
Reservoir Splatting for Temporal Path Resampling and Motion Blur
JEFFREY LIU, University of Illinois Urbana-Champaign, USA
DAQI LIN, NVIDIA, USA
MARKUS KETTUNEN, NVIDIA, Finland
CHRIS WYMAN, NVIDIA, USA
RAVI RAMAMOORTHI, NVIDIA and UC San Diego, USA

Area ReSTIR [Zhang et al. 2024] Reservoir Splatting (Ours) Area ReSTIR [Zhang et al. 2024] Reservoir Splatting (Ours)
Time: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 msTime: 63 ms Time: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 msTime: 71 ms

Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→ Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→Slow rightward camera motion→

Area ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIR +Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur OursOursOursOursOursOursOursOursOursOursOursOursOursOursOursOursOurs ReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReference

Time: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 msTime: 13 ms Time: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 msTime: 14 ms

Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗ Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗Fast forward camera motion ⊗

Area ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIRArea ReSTIR +Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur+Naïve Motion Blur OursOursOursOursOursOursOursOursOursOursOursOursOursOursOursOursOurs ReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReference

Fig. 1. Prior ReSTIR methods [Zhang et al. 2024] degrade during camera motion, as sequential frames rarely shade identical primary hits, making

perfect reuse tricky. This worsens near fine details, like foliage and fur, where sequential frames may not hit the same surface. By forward splatting

hits from last frame, we guarantee they are reevaluated. Adding time to samples also enables resampling for motion blur while shading only one

sample per pixel. Here we show two scenes under camera motion (Sheep In Forest and Subway) with stock Area ReSTIR [Zhang et al. 2024] and

our new splatting-based ReSTIR. Insets also show an offline reference and a naïve motion blur baseline using Zhang et al.’s [2024] backprojection.

Recent extensions to spatiotemporal path reuse, or ReSTIR, improve ren-

dering efficiency in the presence of high-frequency content by augmenting

path reservoirs to represent contributions over full pixel footprints. Still, if

historical paths fail to contribute to future frames, these benefits disappear.

Prior ReSTIR work backprojects to the prior frame to identify paths for reuse.

Backprojection can fail to find relevant paths for many reasons, including

moving cameras or subpixel geometry with differing motion.

We introduce reservoir splatting to reduce these failures. Splatting forward-

projects the primary hits of prior-frame paths. Unlike backprojection, forward-

projected path samples fall into the current-frame pixel relevant to their

exact primary hits, making successful reuse more likely. This also enables

motion blur for ReSTIR, by splatting at multiple time steps, and supports

depth of field without the specialized shift maps needed previously.

Beyond enabling motion blur, splatting improves resampling quality over

Zhang et al.’s [2024] Area ReSTIR at up to 10% lower cost. To improve

robustness, we show how to MIS splatted and backprojected samples to help

every current-frame pixel get at least one historical path proposed for reuse.

CCS Concepts: • Computing methodologies→ Rendering.

This work is licensed under a Creative Commons Attribution 4.0 International License.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1540-2/2025/08

https://doi.org/10.1145/3721238.3730646

Additional Key Words and Phrases: real-time ray tracing, resampled impor-

tance sampling, ReSTIR, antialiasing, depth of field, motion blur

ACM Reference Format:
Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoor-

thi. 2025. Reservoir Splatting for Temporal Path Resampling and Motion Blur.

In Special Interest Group on Computer Graphics and Interactive Techniques

Conference Conference Papers (SIGGRAPH Conference Papers ’25), August

10–14, 2025, Vancouver, BC, Canada. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3721238.3730646

1 INTRODUCTION
Recent importance sampling techniques based on resampled impor-

tance sampling (RIS) [Talbot et al. 2005] and iterated RIS (also known

as ReSTIR) [Bitterli et al. 2020] dramatically improve rendering ef-

ficiency in interactive contexts by spatiotemporally reusing path

samples. Over time, these methods can converge to near-optimal

importance sampling with only one new sample per pixel (spp). This

convergence relies on maintaining an easily-reusable path history.

When history resets, quality temporarily degrades to that of naïve, 1

spp path tracing. Reducing the frequency of spurious sample history

resets is thus key to maintaining ReSTIR’s efficiency.

Recently, Zhang et al. [2024] showed that elevating a path’s di-

mensionality with the subpixel location allows better maintenance

of temporal history in the presence of high-frequency normal maps.

1

https://studio.blender.org/characters/5d40511bfe6b50fb62faea7d/v1/
https://github.com/mmp/pbrt-v4-scenes/tree/master/landscape
https://www.fab.com/listings/d0ee8ef3-51e8-400f-ac80-bdf8f7c86ce2
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721238.3730646
https://doi.org/10.1145/3721238.3730646

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoorthi

Static Under Motion

MAPE: 0.503 MAPE: 0.940

Fig. 2. Prior work, like Area ReSTIR [Zhang et al. 2024], converges

quite well with 1 spp using a static camera. When moving, quality

degrades significantly, especially for the high-frequency geometry

in Emerald Square. This motivates our search for better ways to

maintain historical samples.

But like other ReSTIR papers [Lin et al. 2022; Ouyang et al. 2021],

Zhang et al. still use temporal backprojection; this regularly changes

a path’s primary hit point between frames, whenever motion occurs.

Such a history is challenging to reuse, especially where pixel color

depends on aggregate geometry, e.g., hair or foliage; see Figure 2.

In this paper, we forward reproject (or splat) prior-frame samples

to further improve reuse. Unless occluded in the current frame, such

samples can be reused without changing their object-space primary

hit; this stabilizes reuse and reduces history resets.

Our specific contributions in this paper include:

• A scatter-based reservoir reuse that exactly preserves object-

space primary hits between frames (Section 4),

• A simple “backup” sample mechanism to fill holes between

splatted samples, e.g., during zooming (Section 4.2),

• Applying splatting to motion blur; we show the first ReSTIR-

accelerated motion blur algorithm (Section 4.4),

• Enabling depth of field without Zhang et al.’s [2024] special-

ized shift map or hand-tuned MIS weights (Section 4.5).

Overall, our work simplifies Area ReSTIR sampling, gives better

performance, enhances resampling quality, and enables motion blur

and depth of field out-of-the-box.

2 RELATED WORK
Ray and path tracing [Kajiya 1986; Whitted 1979] have long proven

costly, motivating researchers to explore techniques to optimize,

reduce samples, and amortize costs. We overview a number of com-

mon methods, including temporal reprojection, denoising, gradient-

domain rendering, path reuse, and resampling techniques. We then

review algorithms specifically developed for motion blur rendering.

2.1 Temporal Reprojection and Denoising
Early real-time ray tracing researchers lacked the benefits of hard-

ware acceleration [Kilgariff et al. 2018], often making do with sig-

nificantly less than one ray per pixel. Frameless rendering [Bishop

et al. 1994] recomputes a subset of pixels each frame, reusing others

until they get updated. Adding prior-frame reprojection [Adelson

and Hodges 1995; Corso et al. 2017] repositions reused pixels, and a

render cache [Nehab et al. 2007; Scherzer et al. 2007; Walter et al.

1999] reuses computation over multiple frames. Adaptive frame-

less rendering [Dayal et al. 2005] carefully places new samples and

runs (cached) samples through spatiotemporal reconstruction. Yang

et al. [2011] reprojected bidirectionally, i.e., from both forward and

backward frames, to help reconstruct intermediate frames.

Outside of ray tracing, games widely apply temporal antialiasing

(TAA) [Yang et al. 2020] to reduce undersampling using prior-frame

data. Modern TAA methods also upsample their output [Yang et al.

2009], but can introduce ghosting, blur, and shimmer. To reduce

these artifacts, many apply fast neural networks [Liu 2020; Xiao et al.

2020] that extend and accelerate offline superresolution networks

(e.g., Dong et al. [2015]).

Real-time denoisers (e.g., Schied et al. [2017, 2018]) often ingest

low-sample inputs, so they employ temporal reprojection to increase

effective sample counts [NVIDIA 2020b]. As in temporal superres-

olution, many denoisers also apply neural networks [Bako et al.

2017; Chaitanya et al. 2017; Işık et al. 2021], sometimes to uncover

adaptive sampling opportunities [Hasselgren et al. 2020; Kuznetsov

et al. 2018].

Our method is the first to demonstrate how prior-frame samples

can be used via forward-reprojection without introducing bias.

2.2 Path Reuse
Path reuse [Bekaert et al. 2002] amortizes costs by reusing paths or

segments within pixel blocks, though such reuse has challenges; Xu

and Sbert [2007] explore ways to reduce tile correlations. Gradient-

domain rendering builds correlated paths for close-by pixels with

shift mappings [Kettunen et al. 2015; Lehtinen et al. 2013] to evaluate

finite differences. Bauszat et al. [2017] use these shift mappings to

better reuse specular paths within pixel blocks.

Recently, resampling algorithms [Bitterli et al. 2020] have signifi-

cantly improved path reuse, demonstrating real-time performance

for many light transport problems; our work fits into this category

of spatiotemporal reservoir resampling (or ReSTIR) algorithms.

