
Reservoir Splatting for Temporal Path Resampling and Motion Blur
Supplemental Document
JEFFREY LIU, University of Illinois Urbana-Champaign, USA
DAQI LIN, NVIDIA, USA
MARKUS KETTUNEN, NVIDIA, Finland
CHRIS WYMAN, NVIDIA, USA
RAVI RAMAMOORTHI, NVIDIA and UC San Diego, USA

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: real-time ray tracing, resampled impor-
tance sampling, ReSTIR, antialiasing, depth of field, motion blur

ACM Reference Format:
Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoor-
thi. 2025. Reservoir Splatting for Temporal Path Resampling and Motion Blur
Supplemental Document. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Papers (SIGGRAPH Conference
Papers ’25), August 10–14, 2025, Vancouver, BC, Canada. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3721238.3730646

This document explains derivations and details that did not fit in
the main paper. In this document, we refer to prior-frame 𝑝 as 𝑝𝑃 .

Section 1 derives MIS weights for reservoir splatting for general
pixel filters, including the box filter as a special case. Section 2 then
derives MIS weights for reservoir splatting with a backup sample,
also including the box filter as a special case. Section 3 discusses
additional implementation details for splatting and motion blur.

1 MIS WEIGHTS FOR RESERVOIR SPLATTING
In this section, we derive the MIS weights for scatter reuse without
a backup sample.

Our inputs are𝑋1, . . . , 𝑋𝑁 in the prior framewith the reprojection
shift 𝑇 and the current pixel’s canonical initial sample 𝑌 ∗. Confi-
dence weights are, in the same order, 𝑐1, . . . , 𝑐𝑁 , and 𝑐∗. We will
now derive formulas for𝑚𝑖 (𝑌𝑖 ) and𝑚∗ (𝑌 ∗) with the generalized
balance heuristic.
The generalized balance heuristic [Lin et al. 2022] is

𝑚𝑖 (𝑥) =
𝑐𝑖 𝑝←𝑖 (𝑥)∑𝑀

𝑘=1 𝑐𝑘 𝑝←𝑘 (𝑥)
, (1)

where the “𝑝 from” function is

𝑝←𝑖 (𝑦) = 𝑝𝑖 (𝑇 −1𝑖 (𝑦))
��𝜕𝑇 −1𝑖 /𝜕𝑦

�� , (2)

and zero if 𝑇 −1
𝑖
(𝑦) is undefined or outside supp𝑋𝑖 .

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1540-2/2025/08
https://doi.org/10.1145/3721238.3730646

We first derive𝑚𝑖 (𝑌𝑖 ) by substitution into Equation 1. We get

𝑚𝑖 (𝑌𝑖 ) =
𝑐𝑖 𝑝←𝑖 (𝑌𝑖 )

𝑐∗ 𝑝∗ (𝑌𝑖 ) +
∑𝑁
𝑘=1 𝑐𝑘 𝑝←𝑘 (𝑌𝑖 )

(3)

=

𝑐𝑖 𝑝𝑖 (𝑇 −1 (𝑌𝑖 ))
��� 𝜕𝑇 −1𝜕𝑌𝑖

���
𝑐∗ 𝑝∗ (𝑌𝑖 ) +

∑𝑁
𝑘=1 𝑐𝑘 𝑝𝑘 (𝑇 −1 (𝑌𝑖 ))

��� 𝜕𝑇 −1𝜕𝑌𝑖

��� . (4)

Noting that 𝑋𝑖 = 𝑇 −1 (𝑌𝑖 ) and 𝑝𝑖 = ℎ𝑖 𝑝 ,

𝑚𝑖 (𝑌𝑖 ) =
𝑐𝑖 ℎ𝑖 (𝑋𝑖 )𝑝𝑃 (𝑋𝑖 )

��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1
𝑐∗ ℎ∗ (𝑌𝑖 )𝑝 (𝑌𝑖 ) +

(∑𝑁
𝑘=1 𝑐𝑘 ℎ𝑘 (𝑋𝑖 )

