
1

Filtering After Shading With Stochastic Texture Filtering
Matt Pharr, NVIDIA

Bartlomiej Wronski, NVIDIA

Marco Salvi, NVIDIA

Marcos Fajardo, Shiokara–Engawa Research

Intro – textures and texture filtering
(The way we traditionally teach it)

Textures – essential for high quality rendering

“Physically Based Rendering: From Theory To Implementation”, 2004-2021 M. Pharr, W. Jakob, and G. Humphreys

Texture mapping – why we need filtering?

• Texture – a 1D/2D/3D/4D grid of discrete values

• Values defined only at texel centers

Texture mapping – why we need filtering?

• Texture – a 1D/2D/3D/4D grid of discrete values

• Values defined only at texel centers

• “Pixel/texel is not a little square!”

• Infinitely small point – Dirac delta

Texture mapping – why we need filtering?

• Texture – a 1D/2D/3D/4D grid of discrete values

• Values defined only at texel centers

• “Pixel/texel is not a little square!”

• Infinitely small point – Dirac delta

• What happens between? ?????

Texture mapping – why we need filtering?

• Texture – a 1D/2D/3D/4D grid of discrete values

• Values defined only at texel centers

• “Pixel/texel is not a little square!”

• Infinitely small point – Dirac delta

• What happens between?

• Filtering and interpolation

• Weighted averaging of multiple texture samples

Texture filtering – minification

• Multiple texels might cover a single pixel area

• Potentially thousands (millions?) texels

Texel

Pixel

Screen X

Texture filtering – minification

• Multiple texels might cover a single pixel area

• Potentially thousands (millions?) texels

Solution – full filter – EWA, anisotropic filtering

• Possibly very slow

• Hundreds+ of texture samples

• Higher quality

Texel

Pixel

Screen X

Texture filtering – minification

• Multiple texels might cover a single pixel area

• Potentially thousands (millions?) texels

Solution – full filter – EWA, anisotropic filtering

• Possibly very slow

• Hundreds+ of texture samples

• Higher quality

Solution – prefilter – precomputed mipmap pyramid

• Very fast

• Low quality (blurry!)

Texel

Pixel

Screen X

Texture filtering – minification

• Multiple texels might cover a single pixel area

• Potentially thousands (millions?) texels

Solution – full filter – EWA, anisotropic filtering

• Possibly very slow

• Hundreds+ of texture samples

• Higher quality

Solution – prefilter – precomputed mipmap pyramid

• Very fast

• Low quality (blurry!)

(Often – hybrid, mipmapping + anisotropic/mip bias)

Texel

Pixel

Screen X

“Common knowledge”

Almost “axiomatic”

All modern graphics APIs standardize filtering

• Standard filters – (low-quality) bi/trilinear, anisotropic

“Common knowledge”

Almost “axiomatic”

All modern graphics APIs standardize filtering

• Standard filters – (low-quality) bi/trilinear, anisotropic

• All modern GPUs have dedicated filtering hardware

• On most standardized formats -> zero cost for bi/trilinear

• Anisotropic still cheaper than naïve manual anisotropic

“Common knowledge”

Almost “axiomatic”

All modern graphics APIs standardize filtering

• Standard filters – (low-quality) bi/trilinear, anisotropic

• All modern GPUs have dedicated filtering hardware

• On most standardized formats -> zero cost for bi/trilinear

• Anisotropic still cheaper than naïve manual anisotropic

• Very easy and attractive to use without questioning

Feedback loop!