2.3 Resampling for Rendering
Resampled importance sampling (RIS) [Talbot et al. 2005] aggre-

gates 𝑀 samples, which are then resampled into 𝑁 samples, ap-

proximately distributed according to a normalized target function.

Bitterli et al.’s [2020] ReSTIR DI combines RIS (using 𝑁 = 1) with

weighted reservoir sampling [Chao 1982], with each per-pixel reser-

voir storing a sample whose distribution is refined by resampling

from spatial and temporal neighbors. Ouyang et al. [2021] treat

longer paths as virtual point lights [Keller 1997] to handle indirect

light. Lin et al. [2022] shift full paths between neighbors to prop-

erly handle glossy surfaces. Their generalized RIS (GRIS) provides

a mathematical foundation for ReSTIR. Zhang et al.’s [2024] Area

ReSTIR improves robustness for depth of field and subpixel details

by reusing lens and subpixel coordinates with fractional motion

vectors. We build on Area ReSTIR, but redesign its temporal reuse.

2.4 Motion Blur
Motion blur arises as cameras have non-zero exposure times. Per-

ceptually, it conveys relative motion within a frame. But temporal

integration is expensive, so real-time methods use various approxi-

mations, e.g., accumulating multiple frames [Haeberli and Akeley

1990], blurring per-pixel [Rosado 2007], extruding geometry [Gribel

et al. 2010; Tatarchuk et al. 2003], or screen-space velocity maps

2

https://developer.nvidia.com/orca/nvidia-emerald-square

Reservoir Splatting for Temporal Path Resampling and Motion Blur SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

[McGuire et al. 2012]. See Navarro et al. [2011] for a survey. Such

approximations typically favor performance over accuracy.

Ray tracers can stochastically sample time to render motion blur;

this is generally more expensive but produces better results. Multi-

dimensional adaptive sampling [Hachisuka et al. 2008; Meister and

Hachisuka 2022] concentrates samples in motion-blurred regions.

Frequency analysis [Egan et al. 2009] enables sparser sampling

driven by a sheared space-time filter. Light field reconstruction

[Lehtinen et al. 2011, 2012; Munkberg et al. 2014] can efficiently ren-

der motion blur. Covariance tracing [Belcour et al. 2013] computes

a required per-pixel sample count, and reconstructs in image-space.

Manzi et al. [2016] accelerate motion blur by evaluating temporal

differences with cross-frame shift maps. Oberberger et al. [2022]

further account for motion blur in the denoising process.

To our knowledge, we achieve the first motion blur via resampling,

potentially enabling real-time motion blur in low-sample renderers.

3 PRELIMINARIES
We first provide a review of key concepts related to ReSTIR.

3.1 Unbiased Contribution Weights
Since the result of RIS does not have a tractable PDF, Lin et al. [2022]

abandon the traditional 𝑓 /𝑝 estimators

E
[
𝑓 (𝑋)
𝑝 (𝑋)

]
=

∫
supp𝑋

𝑓 (𝑥) d𝑥 (1)

in favor of the more general 𝑓 (𝑋)𝑊𝑋 estimators with

E [𝑓 (𝑋)𝑊𝑋] =
∫

supp𝑋

𝑓 (𝑥) d𝑥, (2)

where random variable𝑊𝑋 is an unbiased contribution weight (UCW)

for𝑋 . A random variable𝑊𝑋 is a UCW for𝑋 if and only if Equation 2

is true for all integrable 𝑓 ; this is equivalent toE [𝑊𝑋 |𝑋] = 1/𝑝𝑋 (𝑋)
[Lin et al. 2022].

While RIS resampling generally results in intractable PDFs, it

allows unbiased integration and iterative resampling with simple

UCWs via this 𝑓 (𝑋)𝑊𝑋 integration framework.

3.2 Shift Mappings
Reusing a path between pixels requires modifying some vertices to

change which pixel it contributes to. Shift mappings 𝑇 move paths

between domains, e.g., pixels. Formally, a shift map from Ω1 to Ω2

is a bijective function from a subset of Ω1 to a subset of Ω2.

The reconnection shift [Lehtinen et al. 2013] is a commonly used

shift mapping. Given two camera positions 𝑥0 and 𝑦0 and primary

hits 𝑥1 and 𝑦1, this shift maps base path 𝑥 = [𝑥0𝑥1𝑥2 . . . 𝑥𝑛] into
offset path 𝑇 (𝑥) = [𝑦0𝑦1𝑥2 . . . 𝑥𝑛], reconnecting to 𝑥 immediately

after primary hit 𝑦1. This works well on rough surfaces, but fails

the goal of good shifts (that 𝑓 (𝑥) ≈ 𝑓 (𝑇 (𝑥))) if any of 𝑥1, 𝑥2, or

𝑦1 are nearly specular. Kettunen et al.’s [2015] half-vector shift and

Lin et al.’s [2022] hybrid shift postpone reconnection until rough

vertices are found, more effectively handling specular materials.

Forward and backward shifts 𝑇 and 𝑇 −1
need not be defined for

all paths, but when defined, bijectivity is essential for unbiased path

reuse
1
. Shift mappings also change path and probability densities, so

formulas using shifts need Jacobian determinants |𝑇 ′ (𝑥) | or |𝜕𝑇 /𝜕𝑥 |.

3.3 GRIS
Given candidate samples 𝑋1, . . . , 𝑋𝑁 , their corresponding domains

Ω1, . . . ,Ω𝑁 , a target domain Ω for resampling, and a non-negative

target function 𝑝 defined in Ω, GRIS [Lin et al. 2022] aggregates

𝑋1, . . . , 𝑋𝑁 into a result 𝑌 ∈ Ω, approximately distributed propor-

tional to 𝑝 . First, each 𝑋𝑖 ∈ Ω𝑖 is shifted to a similar sample 𝑌𝑖 ∈ Ω
via shift map 𝑇𝑖 :

𝑌𝑖 = 𝑇𝑖 (𝑋𝑖) . (3)

Then, a resampling weight𝑤𝑖 is computed for each 𝑌𝑖 :

𝑤𝑖 =𝑚𝑖 (𝑌𝑖)𝑝 (𝑌𝑖)𝑊𝑋𝑖

���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� , (4)

where𝑚𝑖 is a resampling MIS weight,𝑊𝑋𝑖
is sample𝑋𝑖 ’s UCW in its

original domain Ω𝑖 , and |𝜕𝑇𝑖/𝜕𝑋𝑖 | is the Jacobian of shift 𝑇𝑖 . Finally,

output 𝑌 is resampled from the 𝑌𝑖 proportional to weights𝑤𝑖 . The

new contribution weight for 𝑌 is

𝑊𝑌 =
1

𝑝 (𝑌)

𝑁∑︁
𝑖=1

𝑤𝑖 . (5)

If the supports of candidates 𝑌𝑖 together cover the support of 𝑝 ,

𝑊𝑌 is unbiased, as per Section 3.1. Taking one canonical sample

guarantees this coverage; a canonical 𝑋𝑐 is sampled from Ω𝑐 = Ω,
with an identity shift map 𝑇𝑐 , so that 𝑋𝑐 alone covers 𝑝’s support.

Lin et al. [2022] introduce the generalized balance heuristic to

compute resampling MIS weights:

𝑚𝑖 (𝑦) =
𝑐𝑖 𝑝←𝑖 (𝑦)∑𝑁
𝑗=1

𝑐 𝑗 𝑝←𝑗 (𝑦)
, (6)

which uses the “𝑝 from” function

𝑝←𝑗 (𝑦) = 𝑝 𝑗 (𝑇 −1

𝑗 (𝑦))
����� 𝜕𝑇 −1

𝑗

𝜕𝑦

����� (7)

as an (unnormalized) proxy for the PDF of 𝑦 = 𝑇𝑗 (𝑧 𝑗), originating in
domain Ω 𝑗 as 𝑧 𝑗 = 𝑇

−1

𝑗
(𝑦). The Jacobian modifies the proxy the way

probability densities transform in shift mappings. The confidence

weights 𝑐 𝑗 control the relative weight of candidate samples.

3.4 ReSTIR
ReSTIR repeatedly applies GRIS to share samples spatiotemporally.

Each pixel 𝑖 stores a reservoir containing a sample 𝑋𝑖 , its UCW𝑊𝑋𝑖
,

and confidence weight 𝑐𝑖 . See Wyman et al.’s [2023] course notes

for details, but at a high level, the process typically goes as follows:

Initial sampling. Each pixel 𝑖 gets some number 𝑁init initial can-

didates, e.g., newly-traced independent paths. One is selected via

RIS, producing a canonical initial sample 𝑋 ∗
𝑖
with UCW𝑊𝑋 ∗

𝑖
.

1
Failure to ensure invertibility, i.e.,𝑇 (𝑇 −1 (𝑦)) = 𝑦 and𝑇 −1 (𝑇 (𝑥)) = 𝑥 , is a common

source of bias.

