Jacobian determinant |𝑇 ′ |. Any
MIS weights from Lin et al. [2022] can be used if we interpret the
formulas with an implicit conditioning by 𝑍 , which we do from
now on. We specifically mention the generalized balance heuristic,

𝑚𝑖 (𝑦) =
𝛼𝑖 𝑝←𝑖 (𝑦)∑𝑀
𝑗=1 𝛼 𝑗 𝑝←𝑗 (𝑦)

, (15)

where 𝛼𝑖 are domain weights specifying the relative weight (confi-
dence) given to the samples, and

𝑝←𝑗 (𝑦) = 𝑝 𝑗 (𝑇 −1𝑗 (𝑦)) |𝑇
′−1
𝑗 (𝑦) | (16)

reads the (conditional) target function at 𝑦’s corresponding path in
pixel 𝑗 , i.e.,𝑇 −1

𝑗
(𝑦), as a proxy for its conditional PDF, and the Jaco-

bian determinant transforms this proxy the same way probability
densities transform in shift mappings.

This ⟨𝐼𝑍 ⟩ integrates over the samples’ supports in 𝑓 ’s domain:

E [⟨𝐼𝑍 ⟩|𝑍 ] =
∫⋃𝑀

𝑖=1 supp(𝑌𝑖 |𝑍 )
𝑓 (𝑦) d𝑦. (17)

If the union covers the integrand, e.g., by including a canonical
sample, this estimator is unbiased.We use this estimator to integrate
suffix radiance by defining 𝑍 as the supporting prefixes, i.e., unused
parts of our reused (sub)paths.

Next, we describe a framework using conditional RIS and ReSTIR
in path tracing to reuse suffix paths between pixels and frames.

Algorithm 1: Pseudocode of our prototype final gather.
1 function SuffixReSTIR()

2 parallel foreach pixel 𝑞 ∈ Image :
3 𝑞′ ← TemporalReprojection(𝑞)
4 𝑋𝑝 ← TraceNewPrefix(𝑞) // ⇓ Temporal prefix reuse w. GRIS

5 Reservoirs[𝑞].𝑋𝑝 ← GRIS(𝑋𝑝 ,
prevReservoirs[𝑞′].𝑋𝑝 ) // UCWs omitted for conciseness.

// Suffix reuse with conditional RIS (CRIS). Pass in prefixes too.
6 𝑋𝑠 ← TraceNewSuffix(Reservoirs[𝑞].𝑋𝑝 )
7 Reservoirs[𝑞].𝑋𝑠 ← CRIS(𝑋𝑠 , prevReservoirs[𝑞′].𝑋𝑠 )
8 Reservoirs[𝑞].𝑋𝑠 ← SpatialSuffixReuse(Reservoirs)
9 prevReservoirs← Reservoirs // Save for the next frame.

// Final gather phase, implements Equation 23. ⇓ First prefix.
10 (𝑋𝑝 , 𝑋𝑠 )← TraceFullPath(𝑞)

// Search for 𝑘 = 𝑀 − 1 reservoirs with nearest supporting prefixes.
11 [𝑅1,...,𝑅𝑘 ]← FindSpatialKNN(Reservoirs, 𝑋𝑝 , 𝑘)
12 Color[𝑞] += ComputeMIS([𝑋𝑝 , 𝑅1 .𝑋

𝑝 , ..., 𝑅𝑘 .𝑋𝑝 ], 𝑋𝑠 )
* PathContrib(𝑋𝑝 , 𝑋𝑠 ) + Gather([𝑅1,..,𝑅𝑘 ], 𝑋𝑝 ) / 𝑁
// Gather: MIS over 𝑋𝑝 and all 𝑅 𝑗 .𝑋

𝑝 and contribute all 𝑅 𝑗 .𝑋
𝑠

13 for i ∈ [2, ..., 𝑁 ] : // ⇓ Other prefixes.
14 𝑋𝑝 ← TraceNewPrefix(𝑞)
15 [𝑅1,...,𝑅𝑘 ]← FindSpatialKNN(Reservoirs, 𝑋𝑝 )
16 Color[𝑞] += Gather([𝑅1,..,𝑅𝑘 ], 𝑋𝑝 ) / 𝑁