Motivation

16

Project beginning : Stochastic neural texture filtering (performance)

Random-Access Neural Compression of Material Textures, Vaidyanathan et al., Siggraph 2023

17

Project beginning : Stochastic neural texture filtering (performance)

Random-Access Neural Compression of Material Textures, Vaidyanathan et al., Siggraph 2023

18

Project beginning : Stochastic neural texture filtering (performance)

Random-Access Neural Compression of Material Textures, Vaidyanathan et al., Siggraph 2023

19

Related Work – Long History of Stochastic Filtering

• Percentage closer filtering

• Original UE software rasterizer: texture-space dithered nearest lookups

• Star Trek, 25th Anniversary: dithered bilinear filtering

• Negative LOD biasing (UE + everyone using TAA/DLSS…)

• OpenImageIO: stochastic LOD selection (via Max Liani)

• Dreamworks MoonRay: nearest sampling for minification, bilerp for
magnification

• Interactive Path Tracing and Reconstruction of Sparse Volumes,
Hofmann, Hasselgren, Clarberg, and Munkberg, i3d 2021: stochastic
trilinear

• Random-Access Neural Compression of Material Textures,
Vaidyanathan, Salvi, Wronski, Akenine-Möller, Ebelin, Lefohn, SIGGRAPH
2023: stochastic trilinear

20

Related Work – Long History of Stochastic Filtering

• Percentage closer filtering

• Original UE software rasterizer: texture-space dithered nearest lookups

• Star Trek, 25th Anniversary: dithered bilinear filtering

• Negative LOD biasing (UE + everyone using TAA/DLSS…)

• OpenImageIO: stochastic LOD selection (via Max Liani)

• Dreamworks MoonRay: nearest sampling for minification, bilerp for
magnification

• Interactive Path Tracing and Reconstruction of Sparse Volumes,
Hofmann, Hasselgren, Clarberg, and Munkberg, i3d 2021: stochastic
trilinear

• Random-Access Neural Compression of Material Textures,
Vaidyanathan, Salvi, Wronski, Akenine-Möller, Ebelin, Lefohn, SIGGRAPH
2023: stochastic trilinear

Advances in temporal reconstruction make stochastic

techniques very attractive

We will generalize those, formalize, and propose two

families of techniques beyond simple filters

But we have a more important problem to solve first…

21

Related Work – Long History of Stochastic Filtering

• Percentage closer filtering

• Original UE software rasterizer: texture-space dithered nearest lookups

• Star Trek, 25th Anniversary: dithered bilinear filtering

• Negative LOD biasing (UE + everyone using TAA/DLSS…)

• OpenImageIO: stochastic LOD selection (via Max Liani)

• Dreamworks MoonRay: nearest sampling for minification, bilerp for
magnification

• Interactive Path Tracing and Reconstruction of Sparse Volumes,
Hofmann, Hasselgren, Clarberg, and Munkberg, i3d 2021: stochastic
trilinear

• Random-Access Neural Compression of Material Textures,
Vaidyanathan, Salvi, Wronski, Akenine-Möller, Ebelin, Lefohn, SIGGRAPH
2023: stochastic trilinear

Advances in temporal reconstruction make stochastic

techniques very attractive

We will generalize those, formalize, and propose two

families of techniques beyond simple filters

But we have a more important problem to solve first…

22

Related Work – Long History of Stochastic Filtering

• Percentage closer filtering

• Original UE software rasterizer: texture-space dithered nearest lookups

• Star Trek, 25th Anniversary: dithered bilinear filtering

• Negative LOD biasing (UE + everyone using TAA/DLSS…)

• OpenImageIO: stochastic LOD selection (via Max Liani)

• Dreamworks MoonRay: nearest sampling for minification, bilerp for
magnification

• Interactive Path Tracing and Reconstruction of Sparse Volumes,
Hofmann, Hasselgren, Clarberg, and Munkberg, i3d 2021: stochastic
trilinear

• Random-Access Neural Compression of Material Textures,
Vaidyanathan, Salvi, Wronski, Akenine-Möller, Ebelin, Lefohn, SIGGRAPH
2023: stochastic trilinear

Advances in temporal reconstruction make stochastic

techniques very attractive

We will generalize those, formalize, and propose two

families of techniques beyond simple filters

But we have a more important problem to solve first…

23

Stochastic texture filtering: do we have a problem?