3

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoorthi

Temporal resampling. Each pixel 𝑖 backprojects along its back-

ward motion vector to choose prior-frame reservoir 𝑗 . The results

of GRIS between 𝑌𝑗 = 𝑇𝑗 (𝑋 𝑗) and 𝑋 ∗𝑖 , using confidence weights

𝑐 𝑗 and 𝑁init, replaces 𝑋𝑖 , a new𝑊𝑋𝑖
is computed, and 𝑐𝑖 is set to

min(𝑐cap, 𝑐 𝑗 + 𝑁init), where 𝑐cap is a fixed confidence cap.

Spatial resampling. Each pixel 𝑖 chooses 𝑁spat spatial neighbors

𝑗1, . . . , 𝑗𝑁spat
randomly from a box around 𝑖 , and performs GRIS be-

tween𝑋𝑖 and each𝑋 𝑗𝑘 , using the corresponding confidence weights.

The result overwrites 𝑋𝑖 ;𝑊𝑋𝑖
is updated with Equation 5, and 𝑐𝑖

sums the samples’ confidence weights, again clamped to 𝑐cap.

Shading. The final color for pixel 𝑖 is evaluated as 𝑓 (𝑋𝑖)𝑊𝑋𝑖
, and

the same process repeats in the next frame.

3.5 Area ReSTIR
Prior to Area ReSTIR [Zhang et al. 2024], screen-space algorithms

such as Lin et al. [2022] applied ReSTIR to path space starting at

secondary hits, 𝑥2, finding primary hits 𝑥1 by ray tracing at prede-

termined subpixel locations (e.g., pixel centers).

Zhang et al. [2024] note this adds instabilities near high-frequency

details: even if a reused path suffix [𝑥2𝑥3 · · · 𝑥𝑛] remains valid, it

may be incompatible with a new pixel’s implicitly defined prefix

[𝑥0𝑥1]. To cure this, they add subpixel location (and lens position)

as additional dimensions to reservoirs, essentially storing full paths

[𝑥0𝑥1 · · · 𝑥𝑛]. Target functions no longer vary with each pixel’s

implicit prefix, as the shift maps propose complete, reusable paths.

This significantly boosts reuse quality.

To improve subpixel precision for temporal path reuse, Zhang et al.

[2024] backproject the hit point at each pixel 𝑖’s center to the prior

frame, via an image-space shift with motion

vector 𝛿𝑖 , building a 1 × 1 pixel fractional

reservoir around the result. This off-grid frac-

tional reservoir is populated with samples

from the overlapping 2 × 2 block of pixels

(via RIS), and the chosen sample is shifted back to the current frame

with motion vector −𝛿𝑖 , approximately retaining the primary hit.

As no samples in the 2 × 2 block of prior-

frame pixels may fall in the fractional reser-

voir, Zhang et al.’s “fast” variant can leave

this reservoir empty, producing excess noise.

Prior to RIS, their “robust” variant first spa-

tially shifts all samples in the 2 × 2 block to the fractional reservoir.

This solves the issue but is more expensive.

Mathematically, Area ReSTIR integrates the measurement contri-

bution function for each pixel 𝑖:

𝐼𝑖 =

∫
Ω𝑖

𝑓𝑖 (𝑥) d𝑥 =

∫
Ω𝑖

ℎ𝑖 (𝑥) 𝑓 (𝑥) d𝑥,

where pixel 𝑖’s path space Ω𝑖 ⊂ Ω is the set of paths 𝑥 for which

the pixel filter ℎ𝑖 (𝑥) > 0, and 𝑓 (𝑥) is the path contribution. We use

𝑝𝑖 (𝑥) to denote the pixel-dependent target function for resampling,

which we assume is defined as

𝑝𝑖 (𝑥) = ℎ𝑖 (𝑥)𝑝 (𝑥), (8)

often with 𝑝 = 𝑓 , but cheaper approximations can also be used.

Note that Area ReSTIR only approximately retains primary hits;

this may degrade temporal reuse near subpixel details. Our reservoir

splatting exactly retains primary hits, improving temporal reuse.

3.6 Motion Blur
Zhang et al.’s Area ReSTIR integrates the measurement integral at

a fixed time. However, rendering motion blur requires integrating

over a time interval [𝑡0, 𝑡1), where Δ𝑡 = 𝑡1 − 𝑡0 is the exposure time.

Intensity of pixel 𝑖 is then

𝐼𝑖 =

∫ 𝑡1

𝑡0

∫
Ω𝑖 (𝑡)

ℎ𝑖 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) d𝑥 d𝑡, (9)

where ℎ𝑖 (𝑥, 𝑡) is the camera’s pixel filter at time 𝑡 ∈ [𝑡0, 𝑡1).
We experimented by naïvely extending Area ReSTIR for motion

blur by adding sample time 𝑡 to the reservoirs. But backprojecting

each pixel’s motion 𝛿𝑖 at a single time causes suboptimal reuse, as

apparent motion depends on both sample time and subpixel location,

which vary independently. Our splatting uses samples’ real motion

between frames, exactly contributing to the relevant pixels.

4 RESERVOIR SPLATTING
Prior ReSTIR methods gather reusable temporal neighbors in the

prior frame; each pixel 𝑗 is backprojected to the prior frame by

a single backward motion vector 𝛿 𝑗 to find candidates for reuse

[Bitterli et al. 2020; Zhang et al. 2024]. Paths are then reused with the

negated image-space motion −𝛿 𝑗 , regardless of the reuse candidate’s
real image-space motion. This inexact track-

ing of shading points between frames can

cause reuse failures in cases of subpixel de-

tail, including factors like multiple objects

(e.g., foliage) or region scaling (zooming),

spuriously discarding the sample history that ReSTIR exploits.

We instead scatter prior-frame candidates by forward reprojec-

tion, or splatting, to map them to the current frame. Each splatted

point uniquely maps to the current image,

always contributing to the pixel it lands on,

unless occluded. This exact mapping avoids

discarding history unnecessarily.

Section 4.1 details how the math of resam-

pling changes when splatting. Section 4.2 combines scatter- and

gather-based reuse with appropriate MIS for better quality, albeit

at higher cost. Section 4.3 discusses an approach to appropriately

update reservoir confidence when splatting. Section 4.4 expands our

sample splatting to real-time motion blur, and Section 4.5 describes

how splatting also improves Zhang et al.’s [2024] depth of field.

4.1 GRIS with Scatter
Lin et al.’s [2022] GRIS theory requires defining input domains

without looking at the samples. Prior work worked around this by

reusing based on pixel-center motion vectors. But exactly preserv-

ing prior-frame samples’ primary hits requires examining which

samples contribute to which pixel, which is not allowed. To recon-

cile this, we conceptually define all prior samples as contributing

to every pixel, but ensure zero weight for those not splatting into

4

Reservoir Splatting for Temporal Path Resampling and Motion Blur SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

current pixel 𝑗 .2 This allows applying GRIS for temporal resampling

assuming:

(1) The target domain Ω is the current frame’s full path space.

(2) The target function for pixel 𝑗 is 𝑝 𝑗 (𝑥) = ℎ 𝑗 (𝑥)𝑝 (𝑥).3
(3) Input samples 𝑋1, . . . , 𝑋𝑁 come from all prior-frame area

reservoirs, i.e., 𝑁 is the screen size 𝐻 ×𝑊 . Sample domains

are Ω𝑖 = Ωprev
, the entire prior frame’s path space.

(4) Prior-frame candidates 𝑋𝑖 use the same shift map 𝑇𝑖 = 𝑇 ,

where 𝑇 is forward projection followed by the hybrid shift.

(5) Input 𝑋𝑁+1 is a canonical sample 𝑌 ∗ = 𝑌 ∗
𝑗
for current pixel 𝑗 .

It uses identity shift 𝑇𝑁+1, as it lies in the current frame.

For efficient computation, we first initialize a GRIS reservoir with

a canonical sample for each current-frame pixel. We then shift all

prior paths 𝑋𝑖 to the current frame as 𝑌𝑖 = 𝑇 (𝑋𝑖), identifying the

pixels each contributes to, and stream 𝑌𝑖 to these pixels’ reservoirs

(while avoiding race conditions).

While a balance heuristic (Section 4.1.2) for all-to-all reuse for all

𝑁 pixels requires 𝑂 (𝑁 3) total shifts, the splat operation implicitly

zero-weights most prior-frame samples for a given pixel. This re-

duces to two shifts per pixel (forward-splatting the prior reservoir

and reverse-splatting the initial sample) totaling 𝑂 (𝑁) shifts.

4.1.1 Reprojection Shift Mapping. To splat path 𝑥 into the current

frame, we first transform its primary hit 𝑥1 by keeping its object

space position; given model-to-world transform 𝑀 , we get 𝑦1 =

𝑀 (𝑀prev)−1𝑥1. For static scenes, 𝑦1 = 𝑥1. We then map lens vertex

𝑥0 to the current frame. For pinhole cameras,

𝑦0 is the new camera position. For other

camera types, we can retain local lens co-

ordinates or apply the cross-frame camera

transform, i.e., 𝑦0 = 𝑀𝑣 (𝑀prev

𝑣)−1𝑥0 given

view-to-world matrix𝑀𝑣 . We test visibility

between𝑦0 and𝑦1; if occluded, the shift fails

and remains undefined. Finally, we shift path suffix [𝑥2𝑥3 . . . 𝑥𝑛]
into [𝑦2𝑦3 . . . 𝑦𝑛] using any good shift, e.g., Lin et al.’s hybrid shift.