)
𝑝𝑃 (𝑋𝑖 )

��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1 . (5)

Next, we derive𝑚∗ (𝑌 ∗) similarly. We get

𝑚∗ (𝑌 ∗) = 𝑐∗ 𝑝∗ (𝑌 ∗)
𝑐∗ 𝑝∗ (𝑌 ∗) +

∑𝑁
𝑘=1 𝑐𝑘 𝑝←𝑘 (𝑌 ∗)

(6)

=
𝑐∗ 𝑝∗ (𝑌 ∗)

𝑐∗ 𝑝∗ (𝑌 ∗) +
∑𝑁
𝑘=1 𝑐𝑘 𝑝𝑘 (𝑇 −1 (𝑌 ∗))

��� 𝜕𝑇 −1𝜕𝑌 ∗

��� . (7)

Denoting 𝑋 ∗ = 𝑇 −1 (𝑌 ∗), we get

𝑚∗ (𝑌 ∗) = 𝑐∗ ℎ∗ (𝑌 ∗)𝑝 (𝑌 ∗)

𝑐∗ ℎ∗ (𝑌 ∗)𝑝 (𝑌 ∗) +
(∑𝑁

𝑘=1 𝑐𝑘 ℎ𝑘 (𝑋 ∗)
)
𝑝𝑃 (𝑋 ∗)

��� 𝜕𝑋 ∗𝜕𝑌 ∗

��� .
(8)

In all of the above, the denominator contains a confidence-weighted
sum of pixel filter values of the reverse-splatted sample.

Next, we derive simplified formulas for the box filter. A sample’s
resampling weight 𝑤 can be positive only if the sample is in the
current pixel. This is always true for 𝑌 ∗, and for 𝑌𝑖 we find the
contributing indices by scattering.
First, we assume 𝑌𝑖 is defined and in the current pixel. We start

from Equation 5 and set ℎ𝑖 (𝑋𝑖 ) = 1 since 𝑋𝑖 comes from pixel 𝑖
and ℎ∗ (𝑌𝑖 ) = 1 by assumption that 𝑌𝑖 is in the current pixel. The
only contributing index in the sum is 𝑖 , since 𝑋𝑖 is in pixel 𝑖 , and
ℎ𝑖 (𝑋𝑖 ) = 1. We get

𝑚𝑖 (𝑌𝑖 ) =
𝑐𝑖 𝑝

𝑃 (𝑋𝑖 )
��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1
𝑐∗ 𝑝 (𝑌𝑖 ) + 𝑐𝑖 𝑝𝑃 (𝑋𝑖 )

��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1 . (9)

Next, we simplify 𝑚∗ (𝑌 ∗) from Equation 8. The initial sample is
always in the current pixel, so we set ℎ∗ (𝑌 ∗) = 1. Let 𝑟 be the prior-
frame pixel𝑌 ∗ reverse-splats into. This is the only pixel contributing

1

https://doi.org/10.1145/3721238.3730646
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721238.3730646


SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Jeffrey Liu, Daqi Lin, Markus Kettunen, Chris Wyman, and Ravi Ramamoorthi

to the sum in the denominator, and ℎ𝑟 ∗ (𝑋 ∗) = 1. We get

𝑚∗ (𝑌 ∗) = 𝑐∗ 𝑝 (𝑌 ∗)

𝑐∗ 𝑝 (𝑌 ∗) + 𝑐𝑟 𝑝𝑃 (𝑋 ∗)
��� 𝜕𝑋 ∗𝜕𝑌 ∗

��� . (10)

If the reverse splat 𝑋 ∗ = 𝑇 −1 (𝑌 ∗) is undefined or does not land on
any pixel, the term containing 𝑋 ∗ is removed.

2 MIS WEIGHTS WITH A BACKUP SAMPLE
In this section, we derive the MIS weights for scatter reuse with a
backup sample. The derivation is similar to Section 1.