Random-Access Neural Compression of Material Textures, Vaidyanathan et al., Siggraph 2023

Filtering this way can look

significantly different…

But which way is “correct”?

But which way is “correct”?

Bold question:

Are we teaching and using texture filtering “incorrectly”?!

Literature review and historical precedents

27

Precedent: Pre-multiplied alpha

"Compositing digital images", Thomas Porter and Tom Duff., SIGGRAPH 1984.

Figure credit: “premultiplied alpha – 2022”, Inigo Quilez

filt(target)*filt(alpha) + (1-filt(alpha))*source

28

Precedent: Pre-multiplied alpha

"Compositing digital images", Thomas Porter and Tom Duff., SIGGRAPH 1984.

Figure credit: “premultiplied alpha – 2022”, Inigo Quilez

filt(target)*filt(alpha) + (1-filt(alpha))*source filt(target*alpha) + (1-filt(alpha))*source

29

Precedent: Percentage Closer Shadow Filtering

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.

30

Precedent: Percentage Closer Shadow Filtering

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.

Jitter (u,v) to sample f

31

Precedent: Percentage Closer Shadow Filtering

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.

32

Precedent: Specular anti-aliasing (minification)

Mipmapping Normal Maps, Michael Toksvig, 2006

LEAN Mapping, Marc Olano and Dan Baker, I3D 2011

Figure credit: Spectacular Specular: LEAN and CLEAN Specular Highlights, Dan Baker, GDC 2011

33

Still a problem today: Metalness vs specular PBR workflow

Figure credit: Metallic magic, Daniel Rose

Specular reflectance = lerp(0.04, filt(color), filt(metalness))

Diffuse reflectance = lerp(filt(color), 0.0, filt(metalness))

34

Motivation - summary

• Texture filtering theory and practice were developed for interpolating just “color”

• …in early work, not even gamma-corrected!

35

Motivation - summary

• Texture filtering theory and practice were developed for interpolating just “color”

• …in early work, not even gamma-corrected!

• Filtering and affine functions commute perfectly – this approach didn’t introduce errors

• Non-linearity and filtering do not commute and swapping the order results in error

36

Motivation - summary

• Assumption: textures are authored by artists with ~1-1 pixel-texel ratio

37

Motivation - summary

• Assumption: textures are authored by artists with ~1-1 pixel-texel ratio

• Minifying or magnifying textures before (non-linear) shading introduces error/bias

• Different techniques proposed to address specific types of errors

38

Motivation - summary

•Can we do better in general?

• Let’s try to answer this question from 37y ago!

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.

Textures and the Rendering Equation

40

Filtering Before Shading (Standard Practice Today)

shading

41

Filtering Before Shading (Standard Practice Today)

filtering filtering

shading

42

Filtering Before Shading (Standard Practice Today)

HW 16x Aniso Reference

filtering filtering

shading

43

Filtering After Shading

Filter after shading

(real-time implementation)
Reference Filter before shading

filtering shading

44

Filtering After Shading

Filter after shading

(real-time implementation)
Reference Filter before shading

filtering shading

????

45

Filtering After Shading

filtering

• Sample

shading

• Use Monte Carlo!

46

Filtering After Shading

filtering

• Sample

• Estimator:

Unfiltered single texel lookups!

shading

• Use Monte Carlo!