6 SUFFIX RESTIR
Applying conditional RIS theory to uni-
directional path tracing, we build a proof-
of-concept prototype1 that produces well-
distributed suffix subpaths and reuses them
spatiotemporally. We sample new prefixes
at integration, connecting each such prefix
to one or more conditionally-sampled suf-
fixes. We update suffixes via ReSTIR, improving their distribution
temporally. We summarize our prototype in Algorithm 1 (our sup-
plemental document has more details). Note that reservoir sizes
double, versus ReSTIR PT [Lin et al. 2022], as we must store both
prefix and suffix data.

Reused suffixes may not entirely cover the suffix domains for
new integration prefixes, so we combine with a canonical suffix
sample via MIS, to guarantee coverage. This ensures unbiasedness.

Our figures show reconnection shifts with one-bounce prefixes,
but we actually use Lin et al.’s [2022] hybrid shift, postponing
reconnection on low-roughness vertices. Prefixes end at the second
consecutive high-roughness vertex; the remainder is the suffix.

6.1 Prefix and Suffix Distributions
Reservoirs can reside in many domains, in-
cluding world space, but we describe the
concept in screen space, where each pixel
has a reservoir, storing a (yellow) prefix and
(red) suffix path.We call the prefix a support-
ing prefix, as it conditions the suffix random

1Prototype code at: https://github.com/NVLabs/conditional-restir-prototype

https://github.com/NVLabs/conditional-restir-prototype
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variable, determining its support and path space coverage. The sup-
porting prefix is needed for conditional MIS weights, shift mappings
and target functions for reuse and integration.

Well-distributed supporting prefixes are vital if suffixes are to
capture important light paths. This suggests regularly updating
with new independent prefixes. But changing a prefix modifies
its suffix’s support and target function, worsening its distribution.
We strike a balance by updating prefixes temporally with ReSTIR,
without spatial reuse. At each frame (Alg. 1, lines 2-5), we sample a
new (blue) supporting prefix candidate for each pixel.

We find the matching
pixel in the prior
frame, and GRIS-
select between this
candidate and the

old supporting prefix (yellow), shifted to the new pixel (dashed).
We favor the old frame’s supporting prefix in GRIS to let the
distribution improve over time.

Next (lines 6-7) , we update suffixes to the current frame. With
the supporting prefix (blue, left) already in the current frame, we

take the (yellow) old
prefix and its suffix
(orange), and RIS be-
tween the shifted old
suffix (orange, right)
and a new canonical

suffix (cyan). This uses conditional RIS between the reused suf-
fix and new canonical suffix. We give old suffixes higher domain
weight so the suffix distribution improves over time.

After updating suffixes temporally, we also reuse spatially (line
8). This is similar, but rather than using one projected pixel from
last frame, we use conditional RIS to resample between the current
suffix and numerous suffixes from the local pixel neighborhood.

6.2 Target Functions and MIS Weights
Resampling always requires target functions and MIS weights. To
define these, we decompose the path contribution function 𝑓 (𝑥)

𝑓 (𝑥𝑝 , 𝑥𝑠 ) = 𝑓𝑝 (𝑥𝑝 ) 𝑓𝑝𝑠 (𝑥𝑝 , 𝑥𝑠 ) 𝑓𝑠 (𝑥𝑠 ), (18)

where 𝑓𝑝 is path throughput over prefix 𝑥𝑝 , 𝑓𝑝𝑠 is the reconnection
term including two BSDFs and visibility, and 𝑓𝑠 is the throughput
over suffix 𝑥𝑠 (after reconnection) times the emitted radiance.

We resample supporting prefixes via ReSTIR with target function

𝑝 (𝑥𝑝 ) = 𝑓𝑝 (𝑥𝑝 ). (19)

This is stable and gives better quality than including suffix data, e.g.,
𝑝 (𝑥𝑝 ) = 𝑓 (𝑥𝑝 , 𝑥𝑠 ); adding a suffix dependency also makes avoiding
bias tricky, as suffixes end up conditioned by themselves, invalidat-
ing their unbiased contribution weights (see Section S.1.1). We use
the generalized balance heuristic (Equation 15) to MIS between the
new canonical prefix and prior frame prefix.