Our inputs are𝑋1, . . . , 𝑋𝑁 in the prior framewith the reprojection
shift 𝑇 , a backup sample 𝑋𝑏 in the prior frame with shift mapping
𝑇𝑏 , and the current pixel’s canonical initial sample 𝑌 ∗. Their con-
fidence weights are, in the same order, 𝑐1, . . . , 𝑐𝑁 , 𝑐𝑏 , and 𝑐∗. We
will now derive formulas for𝑚𝑖 (𝑌𝑖 ),𝑚𝑏 (𝑌𝑏 ), and𝑚∗ (𝑌 ∗) with the
generalized balance heuristic.
We first derive𝑚𝑖 (𝑌𝑖 ) by substitution into Equation 1. We get

𝑚𝑖 (𝑌𝑖 ) =
𝑐𝑖 𝑝←𝑖 (𝑌𝑖 )

𝑐∗ 𝑝∗ (𝑌𝑖 ) + 𝑐𝑏 𝑝←𝑏 (𝑌𝑖 ) +
∑𝑁
𝑘=1 𝑐𝑘 𝑝←𝑘 (𝑌𝑖 )

(11)

=

𝑐𝑖 𝑝𝑖 (𝑇 −1 (𝑌𝑖 ))
��� 𝜕𝑇 −1𝜕𝑌𝑖

���
𝑐∗ 𝑝∗ (𝑌𝑖 ) + 𝑐𝑏 𝑝𝑏 (𝑇 −1𝑏

(𝑌𝑖 ))
���� 𝜕𝑇 −1𝑏

𝜕𝑌𝑖

����+∑𝑁
𝑘=1 𝑐𝑘 𝑝𝑘 (𝑇 −1 (𝑌𝑖 ))

��� 𝜕𝑇 −1𝜕𝑌𝑖

���
. (12)

Denoting 𝑍𝑖 = 𝑇 −1
𝑏
(𝑌𝑖 ), noting 𝑋𝑖 = 𝑇 −1 (𝑌𝑖 ), and 𝑝𝑖 = ℎ𝑖 𝑝 ,

𝑚𝑖 (𝑌𝑖 ) =
𝑐𝑖 ℎ𝑖 (𝑋𝑖 )𝑝𝑃 (𝑋𝑖 )

��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1
𝑐∗ ℎ∗ (𝑌𝑖 )𝑝 (𝑌𝑖 ) + 𝑐𝑏 ℎ𝑏 (𝑍𝑖 )𝑝𝑃 (𝑍𝑖 )

��� 𝜕𝑍𝑖

𝜕𝑌𝑖

���+(∑𝑁
𝑘=1 𝑐𝑘 ℎ𝑘 (𝑋𝑖 )

)
𝑝𝑃 (𝑋𝑖 )

��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1
. (13)

Next, we derive𝑚∗ (𝑌 ∗) similarly. We get

𝑚∗ (𝑌 ∗) = 𝑐∗ 𝑝∗ (𝑌 ∗)
𝑐∗ 𝑝∗ (𝑌 ∗) + 𝑐𝑏 𝑝←𝑏 (𝑌 ∗) +

∑𝑁
𝑘=1 𝑐𝑘 𝑝←𝑘 (𝑌 ∗)

(14)

=
𝑐∗ 𝑝∗ (𝑌 ∗)

𝑐∗ 𝑝∗ (𝑌 ∗) + 𝑐𝑏 𝑝𝑏 (𝑇 −1𝑏
(𝑌 ∗))

���� 𝜕𝑇 −1𝑏

𝜕𝑌 ∗

����+∑𝑁
𝑘=1 𝑐𝑘 𝑝𝑘 (𝑇 −1 (𝑌 ∗))

��� 𝜕𝑇 −1𝜕𝑌 ∗

���
. (15)

Denoting 𝑋 ∗ = 𝑇 −1 (𝑌 ∗) and 𝑍 ∗ = 𝑇 −1
𝑏
(𝑌 ∗), we get

𝑚∗ (𝑌 ∗) = 𝑐∗ ℎ∗ (𝑌 ∗)𝑝 (𝑌 ∗)