Even Single Sample!
Real Time Rendering – Noise

Single frame

White noise

Even Single Sample!
Real Time Rendering – Noise

• DLSS as the robust temporal integrator

Single frame

DLSS

White noise

Even Single Sample!
Real Time Rendering – Noise

• Spatiotemporal Blue Noise reduces the noise appearance

Single frame

White noise (Spatiotemporal) Blue Noise

Even Single Sample!
Real Time Rendering – Noise

• DLSS as the robust temporal integrator

• Spatiotemporal Blue Noise reduces the noise appearance

• Makes DLSS job easier, together -> no visible noise in most cases

Single frame

DLSS

White noise (Spatiotemporal) Blue Noise

Two families of methods

52

Sampling Texture Filters – Discrete, 1D

53

Sampling Texture Filters – Discrete, 1D

54

Sampling Texture Filters – Discrete, 1D

Chose a sample with probability ~f

55

Filter Reservoir Sampling

• Importance sampling: Sample a texel with probability p~f

• Optimal if we don’t know the signal and cannot sample the product

• Sample an array of weights or online through weighted reservoir sampling

56

Filter Reservoir Sampling

• Importance sampling: Sample a texel with probability p~f

• Optimal if we don’t know the signal and cannot sample the product

• Sample an array of weights or online through weighted reservoir sampling

Multidimensional interpolating/approximating filters are mostly separable:

• Sample each dimension independently

• In d dimensions, the filtering cost for an n-tap filter is n*d, not n^d!

57

Sampling Texture Filters
Disadvantages of Filter Reservoir Sampling

• Discrete filter sampling – with large filters, can be costly

• Evaluate filter function K^M or K*M times

• Does not support infinite filters (Gaussian, sinc)

58

Sampling Texture Filters
Disadvantages of Filter Reservoir Sampling

• Discrete filter sampling – with large filters, can be costly

• Evaluate filter function K^M or K*M times

• Does not support infinite filters (Gaussian, sinc)

There’s a different way!

• Let’s analyze and understand the “UV jitter + nearest neighbor” prior work.

59

Magnification
What happens when you take a nearest-neighbor sample?

60

Magnification
What happens when you take a nearest-neighbor sample?

Nearest neighbor = box filter

61

Magnification
Filter Importance Sampling through UV jittering

Uniform UV jitter + nearest neighbor = ?

62

Magnification
Filter Importance Sampling through UV jittering

Uniform UV jitter + nearest neighbor = tent kernel!

The same as linear interpolation

* =

Jitter PDF * Box Kernel Convolution

63

Magnification
Filter Importance Sampling through UV jittering

Linear/tent UV jitter + nearest neighbor box = quadratic B-Spline

Quadratic UV jitter + nearest neighbor box = cubic B-Spline

* =

* =

Magnification
Filter Importance Sampling through UV jittering

• For B-Spline filters, this additional box is desirable!

• Can sample other, including infinite spatial support filters

• Jitter UVs according to PDF deconvolved with a box

Magnification
Filter Importance Sampling through UV jittering

• For B-Spline filters, this additional box is desirable!

• Can sample other, including infinite spatial support filters

• Jitter UVs according to PDF deconvolved with a box

• For many other filters -> can still be advantageous (prevent Gaussian under-sampling)

Magnification
Filter Importance Sampling through UV jittering

• For B-Spline filters, this additional box is desirable!

• Can sample other, including infinite spatial support filters

• Jitter UVs according to PDF deconvolved with a box

• For many other filters -> can still be advantageous (prevent Gaussian under-sampling)

Stochastic Filtering families compared

• Main difference: discrete vs continuous domain

Stochastic Filtering families compared

• Main difference: discrete vs continuous domain

• In many cases, FRS is the only option (arbitrary discrete kernels, positivization)

• Otherwise, we recommend FIS – simpler implementation, see provided source code

• Anisotropic filtering or elliptically weighted average

• Many pixels, non-uniform mapping for jittering

• There’s a simpler, already-used method!

Minification
Stochastic Filtering After Shading

Minification
Stochastic Filtering After Shading

• Common practice – jitter the projection matrix for anti-aliasing reconstruction filter

• Used offline (e.g., MoonRay) and real-time (TAA, DLSS)

Minification
Stochastic Filtering After Shading

• Common practice – jitter the projection matrix for anti-aliasing reconstruction filter

• Used offline (e.g., MoonRay) and real-time (TAA, DLSS)

• Projects to trapezoid, minification supersampling -> filtering after shading!