For spatiotemporal suffix reuse we define pixel 𝑖’s target function
as the path contribution after supporting prefix 𝑋𝑝

𝑖
:

𝑝𝑖 (𝑥𝑠 ) = 𝑓𝑝𝑠 (𝑋𝑝

𝑖
, 𝑥𝑠 ) 𝑓𝑠 (𝑥𝑠 ) . (20)

Suffix 𝑥𝑠 is conditioned on prefix 𝑋𝑝

𝑖
, so 𝑋𝑝

𝑖
is available as a con-

stant. We leave 𝑓𝑝 out, as all suffixes from 𝑋
𝑝

𝑖
share this prefix and

Figure 2: Given per-pixel paths (left), ReSTIR PT reuses by modifying
nearby paths to use the current primary hit (middle). We delay reuse
(at least) to secondary hits (right), reducing correlation but increasing
noise. We address noise by a final gather, i.e., averaging reuse at
multiple short prefixes. Reused suffixes are conditioned on the removed
random prefixes that determined their secondary hit locations.

𝑓𝑝 (𝑋𝑝

𝑖
) cancels out during resampling. For MIS weights, we again

use the generalized balance heuristic (Equation 15), with all terms
conditioned with the supporting prefixes. Dropping 𝑓𝑝 also removes
a source of imbalance in the MIS weights, reducing variance.

6.3 Integration with Borrowed Suffixes
At integration time, we sample an independent integration prefix
𝑋𝑝 (blue) and search nearby for similar supporting prefixes (circled)

in world-space by ex-
amining path geome-
try and borrow their
suffixes. We sample a
(cyan) canonical suf-
fix to combine its con-

tribution with the borrowed suffixes. Our proof-of-concept uses
distance between the end of our integration prefix and supporting
prefixes to select suffixes for reuse, as overlapping domains are
more likely; exploring other heuristics remains an open question.

To integrate, we substitute suffix contribution 𝑓𝑝𝑠 (𝑋𝑝 , 𝑥𝑠 ) 𝑓𝑠 (𝑥𝑠 )
into Equation 14 (𝑍 includes 𝑋𝑝 and all supporting prefixes, which
we keep implicit in the following). The estimator ⟨𝐼𝑠 ⟩ for suffix
contributions integrates over 𝑋𝑝 ’s suffix space Ω𝑠 (𝑋𝑝 ):

E
[
⟨𝐼𝑠 ⟩|𝑋𝑝

]
=

∫
Ω𝑠 (𝑋𝑝 )

𝑓𝑝𝑠 (𝑋𝑝 , 𝑥𝑠 ) 𝑓𝑠 (𝑥𝑠 ) d𝑥𝑠 . (21)

We then multiply ⟨𝐼𝑠 ⟩ by prefix throughput estimate 𝑓𝑝 (𝑋𝑝 )𝑊𝑋𝑝

to get the joint estimator for the full path integral:

⟨𝐼 ⟩ =
𝑀∑︁
𝑖=1

𝑚𝑖 (𝑌 𝑠
𝑖 ) 𝑓 (𝑋

𝑝 , 𝑌𝑠
𝑖 )𝑊𝑋𝑝 ,𝑌 𝑠

𝑖
, (22)

where 𝑌 𝑠
𝑖
= 𝑇𝑖 (𝑋𝑠

𝑖
) is the suffix 𝑋𝑠

𝑖
shifted to continue from prefix

𝑋𝑝 , 𝑓 is the full path contribution function,𝑚𝑖 weights the differ-
ent suffixes, and𝑊𝑋𝑝 ,𝑌 𝑠

𝑖
=𝑊𝑋𝑠

𝑖
|𝑋𝑝𝑊𝑋𝑝 |𝑇 ′

𝑖
(𝑋𝑠

𝑖
) | is the joint UCW

(Section 4.1) for the full path after shifting the suffix, as the Jaco-
bian transforms𝑊𝑋𝑠

𝑖
|𝑋𝑝 |𝑇 ′

𝑖
(𝑋𝑠

𝑖
) | into𝑊𝑌 𝑠

𝑖
|𝑋𝑝 . One of the 𝑌 𝑠

𝑖
is the

canonical suffix that guarantees full coverage of the suffix space.