Reprojection induces an additional Jacobian we must consider to

avoid bias; we discuss this in Section 4.1.3.

4.1.2 GRIS Formulas. Section 4.1.1 defined resampling for current

pixel 𝑗 using 𝑁 + 1 inputs: 𝑁 prior samples 𝑋𝑖 shifted to 𝑌𝑖 = 𝑇 (𝑋𝑖)
in the current frame, plus a canonical sample 𝑌𝑁+1 = 𝑌 ∗. In this

subsection, we discuss how the box filter reduces the balance heuris-

tic into simple expressions; the supplemental document contains

derivations of MIS weights with general pixel filters.

Starting with prior sample 𝑋𝑖 mapped to 𝑌𝑖 = 𝑇𝑖 (𝑋𝑖), we substi-
tute 𝑝 𝑗 (𝑥) = ℎ 𝑗 (𝑥)𝑝 (𝑥) into Equation 4. Using a box filter,𝑤𝑖 = 0 if

𝑌𝑖 is not in pixel 𝑗 . Otherwise, for 𝑌𝑖 inside pixel 𝑗 , ℎ 𝑗 (𝑌𝑖) = 1, so

we get

𝑤𝑖 =𝑚𝑖 (𝑌𝑖) 𝑝 (𝑌𝑖)𝑊𝑋𝑖

���� 𝜕𝑇𝜕𝑋𝑖
���� . (10)

2
Similar formulations are used in light tracing, bidirectional path tracing, vertex con-

nection and merging, and related techniques [Dutré et al. 1993; Georgiev et al. 2012;

Lafortune and Willems 1993; Veach and Guibas 1995].

3
Building on ideas from Area ReSTIR [Zhang et al. 2024], the target function is the

measurement contribution function defined by Veach [1997].

The generalized balance heuristic [Lin et al. 2022] then reduces to

𝑚𝑖 (𝑌𝑖) =
𝑐𝑖 𝑝

prev (𝑋𝑖) |𝜕𝑇 /𝜕𝑋𝑖 |−1

𝑐∗ 𝑝 (𝑌𝑖) + 𝑐𝑖 𝑝prev (𝑋𝑖) |𝜕𝑇 /𝜕𝑋𝑖 |−1
, (11)

given confidence weights 𝑐𝑖 for samples 𝑋𝑖 and 𝑐
∗
for canonical

sample 𝑌 ∗. This is because shifting 𝑌𝑖 into any prior-frame domain

Ω𝑘 results in the same path 𝑇 −1

𝑘
(𝑌𝑖) = 𝑇 −1 (𝑌𝑖) = 𝑋𝑖 , whose pri-

mary hit belongs only to pixel 𝑖’s box filter. As a result, the balance

heuristic in Equation 6 reduces from 𝑁 +1 terms in the denominator

to two in Equation 11. Scattering allows simply shifting each sample

𝑋𝑖 once, contributing shifted sample 𝑌𝑖 to the pixel it falls in.

The initial sample 𝑌𝑁+1 = 𝑌 ∗ gets resampling weight

𝑤𝑁+1 =𝑚𝑁+1 (𝑌 ∗) 𝑝 (𝑌 ∗)𝑊𝑌 ∗ , (12)

with

𝑚𝑁+1 (𝑌 ∗) =
𝑐∗ 𝑝 (𝑌 ∗)

𝑐∗ 𝑝 (𝑌 ∗) + 𝑐𝑟 𝑝prev (𝑇 −1 (𝑌 ∗))
��𝜕𝑇 −1/𝜕𝑌 ∗

�� , (13)

given confidence weight 𝑐𝑟 at prior-frame pixel defined by the re-

verse splat 𝑇 −1 (𝑌 ∗). If the reverse splat fails due to occlusion or

lying outside the image, that term becomes zero. Similarly, we only

shift the canonical sample to the prior frame once, and at most one

prior-frame pixel has positive box filter value for the splat 𝑇 −1 (𝑌 ∗).
Thus, we again reduce from 𝑁 + 1 terms in the denominator to two.

4.1.3 Jacobian. Renderers often parametrize primary hits with sub-

pixel locations. Consider splatting changing a previous-frame sub-

pixel location 𝑣 to the current frame 𝑢. In this parametrization, the

Jacobian determinant from the reprojection (Section 4.1.1) is���� 𝜕𝑢𝜕𝑣 ���� = ���� 𝜕𝑢𝜕𝑦1

���� ���� 𝜕𝑦1

𝜕𝑥1

���� ���� 𝜕𝑥1

𝜕𝑣

���� , (14)

where |𝜕𝑦1/𝜕𝑥1 | accounts for object scaling and |𝜕𝑦1/𝜕𝑢 | accounts
for projection from world- to screen-space [Lehtinen et al. 2013]:���� 𝜕𝑦1

𝜕𝑢

���� = ���� 𝜕𝑦1

𝜕𝜔

���� ���� 𝜕𝜔𝜕𝑢 ���� = ∥𝑦1 − 𝑦0∥2
cos𝜃𝑁

· cos
3 𝜃𝑉 , (15)

given angle 𝜃𝑁 between 𝑦1’s normal and (𝑦0 − 𝑦1), and angle 𝜃𝑉
between the camera’s forward vector and (𝑦1−𝑦0). The full Jacobian
|𝜕𝑇 /𝜕𝑥 | multiplies the subpixel Jacobian |𝜕𝑢/𝜕𝑣 | and the Jacobian

of the remaining path, e.g., from the hybrid shift:���� 𝜕𝑇𝜕𝑥 ���� = (
cos𝜃𝑁

cos𝜃
prev

𝑁

cos
3 𝜃

prev

𝑉

cos
3 𝜃𝑉

∥𝑥1 − 𝑥0∥2
∥𝑦1 − 𝑦0∥2

)
·
���� 𝜕𝑦1

𝜕𝑥1

���� · ���𝑇 ′hybrid��� , (16)

where |𝜕𝑦1/𝜕𝑥1 | = 1 for rigid transformations. For non-rigid body

deformations, this is computed as the ratio between the correspond-

ing triangle’s current and prior area.

4.1.4 Summary. We first scatter prior samples to the current frame,

using them for resampling where they land. Next, we reverse-splat

canonical samples to the prior frame to evaluate MIS weights. Last,

we update UCWs for each pixels’ chosen sample. Reservoir splatting

remains unbiased as Jacobians compensate for any screen-space

density change, and the initial samples ensure we fully cover the

path space. Efficiently implemented, reservoir splatting costs similar

to Zhang et al.’s [2024] fast reuse in Area ReSTIR.

5

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoorthi

4.2 Backup Sample
Splatting projects to the current frame using the last frame’s for-

ward motion vectors; this leaves holes where no prior-frame pixel

contributes. We can optionally fill holes with backup samples, e.g.,

backprojecting to the prior frame to find relevant samples.

To obtain a backup, we follow the rounded motion vector 𝛿 at

each pixel center back to a prior-frame pixel 𝑏, whose sample 𝑋𝑏

we give as an additional input to our temporal reuse. We directly

use Zhang et al.’s [2024] proposed temporal shift 𝑇𝑏 .

This simple method improves robustness, albeit at increased cost

similar to Zhang et al.’s [2024] robust variant. Like any shift moving

the shading point, this works best for low frequency geometry and

lighting. In the supplementary material, we extend the MIS weights

from Equations 11 and 13 to correctly account for backup samples.

4.3 Confidence Weight Update
Earlier methods set the confidence weight 𝑐 𝑗 to the capped sum

of the inputs (Section 3.4). However, we conceptually have 𝐻 ×
𝑊 inputs, of which only a few contribute. Setting the confidence

weight based only on contributing reservoirs produces bias. Instead,

we model confidence after Zhang et al. [2024], backprojecting the

current pixel-center into the prior frame and bilinearly interpolating

the confidence weights of the 2 × 2 overlapped pixels:

𝑐 𝑗 = min

(
𝑐𝑖 +

4∑︁
𝑘 ′=1

𝛽𝑘 ′𝑐𝑘 ′ , 𝑐cap

)
. (17)

Here, 𝛽𝑘 ′ is the bilinear weight corresponding to how much pixel 𝑘′

overlaps with the backprojected pixel 𝑗 . With the backup, we also

add its confidence before clamping.

4.4 Motion Blur in ReSTIR
No prior spatiotemporal resampling algorithms handle motion blur,

which requires integrating over a shutter time [𝑡0, 𝑡1) and associat-

ing a specific time 𝑡 with each sample.

4.4.1 Naïve Area ReSTIR Extension. We started by naïvely extending

Zhang et al. [2024], augmenting paths 𝑥 into path-time pairs (𝑥, 𝑡)
and seeking a new shift between prior- and current-frame pairs.