Minification
Stochastic Filtering After Shading

• Common practice – jitter the projection matrix for anti-aliasing reconstruction filter

• Used offline (e.g., MoonRay) and real-time (TAA, DLSS)

• Projects to trapezoid, minification supersampling -> filtering after shading!

• Add magnification/translation UV jitter -> unified minification and magnification

Minification vs magnification jitter

Minification Magnification

Texel

Pixel

Screen X Screen X

UV jitter

XY jitter

Appearance change and possible aliasing

Magnification specular appearance change

Filtering before shading

Filtering after shading

Appearance change explained

Filtering before shading:

Interpolated surface and normals

Appearance change explained

Filtering after shading:

Two adjacent geometric facets and normals

Filtering before shading:

Interpolated surface and normals

Filtering lighting does not produce surface curvature

Filtering before shading

Filtering after shading

Filtering After Shading appearance difference

Note: it’s neither “good” or “bad”, depends on the intent

• But it changes the appearance – artists need to be aware!

Filtering After Shading appearance difference

Note: it’s neither “good” or “bad”, depends on the intent

• But it changes the appearance – artists need to be aware!

Our original assumption:

• “Textures are authored by artists with ~1-1 pixel-texel ratio”

• Sometimes can be violated! Relying on smooth curvature

Filtering After Shading appearance difference

Note: it’s neither “good” or “bad”, depends on the intent

• But it changes the appearance – artists need to be aware!

Our original assumption:

• “Textures are authored by artists with ~1-1 pixel-texel ratio”

• Sometimes can be violated! Relying on smooth curvature

• Extreme example of relying on interpolation: SDF fonts

Improved Alpha-Tested Magnification for Vector Textures and Special Effects, Chris Green, Siggraph 2007

Worse example – magnification aliasing

Filtering before shading Filtering after shading

Non-linearity introduced aliasing

For formal analysis, please see the paper

• Any non-linearity always introduces new, higher signal frequencies (“harmonics”)

• sin(x)^2 == (sin(2x)+1)/2

Non-linearity introduced aliasing

For formal analysis, please see the paper

• Any non-linearity always introduces new, higher signal frequencies (“harmonics”)

• sin(x)^2 == (sin(2x)+1)/2

• The same for further powers, sums of sums generate sum of frequencies (“intermodulation”)

• This is an extreme example, but every non-trivial non-linearity introduces higher frequencies

• (Can analyze through Taylor expansion etc.)

Non-linearity introduced aliasing

When applied to discrete signals…

• Those frequencies alias immediately

• Amount of aliasing depends on the non-linearity, original spectral content, phases

• We did not see this problem for many months!

Specular-like scenario

Specular-like scenario

Specular-like scenario

Non-linearity introduced aliasing

Magnification: screen Nyquist higher than texture Nyquist

• After magnification, more bandwidth headroom before aliasing happens

• If we apply non-linearity first, we alias more and cannot recover

Filtering before shading Filtering after shading

Non-linearity introduced aliasing

Minification: screen Nyquist lower than texture Nyquist

• More headroom -> less aliasing

• Filtering after shading can remove most of the nonlinearity-induced aliasing!

Filter after shading

(real-time implementation)
Reference Filter before shading

Results

Appearance preservation – real time

Appearance preservation – real time

Appearance preservation – real time

Hybrid: Use a mipmap, but higher resolution

(reduce cache trashing, make it easier for DLSS)

Appearance Preservation – offline, volumetric textures

Offline - Improved Image Quality & Performance
No additional noise!