7 FINAL GATHER
In Section 6 we described a way to distribute reusable path suffixes,
integrating with short prefixes (Figure 2, right), finding supporting
prefixes with similar last vertex geometry, and connecting to their
resampled suffixes (red). Shrinking supporting prefix length to one
simplifies to ReSTIR PT (middle). Distracting resampling artifacts
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can arise if strong outliers get widely reused spatiotemporally. This
impoverishes the sample pool, causing correlations. Combining a
random prefix with reused subpaths increases path variety. But this
adds noise, which we address with a final gather (Figure 2, right).

Photon mapping often uses a similar solution. Querying radiance
at primary hits leads to blotchy artifacts. A final gather moves
photon queries to the second diffuse hit.

Like radiance caching, suffix ReSTIR fills
space with cache points (yellow), gathering
by tracing integration prefixes (blue). Rather
than shooting photons from lights, we sam-
ple supporting camera prefixes (yellow),
concentrating them in high-throughput ar-
eas. Instead of interpolating radiances, we
reuse resampled suffixes (red) by shift map-
ping them to the current integration prefix.

Estimates of pixel color are conditioned
by the supporting prefixes chosen, and
must individually be unbiased. As described
in Section 6.3, we pick similar support-

ing prefixes to maximally match their covered path spaces
with our integration prefix. Still, we cannot assume that bor-
rowed suffixes alone cover the integration domain, so by de-
fault, each integration prefix must sample a canonical suffix.
Suffix paths can be long, so this would be prohibitively expen-
sive. We apply a form of Russian roulette to reap the bene-
fits of ReSTIR suffixes without tracing more canonical suffixes.

Our final gather estimator builds on
borrowed suffixes (Section 6.3) with the
premise that integration prefixes are rela-
tively cheap. We trace a number 𝑁 of pre-
fixes and average their estimators (Equa-
tion 22), each reusing the suffixes of its clos-

est supporting prefixes. We conceptually include canonical suffixes
for all 𝑁 integration prefixes, specifically including them in our
MIS weights—but, by Russian roulette, we replace canonical suf-
fix contributions with zero except for one random prefix, whose
contribution is multiplied by 𝑁 . But, the multiplication cancels the
mean, resulting in an unweighted contribution. As much of path
space is likely covered by borrowed ReSTIR suffixes, this roulette
greatly improves rendering efficiency. The canonical suffix is only
needed for the non-covered minority.

Assuming symmetrically sampled prefixes 𝑋𝑝

𝑖
, we can choose

prefix 𝑋𝑝

1 to include canonical suffix 𝑋𝑠
11, with no shift mapping

required. The other prefixes 𝑋
𝑝

𝑖
only have reused suffixes

𝑋𝑠
𝑖2, . . . , 𝑋

𝑠
𝑖𝑀

. This leads to the following final gather estimator:

⟨𝐼𝐹𝐺 ⟩ =𝑚1 (𝑋𝑠
11 |𝑋

𝑝

1 ) 𝑓 (𝑋
𝑝

1 , 𝑋
𝑠
11)𝑊𝑋

𝑝

1 ,𝑋
𝑠
11

+ 1
𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=2

𝑚𝑖 (𝑌 𝑠
𝑖 𝑗 |𝑋

𝑝

𝑖
) 𝑓 (𝑋𝑝

𝑖
, 𝑌𝑠

𝑖 𝑗 )𝑊𝑋
𝑝

𝑖
,𝑌 𝑠
𝑖 𝑗

(23)

with definitions analogous to Equation 22. The first line is the con-
tribution from the canonical suffix 𝑋𝑠

11 (lines 10-12 in Algorithm 1).
The inner sum on the second line does the gather (lines 12-16).

ReSTIR-guided suffixes tend to be high quality, and the integra-
tion over the dimension freed by postponing reuse tends to be the

variance bottleneck. We seek ReSTIR PT’s low noise without its
correlation and present a final gather as a candidate solution, but
acknowledge our proof-of-concept approach leaves much yet to do.