Shift mappings rely on invariants (e.g., a vertex or half-vector), and

a sample’s offset from the frame start is a possible invariant. A shift

might preserve such an offset; given frame duration Δ𝑡 , a sample

time of 𝑡 maps to 𝑡 ± Δ𝑡 in future or prior frames.

Backprojecting sample (𝑥 𝑗 , 𝑡 𝑗) from current pixel 𝑗 to previous

time 𝑡 𝑗 −Δ𝑡 defines a motion vector. But this represents only motion

at 𝑥 𝑗 , not all surfaces in pixel 𝑗 . Area ReSTIR reuses from reservoirs

with fixed motion. Even with a new time-offset shift, many paths in

the reservoir may be irrelevant for the current pixel due to differing

motion, sample time, or subpixel detail. This makes failed shifts and

lost history more likely, degrading rendering quality; see Figure 3.

4.4.2 Splatting for Motion Blur. Comparatively, using scattering

for motion blur is simple. Splatting forward-projects a single path,

whereas backprojection seeks contributions for an entire pixel.

Splatting by shifting forward in time Δ𝑡 simply projects the prior

primary hit to the correct point on its motion, mapping to a specific

Reference Zhang +§4.4.1 ←− Splatting (Ours) −→

Splats per prior-frame sample

MAPE

FLIP

Time (ms)

N/A

0.333

0.246

53.2

N/A

0.872

0.650

48.2

1x

0.857

0.589

47.5

2x

0.709

0.491

55.5

4x

0.642

0.454

60.1

8x

0.612

0.439

77.6

Fig. 3. This Landscape has 4.3 billion triangles. For static cameras,

Zhang et al. [2024] get good results, but the quality is lost in motion,

even with naïve motion blur (Section 4.4.1). Splatting improves qual-

ity, lowers cost, and extends to multi-splatting to resample paths at

multiple times during the exposure, further improving quality.

pixel. Given shift 𝑇 in Section 4.1, our motion blur shift map 𝑇 is:

(𝑦, 𝑡) = 𝑇 (𝑥, 𝑡prev) = (𝑇 (𝑥), 𝑡prev + Δ𝑡) , (18)

which should be read as “forward project 𝑥 to time 𝑡prev + Δ𝑡”, with
𝑇 also implicitly depending on 𝑡 .

4.4.3 Multi-Splatting for Motion Blur. Some motion blur methods

[Haeberli and Akeley 1990] render repeat-

edly and accumulate. Similarly, splatting can

repeatedly shift prior samples and splat into

the current frame at different times. This re-

duces sample sparsity, improving reuse but

at increased cost (see Figures 3 and 5).

To do this, we partition the shutter time 𝜏 = 𝑡1 − 𝑡0 into 𝐾 intervals

of length 𝜏/𝐾 , and splat each sample to all 𝐾 intervals with shifts

(𝑦 (𝑛) , 𝑡 (𝑛)) = 𝑇𝑛 (𝑥, 𝑡prev) =
(
𝑇𝑛 (𝑥), 𝑡0 +

𝑛𝜏

𝐾
+
𝑡prev − 𝑡prev

0

𝐾

)
, (19)

where 𝑇𝑛 reprojects 𝑥 from 𝑡prev to 𝑡 (𝑁) , and 𝑛 = 0, . . . , 𝐾 − 1. As

𝑇𝑛 squeezes the time dimension by 1/𝐾 , we have
��𝑇 ′𝑛 �� = ��𝑇 ′𝑛 �� /𝐾 in

resampling weight and MIS formulas.

4.5 Splatting for Depth of Field
Zhang et al. [2024] achieved real-time depth of field by reusing the

subpixel location𝑢. Shifts could then be defined by either reusing the

lens position 𝑠 (the lens vertex copy shift), or the primary hit 𝑥1 (the

primary hit reconnection shift). Primary hit reconnection improves

reuse of bokeh samples for large apertures, but often leads to shift

failures for small apertures. Neither shift produces acceptable results

alone, so they must be combined via heuristic-based MIS weights.

In contrast, splatting explicitly preserves the primary hit 𝑥1 and

also allows reuse of a fixed lens sample 𝑠 , while the image-space lo-

cation 𝑢 is simply defined by splatted sample location. This achieves

high-quality bokeh using our single shift map. This saves compute

time and simplifies the code. See Figure 4 for an illustration.

6

https://github.com/mmp/pbrt-v4-scenes/tree/master/landscape

Reservoir Splatting for Temporal Path Resampling and Motion Blur SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

Fig. 4. To remain robust, Area ReSTIR [Zhang et al. 2024] reuses temporally by one shift that preserves lens coordinates and another that preserves

the primary hit, and merges with MIS. Our reservoir splatting alone preserves both. Left: Area ReSTIR computes a motion vector by tracing a

primary hit through the current lens and pixel centers (1), then reprojecting towards the prior lens center onto the prior image plane (2).Middle:
Lens vertex copy reuses prior path’s lens coordinates (3), adds the motion vector to the image-space location (4), and traces a new primary hit (5).

Primary hit reconnection adds the motion vector (6) and reprojects the old primary hit onto the lens through the image-space vertex (7). Right: Our
reservoir splatting copies the local lens coordinates (1) and reprojects the old primary hit onto the image-space towards the new lens coordinates (2).

5 IMPLEMENTATION DETAILS
We implement our reservoir splatting

4
in Falcor [Kallweit et al.

2022]. We use Zhang et al.’s [2024] area reservoir storage format,

adding the explicit object-space primary hit, as well as a sample

time when enabling motion blur. For correctness and efficiency, a

few key details should be considered.

Multiple splats can land in any pixel, requiring atomics to avoid

race conditions, as in order-independent transparency algorithms

[Maule et al. 2011] such as real-time K-buffering [Bavoil et al. 2007].

Motion blur is tricky, as it traces rays at any time 𝑡 . This requires

arbitrary-time BVH queries. While recent hardware accelerates such

motion BVHs [NVIDIA 2020,a], Falcor does not. Our prototype only

handles blur from dynamic cameras in static scenes, allowing use of

regular BVHs as geometry is time-invariant. Our algorithm should

extend to dynamic scenes once we can trace rays at arbitrary times.

The supplemental material discusses these topics in further detail.

6 RESULTS
We generated all results at 1920×1080, with timings captured on an

NVIDIA GeForce RTX 4090. We follow most settings from Zhang

et al. [2024] and Lin et al. [2022], e.g., 𝑐𝑐𝑎𝑝 = 20, spatial neighbors

from a 30 pixel radius. We enable Russian roulette, so average path

depth is < 3 in most scenes. Unless stated, motion blur results use a

simulated shutter of 1/24 seconds, regardless of frame time. We use

MAPE to measure numerical errors and FLIP for perceptual errors

[Andersson et al. 2021].

Figure 7 shows a cross-section of results, comparing our single

splatting, with and without backup (Sections 4.4.2 and 4.4.3), to

various baselines in tricky scenes.

The top three rows (Sheep In Forest, Hair, and Residential

Lobby) compare with Zhang et al.’s [2024] Area ReSTIR, using their

fast and robust temporal methods. Our splatting consistently runs

5-10% faster with 10-20% lower error than fast reuse, and splatting

with a backup similarly outperforms robust reuse. In tricky cases,

splatting alone also beats robust reuse; in simpler cases, e.g., along

flat surfaces, splatting only gives quality on par with Zhang et al.’s

fast reuse, though it usually retains a performance advantage.

The bottom rows (Bistro Exterior and Emerald Sqare) show

motion blur, which was incompatible with ReSTIR before our work.

4
Implementation available at https://github.com/Jebbly/Reservoir-Splatting.

Reference 1 Splat 2 Splats 4 Splats 8 Splats

MAPE

FLIP

Time (ms)

0.600

0.330

14.5

0.444

0.259

18.0

0.346

0.211

22.8

0.290

0.183

31.9

Fig. 5. The Living Room using multi-splatting with varying splats

per prior pixel, with camera rotation generally leftwards.

Reference Splat Splat + Backup

MAPE / Time (ms) 0.980 / 7.1 0.717 / 9.0

Fig. 6. The Wooden Staircase captured under extreme forward mo-

tion. In such cases, splatting prior reservoirs into single pixels leaves

holes between splats. Using a backup sample (Section 4.2) helps fill

these holes, improving reuse.

To avoid comparing to ad hoc post-process blur, we use a baseline of

Zhang et al. [2024] augmented by our naïve, backprojected motion

blur from Section 4.4.1. In this case, splatting again has 10-15%

lower error and usually lower cost. From a quality perspective, Area

ReSTIR’s robust reuse has quite noticeable 2 × 2 pixel correlations.

Such correlations are not present with splatting (alone), so even

if the robust baseline has lower metrics, splatting often has less

objectionable artifacts and runs twice as fast.

Qualitatively, multi-splatting could improve all our results in

Figure 7 further (e.g., as in Figure 5), albeit at increased cost.