Minification & Magnification
DLSS + STBN Temporal Stability Test

Stress Test: Real-Time Stochastic Filtering, high contrast, no mip-maps

Stoch. Bilinear

1 spp

Stoch. Bicubic

1 spp

Stoch. Bilinear

1 spp + DLSS

Stoch. Bicubic

1 spp + DLSS

HW Filtering

1 spp

Bicubic

1024 spp

m
in

if
ic

a
ti

o
n

Stress Test: Real-Time Stochastic Filtering, high contrast, no mip-maps

Stoch. Bilinear

1 spp

Stoch. Bicubic

1 spp

Stoch. Bilinear

1 spp + DLSS

Stoch. Bicubic

1 spp + DLSS

HW Filtering

1 spp

Bicubic

1024 spp

Stoch. Bilinear

1 spp

Stoch. Bicubic

1 spp

Stoch. Bilinear

1 spp + DLSS

Stoch. Bicubic

1 spp + DLSS

HW Filtering

1 spp

Stoch. Bicubic

1024 spp

m
in

if
ic

a
ti

o
n

m
a

g
n

if
ic

a
ti

o
n

Discussion

Noise

Even on the most noisy materials, does not flicker and is mild.
Future:
• Constant improvements to temporal reconstruction methods
• ML-based reconstruction can be trained
• STBN/LDS advances

Noise

Even on the most noisy materials, does not flicker and is mild.
Future:
• Constant improvements to temporal reconstruction methods
• ML-based reconstruction can be trained
• STBN/LDS advances

A general trend in graphics, two families of methods:
• Monte Carlo methods are general and can be unbiased, but initially too noisy and too slow
• Approximate, semi-analytical solutions used as a stopgap

Noise

Even on the most noisy materials, does not flicker and is mild.
Future:
• Constant improvements to temporal reconstruction methods
• ML-based reconstruction can be trained
• STBN/LDS advances

A general trend in graphics, two families of methods:
• Monte Carlo methods are general and can be unbiased, but initially too noisy and too slow
• Approximate, semi-analytical solutions used as a stopgap

Long term, Monte Carlo becomes practical and wins:
• TAA vs MSAA
• Shadowmap pre-filtering not very relevant today
• Path traced movies and even games!

Application – novel compression formats

Application – novel compression formats

Not just NTC!

In the paper, we evaluate DCT

NeuralVDB -> octrees + NNs

Application – beyond filtering – material blending

Not just filtering… any interpolation!
• Includes material blending

Example: stochastic triplanar mapping
• Already practiced by game developers
• 3x faster
• Not just performance saving - unbiased!

Application – better filters

B-Spline

Bicubic

Mitchell

Lanczos3

Bilinear

Less aliased, sharper, smoother… up to you!

108

Recommendations

• Minification: Filtering After Shading is always better

• Minification: Offline rendering can remove mip-maps: rendering Monte Carlo noise dominates

• Minification: Real-time rendering: “hybrid” (performance, temporal stability but some bias remains)

109

Recommendations

• Minification: Filtering After Shading is always better

• Minification: Offline rendering can remove mip-maps: rendering Monte Carlo noise dominates

• Minification: Real-time rendering: “hybrid” (performance, temporal stability but some bias remains)

• Magnification: Filtering After Shading is unbiased and removes errors

• Magnification: Filtering After Shading simplifies logic (alpha, metalness, texture padding)

• Magnification: Filtering After Shading allows for better filters and new texture representations

110

Recommendations

• Minification: Filtering After Shading is always better

• Minification: Offline rendering can remove mip-maps: rendering Monte Carlo noise dominates

• Minification: Real-time rendering: “hybrid” (performance, temporal stability but some bias remains)

• Magnification: Filtering After Shading is unbiased and removes errors

• Magnification: Filtering After Shading simplifies logic (alpha, metalness, texture padding)

• Magnification: Filtering After Shading allows for better filters and new texture representations

• Magnification: Filtering After Shading can introduce aliasing

• Magnification: It depends! Decide based on use-case, content type, maximum magnification

111

Recommendations

Magnification: If you can get 16x better compression by using novel compression format and STF…

Having 16x more real texels is better than relying on interpolation!