8 PROOF-OF-CONCEPT EXPERIMENTS
To study our theory’s potential to improve quality without tracing
many more independent paths, we built a proof-of-concept algo-
rithm using conditional RIS and ReSTIR, per Sections 6 and 7. We
started from Lin et al.’s [2022] ReSTIR PT code and Falcor’s path
tracer [Kallweit et al. 2022].We use RTXDI [NVIDIA 2021] for direct
lighting and apply NEE at prefix vertices to account for lighting not
covered by suffixes. Results use an NVIDIA RTX 4090 at 1920×1080
with max path length of 12. Our supplemental material contains
more implementation and performance details, plus full images and
a video studying temporal behavior.

We deem our work mostly theoretical. Experiments focus
on uncovering insights on the benefits of conditional RIS
theory for subpath reuse. Thus, we have not yet searched for
optimally-performing algorithms or implementations. We show
some equal-time tests, but our goal is not showing our prototype
somehow faster or better, but understanding challenges and
identifying promising future work.

All in all, our experiments suggest relatively high potential, with
some high-reward research directions such as improving impor-
tance sampling of integration prefixes, e.g., with ReSTIR or path
guiding.

Driving suffixes with ReSTIR helps greatly. In Figure 3 we compare
our suffix reuse (“Ours”) to using independent suffixes (“MMIS”),
with a form of marginal MIS [West et al. 2022]. We show an inset
from Veach Ajar; all light comes indirectly through a barely-open
door. Spatiotemporal suffix reuse greatly improves image quality.

One reused suffix may be enough. Figure 3 also ablates over use
of multiple path suffixes during integration. For MMIS, adding
more suffixes greatly improves quality; our suffix reservoirs already
aggregate multiple suffixes, so adding more provides diminishing
returns (similar to Wyman and Panteleev [2021]).

Final gather is important. We postpone reuse by one path vertex
(vs. ReSTIR PT) and use Monte Carlo integration on the freed di-
mensions. This increases noise; our prototype lowers this with a
final gather. Figure 4 compares various integration prefix counts.
Despite Veach Ajar’s indirect lighting, increasing path prefixes
may suffice! In some sense, we convert path tracing into one-bounce
integration, as if using an unbiased radiance cache—except we reuse
full paths. Integration prefix count gives a natural quality slider for
our prototype, but in the future, we hope to approach the quality of
many prefixes while using fewer, via better importance sampling.

Russian roulette in the final gather improves efficiency. Figure 4
also compares canonical suffix count. We test one canonical suffix
per prefix (right column) versus just one per pixel via Russian
roulette (other columns); roulette reduces ray count by 80% with
often limited quality impact. Sometimes tracing more canonical
suffixes could be worthwhile, especially for offline rendering. See
the supplemental document for a study of convergence behavior.
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Suffix ReSTIR helps with disocclusion andmovement. Figure 5 com-
pares our prototype to ReSTIR PT with camera motion in Veach
Ajar. Screen space ReSTIR suffers “variance lag” around disoc-
clusions as reservoirs get reset where temporal reuse fails. Our
prototype does not suffer this lag. Disocclusions still invalidate
reservoirs, but when integrating, we find valid reuse candidates
from farther away by world-space matching. In some sense, we
move ReSTIR to object space but still concentrate computation in
visible pixels.

We largely fix ReSTIR spatiotemporal correlations. Figure 1 ex-
plores correlations in the Tower Bridge. We render a static video,
copying horizontal slices of consecutive frames to rows in the (𝑥, 𝑡)
plots. This shows temporal and spatial correlations as vertical and
horizontal blobs, respectively. ReSTIR PT’s strong spatiotemporal
correlations [Sawhney et al. 2022] are not present in our result.

Removing correlations helps with denoising. In Figure 6 we apply
a pre-release version of DLSS-RR [NVIDIA 2023] to both ReSTIR PT
and our prototype. Despite more raw noise at equal time, the lack
of correlations often allows the denoiser to produce better quality
with our subpath reuse.