𝑐∗ ℎ∗ (𝑌 ∗)𝑝 (𝑌 ∗) + 𝑐𝑏 ℎ𝑏 (𝑍 ∗)𝑝𝑃 (𝑍 ∗)
��� 𝜕𝑍 ∗𝜕𝑌 ∗

���+(∑𝑁
𝑘=1 𝑐𝑘 ℎ𝑘 (𝑋 ∗)

)
𝑝𝑃 (𝑋 ∗)

��� 𝜕𝑋 ∗𝜕𝑌 ∗

���
. (16)

Finally, we derive𝑚𝑏 (𝑌𝑏 ), with 𝑌𝑏 = 𝑇𝑏 (𝑋𝑏 ):

𝑚𝑏 (𝑌𝑏 ) = 𝑐𝑏 𝑝←𝑏 (𝑌𝑏 )
𝑐∗ 𝑝∗ (𝑌𝑏 ) + 𝑐𝑏 𝑝←𝑏 (𝑌𝑏 ) +∑𝑁

𝑘=1 𝑐𝑘 𝑝←𝑘 (𝑌𝑏 )
(17)

=

𝑐𝑏 𝑝𝑏 (𝑇 −1𝑏
(𝑌𝑏 ))

���� 𝜕𝑇 −1𝑏

𝜕𝑌𝑏

����
𝑐∗ 𝑝∗ (𝑌𝑏 ) + 𝑐𝑏 𝑝𝑏 (𝑇 −1𝑏

(𝑌𝑏 ))
���� 𝜕𝑇 −1𝑏

𝜕𝑌𝑏

����+∑𝑁
𝑘=1 𝑐𝑘 𝑝𝑘 (𝑇 −1 (𝑌𝑏 ))

��� 𝜕𝑇 −1
𝜕𝑌𝑏

���
. (18)

With 𝑌𝑏 = 𝑇𝑏 (𝑋𝑏 ), denoting 𝑍𝑏 = 𝑇 −1 (𝑋𝑏 ), we have

𝑚𝑏 (𝑌𝑏 ) =
𝑐𝑏 ℎ𝑏 (𝑋𝑏 )𝑝𝑃 (𝑋𝑏 )

��� 𝜕𝑌𝑏

𝜕𝑋𝑏

���−1
𝑐∗ ℎ∗ (𝑌𝑏 )𝑝 (𝑌𝑏 ) + 𝑐𝑏 ℎ𝑏 (𝑋𝑏 )𝑝𝑃 (𝑋𝑏 )

��� 𝜕𝑌𝑏

𝜕𝑋𝑏

���−1 +(∑𝑁
𝑘=1 𝑐𝑘 ℎ𝑘 (𝑍𝑏 )

)
𝑝𝑃 (𝑍𝑏 )

��� 𝜕𝑍𝑏

𝜕𝑋𝑏

���
. (19)

In all of the above, the denominator contains a confidence-weighted
sum of pixel filter values at the reverse-splatted sample.

Next, we derive simplified formulas for the box filter. A sample’s
resampling weight 𝑤 can be positive only if the sample is in the
current pixel. This is always true for 𝑌 ∗, for 𝑌𝑏 by construction
when the backup pixel 𝑏 exists, and for 𝑌𝑖 we find the contributing
indices by scattering.
First, we assume 𝑌𝑖 is defined and in the current pixel. We start

from Equation 13 and set ℎ𝑖 (𝑋𝑖 ) = 1 since 𝑋𝑖 comes from pixel
𝑖 , ℎ∗ (𝑌𝑖 ) = 1 by assumption that 𝑌𝑖 is in the current pixel, and
ℎ𝑏 (𝑍𝑖 ) = 1 since 𝑇 −1

𝑏
shifts from the current pixel to the backup

pixel. The only contributing index in the sum is 𝑖 , since𝑋𝑖 is in pixel
𝑖 , and ℎ𝑖 (𝑋𝑖 ) = 1. We get

𝑚𝑖 (𝑌𝑖 ) =
𝑐𝑖 𝑝

𝑃 (𝑋𝑖 )
��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1
𝑐∗ 𝑝 (𝑌𝑖 ) + 𝑐𝑏 𝑝𝑃 (𝑍𝑖 )

��� 𝜕𝑍𝑖

𝜕𝑌𝑖

��� + 𝑐𝑖 𝑝𝑃 (𝑋𝑖 ) ��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1 . (20)

If the shift 𝑍𝑖 = 𝑇 −1
𝑏
(𝑌𝑖 ) fails, the term involving 𝑍𝑖 is removed.