7

https://github.com/Jebbly/Reservoir-Splatting
https://blendswap.com/blend/5014
https://blendswap.com/blend/14449

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoorthi

Our Splat + Backup Area Fast Area Robust Our Splatting Splat + Backup Reference

S
h
e
e
p
I
n
F
o
r
e
s
t

Instantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole camera

Camera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves rightCamera moves right

Time (ms) / MAPE / FLIP: 63.2 / 1.013 / 0.664 103 / 0.885 / 0.627 61.9 / 0.860 / 0.539 89.2 / 0.840 / 0.534

H
a
i
r

Instantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole cameraInstantaneous pinhole camera

Camera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves upCamera moves up

Time (ms) / MAPE / FLIP: 55.3 / 0.190 / 0.905 73.4 / 0.173 / 0.901 52.1 / 0.166 / 0.801 78.3 / 0.166 / 0.827

R
e
s
i
d
e
n
t
i
a
l
L
o
b
b
y

Depth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of fieldDepth of field

Camera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forward

Time (ms) / MAPE / FLIP: 28.5 / 1.197 / 0.784 49.8 / 1.035 / 0.745 26.1 / 1.024 / 0.681 38.1 / 0.937 / 0.663

Our Splat + Backup Naïve Naïve + Robust Our Splatting Splat + Backup Reference

B
i
s
t
r
o
E
x
t
e
r
i
o
r

Motion blur:
1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
sMotion blur:

1

10
s

Camera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves leftCamera moves left

Time(ms) / MAPE / FLIP: 18.9 / 0.956 / 0.724 29.3 / 0.748 / 0.675 18.1 / 0.885 /0.660 32.7 / 0.717 / 0.614

E
m
e
r
a
l
d
S
q

a
r
e

Motion blur:
1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
sMotion blur:

1

24
s

Camera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forwardCamera moves forward

Time(ms) / MAPE / FLIP: 26.0 / 1.088 / 0.638 40.3 / 0.957 / 0.599 23.0 / 0.973 / 0.579 39.0 / 0.819 / 0.536

Fig. 7. Here, we compare our work with various baselines. For Sheep In Forest, Hair, and Residential Lobby, we directly compare with Zhang

et al.’s [2024] fast and robust variants. No prior resampling method quickly handles motion blur, so in Bistro Exterior and Emerald Square we

compare against the naïve backprojected approach described in Section 4.4.1 (along with a robust variant similar to Zhang et al.).

8

https://studio.blender.org/characters/5d40511bfe6b50fb62faea7d/v1/
https://github.com/mmp/pbrt-v4-scenes/tree/master/landscape
https://docs.omniverse.nvidia.com/usd/latest/usd_content_samples/sample_content.html
https://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://developer.nvidia.com/orca/nvidia-emerald-square

Reservoir Splatting for Temporal Path Resampling and Motion Blur SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

Reference Area ReSTIR (Fast) Splat (Ours)

MAPE / Time (ms) 1.032 / 13.2 1.014 / 12.4

Fig. 8. The Zero Day scene captured under moderate upward motion.

Splatting improves high-frequency normal-mapped glossy material

compared to Area ReSTIR.

7 DISCUSSION
Below we discuss some key takeaways from our work and results.

Resampled reuse deteriorates under motion. While ReSTIR con-

verges impressively for static cameras, more frequent mismatches

between temporal samples degrades the history under motion (see

Figure 2). This is particularly apparent near high frequencies.

Gather versus scatter. This question repeatedly arises in graph-

ics. Typically, similar algorithms can be designed with either. But

a splat-based scatter guarantees testing every prior reservoir for

relevance to a current pixel. Especially under motion, gathering via

backprojected motion vectors makes no such guarantee. Quality

bumps just from scattering are small in well-sampled scenes, but dif-

ferences grow near high frequencies (e.g., high-frequency geometry

in Figures 1, 3, 9, 7, and high-frequency material in Figure 8).

Splatting performance is fast and stable. Splatting performance

depends on atomic contention. Even with fast motion, we averaged

0.6 to 0.9 valid prior-frame splats per pixel, with a maximum of

around 5. Variations were well-distributed, leading to good GPU

utilization. Despite the additional overheads discussed in Section 5,

splatting only requires visibility queries; these are cheaper than the

primary rays traced by other shifts that must find a new primary

hit.

Backup samples are important for robustness. Splatting introduces

holes, which grow when splats’ relative motion diverges. Backup

samples help reduce these holes, albeit at increased cost from the use

both scattering and gathering. Figure 6 shows extremely fast motion,

where these hole-filling benefits are clear. Interesting future work

includes identifying backup reuse methods with smaller overheads.

Even so, splatting with backup results in only six total shifts per

pixel, while Zhang et al.’s [2024] robust reuse uses ten total shifts

per pixel.

Multi-splatting. Multi-splatting gives another hole-reduction strat-

egy, where the performance cost is relatively small, but can signifi-

cantly improve motion blur quality (see Figure 3 and Figure 5). The

Sheep in Forest and Subway in Figure 1 use 2× splatting.

Improving depth of field. Zhang et al. [2024] introduced the first

resamplingmethod for depth of field, improving quality significantly.

However, they combined two shift maps with MIS, as neither shift

handled samples in all circles of confusion. This adds variance, as

one choice is nearly always better than the other.

Reference Area ReSTIR (Fast) Splat (Ours)

MAPE / Time (ms) 1.404 / 33.6 0.981 / 31.1

Fig. 9. Captured under motion in the Bistro. Motion increases Area

ReSTIR’s [Zhang et al. 2024] noise due to less temporal reuse. Our

splatting better preserves sample history, reducing noise, especially on

foliage and specular highlights where correspondences between frames

are more difficult to maintain.

Reference Area ReSTIR (Robust) Splat + Backup (Ours)

MAPE / Time (ms) 0.288 / 16.0 0.430 / 16.4

Fig. 10. The Dining Room captured under slow rightward movement.

Due to simple geometry and linear movement, Area ReSTIR’s fractional

reservoirs map well to the prior frame. Zhang et al.’s [2024] robust

variant reuses from the 2 × 2 neighborhood, thus providing more

effective samples than splatting plus a single backup sample.

Our splatting-based approach uses a single shift valid across

the depth range, reducing noise near the focal plane and on high-

frequency geometry. Additionally, due to the reduced shift count, our

approach is routinely up to 10% faster (e.g., Figure 9 and Figure 7).

8 LIMITATIONS AND FUTURE WORK
While splatting improves reuse for high-frequency details that re-

main in image frame-to-frame, it does not improve quality for newly-

disoccluded surfaces; many of our tricky scenes have such pixels.

While Zhang et al.’s [2024] and our backup samples can help fill

such holes, better shifts or path mutations are likely needed for

significant improvement (e.g., Kettunen et al. [2023]).

Extreme forward-motion may map one pixel to many. Backward-

reprojection reuses a sample for many pixels with correlation; splat-

ting reuses one-to-one, but may leave holes without backup samples.

In simple cases where backprojected pixel footprints map well to

the prior frame (e.g., Dining Room in Figure 10), splatting with

backup may be slightly noisier than Area ReSTIR’s robust reuse.

This is because robust reuse pulls from a 2× 2 neighborhood, which

provides more samples but induces more correlation.

While multi-splatting also helps fill holes, it can spread fireflies

present in reservoirs into multiple pixels along directions of move-

ment (see Figure 3, far right). Such fireflies may cause problems for

many modern denoisers, so mitigating them requires some thought.

Splatting follows a forward motion vector, so it inherits problems

related to such methods; pixels representing geometry seen in a

mirror will be splatted based on the mirror geometry, not the virtual

9

https://developer.nvidia.com/orca/beeple-zero-day
https://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://blendswap.com/blend/13363

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoorthi

image. Ourmulti-splatting suggests we could followmultiplemotion

vectors per pixel to further improve the rendering of mirror-like

surfaces, e.g., the clear-coated regions in Figure 8. This requires

careful theoretical development.

9 CONCLUSION
We present a new method of forward projecting, or splatting, reser-

voirs between frames that improves reuse by reducing spuriously

discarded sample histories. We show this works within Lin et al.’s

[2022] generalized RIS theory, enabling splatting-based ReSTIR to

remain unbiased.

Our work naturally applies to motion blur by repeatedly splatting

samples for resampling. Furthermore, since we project exact primary

hits, we also render depth of field with a single shift map, improving

quality and performance over Zhang et al. [2024].

We thus believe splatting is the future way to implement ReSTIR

for all scenarios. Enabling resampling for both scatter and gather

operations enlarges the algorithmic toolbox, allowing ReSTIR to

apply to a larger variety of problems, perhaps including better han-

dling of mismatches between sampling density and screen size or

combining with more complex bidirectional rendering techniques.

ACKNOWLEDGMENTS
We thank Aaron Lefohn, Bill Dally, and Eric Shaffer for supporting

this research. We also thank the anonymous reviewers for pointing

out areas for improvement and clarifications.