High potential with improved final gather. In Figure 6 we com-
pare our current prototype to ReSTIR PT at equal-time (8 prefixes)
and also with higher prefix counts. Figure 7 further studies future
potential, assuming a high-quality final gather. ReSTIR suffixes
often contain enough information to produce clearer images than
ReSTIR PT, showing less coloration, noise, and edge artifacts. This
highlights the importance of making final gather cheaper.

9 FUTUREWORK
We believe our new conditional RIS theory offers a promising path
to extend real-time rendering to harder light paths. Below we list
some interesting future research enabled by our theory:

More efficient final gather. Postponing reuse via a final gather
largely eliminates ReSTIR correlations. But we need an efficient final
gather for cheap, high-quality prefixes. Better importance sampling
may be key: path guiding, more resampling steps, low-discrepancy
samples, or better stratification might all offer improvements.

Choosing the right supporting prefixes. For quick prototyping, we
used a BVH range search [Evangelou et al. 2021] to find supporting
prefixes near our integration prefix. Faster ways to find candidates
likely exist; better selection heuristics might also improve quality.

Other theoretical applications. Our prototype shows potential the-
oretical benefits in the context of a simple final gather. Conditional
RIS may also have other uses, e.g., spectral rendering [Weidlich et al.
2022] or volume rendering. Improving specific algorithmic details
may yield more practical variants, e.g., better shift maps, variable
prefix lengths, multi-vertex reuse, mid-prefix direct lighting, etc.

10 CONCLUSION
We present a new conditional RIS theory, generalizing unbiased
contribution weights to allow Monte Carlo integration and resam-
pling even with unknown conditional and joint PDFs. This works
for chained RIS, enabling resampling with conditional MIS weights
and shift mappings, extending Lin et al. [2022].

We apply our theory to spatiotemporally aggregate suffix paths,
driving the conditioning prefixes and reused suffixes by ReSTIR.
This allows bidirectional-like path reuse with unidirectional paths,
focusing computation in visible regions.

Our proof-of-concept, unbiased final gather combines cheap path
prefixes with suffixes reused via conditional RIS. This fills path space
with unbiased cached suffixes analogous to photons, but sampled
from the camera. Debiasing normally requires many canonical
paths; Russian roulette allows skipping all but one. All together, this
turns the renderer into a low-dimensional integration over short
prefixes. But our prototype remains expensive; we need further
algorithmic development for practical applications of conditional
resampling.
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(a) MMIS 1 suffix
SMAPE: 1.493
Ray Count: 60.6 M

(b)MMIS 2 suffixes
SMAPE: 1.355
Ray Count: 82.6 M

(c)MMIS 4 suffixes
SMAPE: 1.204
Ray Count:166.1 M

(d)MMIS 8 suffixes
SMAPE: 1.076
Ray Count:482.9 M

(e) Ours 1 suffix
SMAPE: 0.725
Ray Count: 82.4 M

(f) Ours 2 suffixes
SMAPE: 0.678
Ray Count:107.6 M

(g) Ours 4 suffixes
SMAPE: 0.644
Ray Count:203.0 M

(h) Ours 8 suffixes
SMAPE: 0.631
Ray Count:579.0 M

Figure 3:We compare our ReSTIR-driven suffixes (e–h) to a variant without CRIS, tracing new suffixes every frame (a–d, “MMIS”). All results use
four integration prefixes. We vary the suffix count reused for each integration prefix in the final gather. Without ReSTIR-driven suffixes we need
many more for good quality (a–d), and the ray count increases quadratically due to the balance heuristic. ReSTIR suffixes are better distributed
and give good results even with one suffix (e), avoiding the quadratic cost; Figure 4 shows that increasing prefix count is more cost-effective.