Next, we simplify𝑚∗ (𝑌 ∗) from Equation 16. The initial sample
is always in the current pixel, so we set ℎ∗ (𝑌 ∗) = 1. Since 𝑍 ∗ =

𝑇 −1
𝑏
(𝑌 ∗) is in the backup pixel, we have ℎ𝑏 (𝑍 ∗) = 1. Let 𝑟∗ be

the prior-frame pixel 𝑌 ∗ reverse-splats into. This is the only pixel
contributing to the sum in the denominator, and ℎ𝑟 ∗ (𝑋 ∗) = 1. We
get

𝑚∗ (𝑌 ∗) = 𝑐∗ 𝑝 (𝑌 ∗)

𝑐∗ 𝑝 (𝑌 ∗) + 𝑐𝑏 𝑝𝑃 (𝑍 ∗)
��� 𝜕𝑍 ∗𝜕𝑌 ∗

��� + 𝑐𝑟 ∗ 𝑝𝑃 (𝑋 ∗) ��� 𝜕𝑋 ∗𝜕𝑌 ∗

��� . (21)

If the reverse splat 𝑋 ∗ = 𝑇 −1 (𝑌 ∗) is undefined or does not land
on any pixel, the term containing 𝑋 ∗ is removed. If the shift 𝑍 ∗ =
𝑇 −1
𝑏
(𝑌 ∗) into the backup pixel fails, or the backup pixel does not

exist, the term containing 𝑍 ∗ is removed.
Finally, we simplify𝑚𝑏 (𝑌𝑏 ) from Equation 19. Assuming we get

to evaluate𝑚𝑏 (𝑌𝑏 ), the backup pixel must exist, and so ℎ𝑏 (𝑋𝑏 ) = 1.
The shift 𝑌𝑏 = 𝑇𝑏 (𝑋𝑏 ) must have been defined, so ℎ∗ (𝑌𝑏 ) = 1.
Finally, let 𝑟𝑏 be the pixel of the reverse-splat 𝑍𝑏 = 𝑇 −1 (𝑌𝑏 ). This

2



Reservoir Splatting for Temporal Path Resampling and Motion Blur Supplemental Document SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

is the only contributing pixel in the sum in the denominator. We get

𝑚𝑏 (𝑌𝑏 ) =
𝑐𝑏 𝑝𝑃 (𝑋𝑏 )

��� 𝜕𝑌𝑏

𝜕𝑋𝑏

���−1
𝑐∗ 𝑝 (𝑌𝑏 ) + 𝑐𝑏 𝑝𝑃 (𝑋𝑏 )

��� 𝜕𝑌𝑏

𝜕𝑋𝑏

���−1+ 𝑐𝑟𝑏 𝑝𝑃 (𝑍𝑏 )
��� 𝜕𝑍𝑏

𝜕𝑋𝑏

��� . (22)
If 𝑍𝑏 is undefined or lands outside the image (i.e., 𝑟𝑏 does not exist),
the term containing 𝑍𝑏 is removed.

3 IMPLEMENTATION
This section discusses certain implementation details of our algo-
rithm that did not fit into the main paper.

3.1 Splatting Operation
In our implementation, we use the box filter. Conceptually, all 𝑁 =

𝐻 ×𝑊 prior-frame reservoirs may splat into a single pixel, but it
is impossible to allocate a buffer storing a local array of 𝑁 entries
per current-frame pixel. In practice, each frame will splat at most
𝑁 reservoirs, so we instead allocate a global array of 𝑁 entries,
mapping prior-frame reservoirs to its current-frame pixel.