The following environment maps were acquired from PolyHaven:

Kloofendaal Sky for Dining Room, Spruit Dawn for Sheep in

Forest, Shanghai Bund for Hair,Misty Pines for Residential

Lobby, and Signal Hill Sunrise for Emerald Sqare. The Dining

Room and Wooden Staircase scenes were acquired from Bitterli’s

[2016] rendering resources.

REFERENCES
Stephen J Adelson and Larry F Hodges. 1995. Generating exact ray-traced animation

frames by reprojection. IEEE Computer Graphics and Applications 15, 3 (1995), 43–52.

Pontus Andersson, Jim Nilsson, Peter Shirley, and Tomas Akenine-Möller. 2021. Visual-

izing Errors in Rendered High Dynamic Range Images. In Conference of the Euro-

pean Association for Computer Graphics (Eurographics) Short Papers. Eurographics-

European Association for Computer Graphics.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-

lutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2017) 36, 4, Article 97 (2017), 97:1–97:14 pages.

https://doi.org/10.1145/3072959.3073708

Pablo Bauszat, Victor Petitjean, and Elmar Eisemann. 2017. Gradient-Domain Path

Reusing. ACM Transactions on Graphics (TOG) 36, 6 (2017), 229:1–229:9. https:

//doi.org/10.1145/3130800.3130886

Louis Bavoil, Steven Callahan, Aaron Lefohn, Joao Comba, and Claudio Silva. 2007.

Multi-fragment effects on the GPU using the k-buffer. In Proceedings of the Sympo-

sium on Interactive 3D Graphics and Games. 97–104.

Philippe Bekaert, Mateu Sbert, and John H Halton. 2002. Accelerating Path Tracing by

Re-Using Paths. In Eurographics Workshop on Rendering. 125–134. https://doi.org/

10.2312/EGWR.EGWR02.125-134

Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013.

5D Covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32,

3, Article 31 (July 2013), 18 pages. https://doi.org/10.1145/2487228.2487239

Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J Scher Zagier. 1994. Frameless

rendering: Double buffering considered harmful. In Proceedings of the 21st annual

conference on Computer graphics and interactive techniques. 175–176.

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron E. Lefohn, and Woj-

ciech Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing

with dynamic direct lighting. ACM Transactions on Graphics (TOG) 39, 4, Article

148 (Jul 2020), 17 pages. https://doi.org/10.1145/3386569.3392481

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,

Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-

struction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoen-

coder. ACM Transactions on Graphics (TOG) 36, 4, Article 98 (jul 2017), 12 pages.

https://doi.org/10.1145/3072959.3073601

Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika

69, 3 (1982), 653–656. https://doi.org/10.2307/2336002

Alessandro Dal Corso, Marco Salvi, Craig Kolb, Jeppe Revall Frisvad, Aaron Lefohn, and

David Luebke. 2017. Interactive stable ray tracing. In Proceedings of High Performance

Graphics. Article 1, 10 pages. https://doi.org/10.1145/3105762.3105769

Abhinav Dayal, Cliff Woolley, Benjamin Watson, and David Luebke. 2005. Adaptive

frameless rendering. In ACM SIGGRAPH 2005 Courses. 24–es.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image Super-

Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence 38, 2 (2015), 295–307. https://doi.org/10.1109/

TPAMI.2015.2439281

Philip Dutré, Eric P. Lafortune, and Yves D. Willems. 1993. Monte Carlo light tracing

with direct computation of pixel intensities. In 3rd International Conference on

Computational Graphics and Visualisation Techniques. 128–137.

Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi.

2009. Frequency analysis and sheared reconstruction for rendering motion blur. In

ACM SIGGRAPH 2009 Papers (SIGGRAPH ’09). Association for ComputingMachinery,

New York, NY, USA, Article 93, 13 pages. https://doi.org/10.1145/1576246.1531399

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light

transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6,

Article 192 (Nov. 2012), 10 pages. https://doi.org/10.1145/2366145.2366211

Carl Johan Gribel, Michael Doggett, and Tomas Akenine-Möller. 2010. Analytical

Motion Blur Rasterization with Compression. In High Performance Graphics. 163–

172. https://doi.org//10.2312/EGGH/HPG10/163-172

Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg

Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional

adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3 (Aug.

2008), 1–10. https://doi.org/10.1145/1360612.1360632

Paul Haeberli and Kurt Akeley. 1990. The accumulation buffer: hardware support for

high-quality rendering. In Proceedings of the 17th Annual Conference on Computer

Graphics and Interactive Techniques. 309–318. https://doi.org/10.1145/97879.97913

Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn. 2020.

Neural Temporal Adaptive Sampling and Denoising. Computer Graphics Forum

(2020). https://doi.org/10.1111/cgf.13919

Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël Gharbi.

2021. Interactive Monte Carlo denoising using affinity of neural features. ACM

Transactions on Graphics (TOG) 40, 4, Article 37 (July 2021), 13 pages. https:

//doi.org/10.1145/3450626.3459793

James T Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual

conference on Computer graphics and interactive techniques. 143–150.

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tomáš Davidovič, Kai-Hwa Yao, Theresa

Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril

Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https://github.

com/NVIDIAGameWorks/Falcor [Online; accessed 22-August-2023].

Alexander Keller. 1997. Instant radiosity. In Proceedings of the 24th Annual Conference

on Computer Graphics and Interactive Techniques. 49–56. https://doi.org/10.1145/

258734.258769

Markus Kettunen, Daqi Lin, Ravi Ramamoorthi, Thomas Bashford-Rogers, and Chris

Wyman. 2023. Conditional Resampled Importance Sampling and ReSTIR. In SIG-

GRAPH Asia 2023 Conference Papers. 1–11.

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and

Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Transactions on

Graphics (TOG) 34, 4 (2015), 1–13. https://doi.org/10.1145/2766997

Emmett Kilgariff, Henry Moreton, Nick Stam, and Brandon Bell. 2018. NVIDIA

Turing Architecture In-Depth. https://developer.nvidia.com/blog/nvidia-turing-

architecture-in-depth/. [Online; accessed 9-December-2021].

Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2018. Deep

Adaptive Sampling for Low Sample Count Rendering. Computer Graphics Forum 37,

4 (2018), 35–44. https://doi.org/10.1111/cgf.13473

Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. In Proceedings

of Compugraphics. 145–153. https://graphics.cs.kuleuven.be/publications/BDPT/

Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011.

Temporal light field reconstruction for rendering distribution effects. In ACM SIG-

GRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). As-

sociation for Computing Machinery, New York, NY, USA, Article 55, 12 pages.

https://doi.org/10.1145/1964921.1964950

Jaakko Lehtinen, Timo Aila, Samuli Laine, and Frédo Durand. 2012. Reconstructing the

indirect light field for global illumination. ACM Trans. Graph. 31, 4, Article 51 (July

2012), 10 pages. https://doi.org/10.1145/2185520.2185547

10

https://polyhaven.com/a/kloofendal_48d_partly_cloudy_puresky
https://polyhaven.com/a/spruit_dawn
https://polyhaven.com/a/shanghai_bund
https://polyhaven.com/a/misty_pines
https://polyhaven.com/a/signal_hill_sunrise
https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1145/3130800.3130886
https://doi.org/10.1145/3130800.3130886
https://doi.org/10.2312/EGWR.EGWR02.125-134
https://doi.org/10.2312/EGWR.EGWR02.125-134
https://doi.org/10.1145/2487228.2487239
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.2307/2336002
https://doi.org/10.1145/3105762.3105769
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1145/1576246.1531399
https://doi.org/10.1145/2366145.2366211
https://doi.org//10.2312/EGGH/HPG10/163-172
https://doi.org/10.1145/1360612.1360632
https://doi.org/10.1145/97879.97913
https://doi.org/10.1111/cgf.13919
https://doi.org/10.1145/3450626.3459793
https://doi.org/10.1145/3450626.3459793
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/2766997
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://doi.org/10.1111/cgf.13473
https://graphics.cs.kuleuven.be/publications/BDPT/
https://doi.org/10.1145/1964921.1964950
https://doi.org/10.1145/2185520.2185547

Reservoir Splatting for Temporal Path Resampling and Motion Blur SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila.

2013. Gradient-domain metropolis light transport. ACM Transactions on Graphics

(TOG) 32, 4 (2013), 1–12.

Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and

Chris Wyman. 2022. Generalized Resampled Importance Sampling: Foundations

of ReSTIR. ACM Transactions on Graphics (TOG) 41, 4 (2022), 75:1–75:23. https:

//doi.org/10.1145/3528223.3530158

Edward Liu. 2020. DLSS 2.0 - Image Reconstruction for Real-time Rendering with Deep

Learning. GPU Technology Conference (GTC). https://developer.nvidia.com/gtc/

2020/video/s22698-vid

Marco Manzi, Markus Kettunen, Frédo Durand, Matthias Zwicker, and Jaakko Lehtinen.

2016. Temporal gradient-domain path tracing. ACM Transactions on Graphics (TOG)

35, 6 (2016), 1–9.