Number of integration prefixes: 2 prefixes 8 prefixes 32 prefixes 128 prefixes 128 prefixes
Number of canonical suffixes: + 1 (random) + 1 (random) + 1 (random) + 1 (random) + 128 (1 for each)

SMAPE: 0.850SMAPE: 0.850 SMAPE: 0.611SMAPE: 0.611 SMAPE: 0.404SMAPE: 0.404 SMAPE: 0.252SMAPE: 0.252 SMAPE: 0.224SMAPE: 0.224

2 prefixes2 prefixes 8 prefixes8 prefixes 32 prefixes32 prefixes 128 prefixes128 prefixes

Veach AjarVeach Ajar

Ray Count: 72.4 MRay Count: 72.4 M Ray Count: 101.4 MRay Count: 101.4 M Ray Count: 216.8 MRay Count: 216.8 M Ray Count: 677.6 MRay Count: 677.6 M Ray Count: 3155 MRay Count: 3155 M

SMAPE: 0.753SMAPE: 0.753 SMAPE: 0.505SMAPE: 0.505 SMAPE: 0.353SMAPE: 0.353 SMAPE: 0.265SMAPE: 0.265 SMAPE: 0.206SMAPE: 0.206

2 prefixes2 prefixes 8 prefixes8 prefixes 32 prefixes32 prefixes 128 prefixes128 prefixes

Zero DayZero Day

Ray Count: 94.2 MRay Count: 94.2 M Ray Count: 129.9 MRay Count: 129.9 M Ray Count: 272.7 MRay Count: 272.7 M Ray Count: 843.8 MRay Count: 843.8 M Ray Count: 4244 MRay Count: 4244 M

1

Figure 4: Effect of increasing integration prefixes. Here, each final gather prefix connects to one ReSTIR-driven suffix found via nearest-neighbor
search. Image quality improves steadily with increased integration prefix count. We produce a canonical suffix for only one prefix, using Russian
roulette, reducing ray count up to 80%. Quality loss from roulette is typically minor (compare the right two columns), except on some glossy
surfaces.

(a) ReSTIR PT, moving camera (b) Ours, moving camera

Figure 5: Comparing disocclusion artifacts in our prototype and ReSTIR PT using fast camera motion. Because our final gather searches nearby
candidates for suffix reuse based on vertices later in the path (not the primary hit point), it avoids ReSTIR PT’s discarded history near screen-space
disocclusions. Both methods take one full path sample per pixel per frame, but feature additional rays for reuse.
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Ours with 128 prefixes, denoised ReSTIR PT Ours (8 prefixes) Ours (32 prefixes) Ours (128 prefixes) Reference

R
a
w

Tower BridgeTower Bridge

D
e
n
o
i
s
e
d

⇑ SMAPE (raw) 0.519 0.659 0.512 0.425

⇑ SMAPE (denoised) 0.132 0.122 0.116 0.103

1

Figure 6: Our final gather produces better denoised results than ReSTIR PT, thanks to reduced correlation. Our unoptimized prototype with 8
integration prefixes (74 ms) is about equal-time to ReSTIR PT (76 ms) with increased candidate samples, giving a lower bound on achievable
quality at interactive frame rates. Our prototype with 32 prefixes (207 ms) and 128 prefixes (736 ms) achieves superior quality but are more
expensive. Future research should increase the achievable prefix count, with potential importance sampling improvements giving a multiplicative
effect on the effective count.

Our Prototype Final Gather Path Tracing MMIS ReSTIR PT Ours Reference

Veach AjarVeach Ajar

⇑ SMAPE 1.794 0.610 0.295 0.292

Zero DayZero Day

⇑ SMAPE 1.217 0.523 0.687 0.357

ClassroomClassroom

⇑ SMAPE 1.093 0.446 0.354 0.277

1

Figure 7: Comparing path tracing, MMIS, ReSTIR PT, and our proof-of-concept with one full path per frame, assuming high-quality final
gather. Our prototype and MMIS are here configured roughly equal time, which is much longer than ReSTIR PT’s cost; this figure estimates
the potential opened by subpath reuse like a final gather. See Figure 6 for an equal-time comparison. We use 128 prefix samples connecting to
one ReSTIR suffix per prefix; MMIS uses 64 prefixes connecting to three suffixes for an improved balance. With subpath reuse, we avoid color
shift or correlation artifacts common in ReSTIR PT. All scenes feature a moderately-fast animated camera to prevent over-relying on temporal
accumulation. See the supplemental document for the timings.
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