The splatting operation is then implemented using atomic coun-
ters: one counter per pixel and one global counter. We run a set of
shaders in the following sequence:

(1) Forward-Projection: a thread per previous-frame pixel to forward-
project its reservoir to the current frame and increment the
corresponding pixel 𝑗 ’s atomic counter, which returns an off-
set in the “local” array of splatted samples corresponding to
pixel 𝑗 . Once finished, the per-pixel atomic counters store the
length of each current-frame pixel’s array.

(2) Sorting: a thread per current-frame pixel to increment the
global atomic counter by its array length, which returns an
offset in the global buffer for the "local" array to be stored.

(3) Global Array Insertion: a thread per previous-frame pixel to
write its pixel index to the global buffer based on the global
offset and the local array offset.

(4) Resampling: a thread per current-frame pixel to loop through
all associated previous-frame samples, to shift and resample.

Note that the actual shift mapping on previous-frame pixels can
be computed in step (1) to minimize thread divergence. The for-
loop in step (4) can then simply execute the weighted reservoir
resampling.

3.2 Confidence Weights in Temporal Resampling
In practice, we consider both the splatted reservoirs and the backup
reservoir as temporal samples. To avoid over-downweighting the
canonical sample, we replace 𝑐𝑏 , 𝑐𝑟𝑏 , 𝑐𝑖 , 𝑐𝑟 ∗ from Section 2 with
𝛼𝑐𝑏 , 𝛼𝑐𝑟𝑏 , (1 − 𝛼)𝑐𝑖 , (1 − 𝛼)𝑐𝑟 ∗ respectively, using 𝛼 = 0.5 for sim-
plicity. We leave the exploration of 𝛼 to future work.

3.3 Motion Blur
Our implementation completely decouples shutter time from frame
time, i.e., we can simulate any shutter time 𝜏 along with any simu-
lated frame time Δ𝑡 .

3.3.1 Camera Interpolation. We need to shoot rays with arbitrary
time samples 𝑡 ∈ [𝑡𝑃0 , 𝑡

𝑃
1 ) or 𝑡 ∈ [𝑡0, 𝑡1) to account for time-involved

shifts. To do so, we allocate a static array to serve as a circular buffer,
storing camera orientations. At the beginning of each frame, the
oldest entry is replaced by the new camera orientation. By tracking
the head of the circular buffer, shaders can orient the camera at
arbitrary 𝑡 by computing the two orientations that 𝑡 lies between.
Using the relative offset between the two timestamps, the orientation
at 𝑡 is computed by linearly interpolating the positions and the angle
between the two forward vectors.

3.3.2 Naïve Area ReSTIR Extension. In our naïve Area ReSTIR ex-
tension, we use the motion vectors computed based on 𝑡1 and 𝑡𝑃1 ,
i.e., the motion vectors provided by Falcor’s V-buffer render pass
[Kallweit et al. 2022]. Any other 𝑡 is still just an arbitrary choice,
and should not be expected to perform any better. The inverse view-
projection matrices for the camera orientations at 𝑡𝑃1 , 𝑡1 are already
provided, so it would require extra computation to compute the
motion vectors at other timestamps.

REFERENCES
Simon Kallweit, Petrik Clarberg, Craig Kolb, Tomáš Davidovič, Kai-Hwa Yao, Theresa

Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril
Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https://github.
com/NVIDIAGameWorks/Falcor [Online; accessed 22-August-2023].

Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and
Chris Wyman. 2022. Generalized Resampled Importance Sampling: Foundations
of ReSTIR. ACM Transactions on Graphics (TOG) 41, 4 (2022), 75:1–75:23. https:
//doi.org/10.1145/3528223.3530158

3

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158

	Abstract
	1 MIS Weights for Reservoir Splatting
	2 MIS Weights with a Backup Sample
	3 Implementation
	3.1 Splatting Operation
	3.2 Confidence Weights in Temporal Resampling
	3.3 Motion Blur

	References