Marilena Maule, João L. D. Comba, Rafael P. Torchelsen, and Rui Bastos. 2011. A

survey of raster-based transparency techniques. Comput. Graph. 35, 6 (Dec. 2011),

1023–1034. https://doi.org/10.1016/j.cag.2011.07.006

Morgan McGuire, Padraic Hennessy, Michael Bukowski, and Brian Osman. 2012. A

reconstruction filter for plausible motion blur. In Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (Costa Mesa, California) (I3D

’12). Association for Computing Machinery, New York, NY, USA, 135–142. https:

//doi.org/10.1145/2159616.2159639

Daniel Meister and Toshiya Hachisuka. 2022. Lightweight Multidimensional Adaptive

Sampling for GPU Ray Tracing. Journal of Computer Graphics Techniques (JCGT)

11, 3 (15 August 2022), 43–64. http://jcgt.org/published/0011/03/03/

Jacob Munkberg, Karthik Vaidyanathan, Jon Hasselgren, Petrik Clarberg, and Tomas

Akenine-Möller. 2014. Layered Reconstruction for Defocus and Motion Blur. Com-

puter Graphics Forum (2014). https://doi.org/10.1111/cgf.12415

Fernando Navarro, Francisco J. Serón, and Diego Gutierrez. 2011. Motion Blur Render-

ing: State of the Art. Computer Graphics Forum (2011). https://doi.org/10.1111/j.1467-

8659.2010.01840.x

Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and John R. Isidoro.

2007. Accelerating real-time shading with reverse reprojection caching. In Pro-

ceedings of the Symposium on Graphics Hardware. 25–35. https://doi.org/10.5555/

1280094.1280098

NVIDIA. 2020. GPU-Accelerated Motion Blur in Blender Cycles. https://www.nvidia.

com/en-us/on-demand/session/gtcfall20-d22635/. [Online; accessed 19-January-

2025].

NVIDIA. 2020a. NVIDIA Ampere GA102 GPU Architecture. https://www.nvidia.com/

content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf. [Online;

accessed 22-January-2025].

NVIDIA. 2020b. NVIDIA Real-Time Denoisers (NRD). https://developer.nvidia.com/

rtx/ray-tracing/rt-denoisers. [Online; accessed 20-December-2024].

Max Oberberger, Matthäus G. Chajdas, and Rüdiger Westermann. 2022. Spatiotemporal

Variance-Guided Filtering for Motion Blur. Proc. ACM Comput. Graph. Interact. Tech.

5, 3, Article 22 (2022). https://doi.org/10.1145/3543871

Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni. 2021.

ReSTIR GI: Path Resampling for Real-Time Path Tracing. Computer Graphics Forum

40, 8 (2021), 17–29. https://doi.org/10.1111/cgf.14378

Gilberto Rosado. 2007. Motion Blur as a Post-Processing Effect. In GPU Gems 3, Hubert

Nyugen (Ed.). Addison-Wesley Professional, 575–582.

Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. 2007. Pixel-Correct Shadow

Maps with Temporal Reprojection and Shadow Test Confidence. In Proceedings of the

Eurographics Symposium on Rendering. https://doi.org/10.2312/EGWR/EGSR07/045-

050

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla

Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, andMarco

Salvi. 2017. Spatiotemporal variance-guided filtering: real-time reconstruction for

path-traced global illumination. In Proceedings of High Performance Graphics. 1–12.

https://doi.org/10.1145/3105762.3105770

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estima-

tion for Real-Time Adaptive Temporal Filtering. Proc. ACM Comput. Graph. Interact.

Tech. 1, 2, Article 24 (2018). https://doi.org/10.1145/3233301

Justin Talbot, David Cline, and Parris Egbert. 2005. Importance Resampling for Global

Illumination. In Eurographics Symposium on Rendering. 139–146. https://doi.org/10.

2312/EGWR/EGSR05/139-146

Natalya Tatarchuk, Chris Brennan, and John Isidoro. 2003. Motion Blur Using Geometry

and Shading Distortion. In ShaderX2, Wolfgang Engel (Ed.). Charles River Media.

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulations. Ph. D.

Dissertation. Stanford University. https://graphics.stanford.edu/papers/veach_

thesis/

Eric Veach and Leonidas Guibas. 1995. Bidirectional estimators for light transport. In

Photorealistic Rendering Techniques. Springer, 145–167. https://doi.org/10.1007/978-

3-642-87825-1_11

Bruce Walter, George Drettakis, and Steven Parker. 1999. Interactive Rendering using

the Render Cache. In Rendering Techniques’ 99. Springer Vienna, Vienna, 19–30.

Turner Whitted. 1979. An improved illumination model for shaded display. In Proceed-

ings of the 6th Annual Conference on Computer Graphics and Interactive Techniques.

14. https://doi.org/10.1145/800249.807419

Chris Wyman, Markus Kettunen, Daqi Lin, Benedikt Bitterli, Cem Yuksel, Wojciech

Jarosz, Pawel Kozlowski, and Giovanni De Francesco. 2023. A Gentle Introduction

to ReSTIR: Path Reuse in Real-time. In ACM SIGGRAPH 2023 Courses (Los Angeles,

California). https://doi.org/10.1145/3587423.3595511

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton

Kaplanyan. 2020. Neural supersampling for real-time rendering. ACM Transactions

on Graphics (TOG) 39, 4, Article 142 (Aug 2020), 12 pages. https://doi.org/10.1145/

3386569.3392376

Qing Xu and Mateu Sbert. 2007. A New Way to Re-using Paths. In Computational

Science and Its Applications – ICCSA 2007, Osvaldo Gervasi and Marina L. Gavrilova

(Eds.). 741–750.

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A Survey of Temporal Antialiasing

Techniques. Computer Graphics Forum 39, 2 (2020), 607–621. https://doi.org/10.

1111/cgf.14018

Lei Yang, Diego Nehab, Pedro V. Sander, Pitchaya Sitthi-amorn, Jason Lawrence, and

Hugues Hoppe. 2009. Amortized supersampling. ACM Transactions on Graphics

(TOG) 28, 5 (Dec. 2009), 1–12. https://doi.org/10.1145/1618452.1618481

Lei Yang, Yu-Chiu Tse, Pedro V. Sander, Jason Lawrence, Diego Nehab, Hugues Hoppe,

and Clara L. Wilkins. 2011. Image-based bidirectional scene reprojection. ACM

Trans. Graph. (Dec. 2011), 1–10. https://doi.org/10.1145/2070781.2024184

Song Zhang, Daqi Lin, Markus Kettunen, Cem Yuksel, and Chris Wyman. 2024. Area

ReSTIR: Resampling for Real-Time Defocus and Antialiasing. ACM Transactions on

Graphics (TOG) 43, 4 (2024), 1–13.

11

https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158
https://developer.nvidia.com/gtc/2020/video/s22698-vid
https://developer.nvidia.com/gtc/2020/video/s22698-vid
https://doi.org/10.1016/j.cag.2011.07.006
https://doi.org/10.1145/2159616.2159639
https://doi.org/10.1145/2159616.2159639
http://jcgt.org/published/0011/03/03/
https://doi.org/10.1111/cgf.12415
https://doi.org/10.1111/j.1467-8659.2010.01840.x
https://doi.org/10.1111/j.1467-8659.2010.01840.x
https://doi.org/10.5555/1280094.1280098
https://doi.org/10.5555/1280094.1280098
https://www.nvidia.com/en-us/on-demand/session/gtcfall20-d22635/
https://www.nvidia.com/en-us/on-demand/session/gtcfall20-d22635/
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://developer.nvidia.com/rtx/ray-tracing/rt-denoisers
https://developer.nvidia.com/rtx/ray-tracing/rt-denoisers
https://doi.org/10.1145/3543871
https://doi.org/10.1111/cgf.14378
https://doi.org/10.2312/EGWR/EGSR07/045-050
https://doi.org/10.2312/EGWR/EGSR07/045-050
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3233301
https://doi.org/10.2312/EGWR/EGSR05/139-146
https://doi.org/10.2312/EGWR/EGSR05/139-146
https://graphics.stanford.edu/papers/veach_thesis/
https://graphics.stanford.edu/papers/veach_thesis/
https://doi.org/10.1007/978-3-642-87825-1_11
https://doi.org/10.1007/978-3-642-87825-1_11
https://doi.org/10.1145/800249.807419
https://doi.org/10.1145/3587423.3595511
https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1145/3386569.3392376
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1145/1618452.1618481
https://doi.org/10.1145/2070781.2024184

	Abstract
	1 Introduction
	2 Related Work
	2.1 Temporal Reprojection and Denoising
	2.2 Path Reuse
	2.3 Resampling for Rendering
	2.4 Motion Blur

	3 Preliminaries
	3.1 Unbiased Contribution Weights
	3.2 Shift Mappings
	3.3 GRIS
	3.4 ReSTIR
	3.5 Area ReSTIR
	3.6 Motion Blur

	4 Reservoir Splatting
	4.1 GRIS with Scatter
	4.2 Backup Sample
	4.3 Confidence Weight Update
	4.4 Motion Blur in ReSTIR
	4.5 Splatting for Depth of Field

	5 Implementation Details
	6 Results
	7 Discussion
	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References