112

Recommendations

Magnification: If you can get 16x better compression by using novel compression format and STF…

Having 16x more real texels is better than relying on interpolation!

• You don’t have to go “all in”, we recommend a pragmatic approach:

• There are trade-offs and cases where one is preferred over the other

• Don’t stochastically sample something that relies on interpolation (e.g., SDF fonts)

• Use STF/non-STF/different filters on different assets – only shader code changes!

113

Conclusions

• Our proposal of “filtering after shading” might seem radical…

• We simply formalize decades of the different film industry and gamedev practices

• Filtering after shading is unbiased and better for appearance preservation

• We need to change the way we teach filtering and blending

114

Conclusions

• Our proposal of “filtering after shading” might seem radical…

• We simply formalize decades of the different film industry and gamedev practices

• Filtering after shading is unbiased and better for appearance preservation

• We need to change the way we teach filtering and blending

• Stochastic texture filtering present for ~40y in literature in various one-off flavors

• We explain the prior approaches and generalize them

• We propose two families of techniques with different trade-offs

115

Conclusions

• Our proposal of “filtering after shading” might seem radical…

• We simply formalize decades of the different film industry and gamedev practices

• Filtering after shading is unbiased and better for appearance preservation

• We need to change the way we teach filtering and blending

• Stochastic texture filtering present for ~40y in literature in various one-off flavors

• We explain the prior approaches and generalize them

• We propose two families of techniques with different trade-offs

• We expand those to more filters, including negative lobe filters

• Source code of efficient implementations – drop-in, zero integration cost!

116

Summary

Filtering After Shading by Stochastic Texture Filtering is a valuable tool:

• Remove workarounds and simplify code

• Enables efficient filtering of novel compression and storage formats

• Efficient and better filters

• Beyond textures: optimize and stochastically sample complex shader graphs

It is practical today! Just try it out. ☺

Thank you for listening!
https://research.nvidia.com/publication/2024-05_filtering-after-shading-stochastic-texture-filtering

Acknowledgments
Tomas Akenine–Möller
Homam Bahnassi
John Burgess
Johannes Deligiannis
Nathan Hoobler
Markus Kettunen
Aaron Lefohn
Peter Morley
Alexey Panteleev
Rajeev Penmatsa
Karthik Vaidyanathan
…and more – thank you!

Bonus Slides

Enable Custom Texture Compression/Storage Algorithms

Minification vs Magnification jitter

Minification Magnification

Texel

Pixel

Screen X Screen X

UV jitter

XY jitter

Bonus: unexpected consequence

Upsampling in sRGB Upsampling in linear

• Something that bothered me for many years…

• We always recommend decoding to linear before generating mip-maps (minification)…

• But why upsampling/sharpening looks way better applied in sRGB/gamma space?

• Gamma conversion in either direction – introduces aliasing!

• Doing/undoing gamma correction: Alias -> upsample -> Alias

Figure credit: A Fresh Look at Generalized Sampling, Diego Nehab and Hugues Hoppe

122

Sampling Texture Filters – Negative Lobes

• Image Processing uses almost exclusively negative lobe filters

• Approximations of a “perfect” interpolation filter

• Sharp, anti-aliased

B-Spline Bicubic Mitchell Lanczos3

123

Sampling Texture Filters – Negative Lobes

• Image Processing uses almost exclusively negative lobe filters

• Approximations of a “perfect” interpolation filter

• Sharp, anti-aliased

• Examples: Sinc, Lanczos, Mitchell…

124

Sampling Texture Filters – Negative Lobes

• Sample proportionally to abs(f) -> works, but…

• Generates negative values

• Very high variance and noise

125

Sampling Texture Filters – Negative Lobes

• Sample proportionally to abs(f) -> works, but…

• Generates negative values

• Very high variance and noise

Solution – positivization

• Importance sample the positive and negative parts separately

• Always evaluate two samples

• Weight sum always positive

• 2X the cost

• Low variance

Bilinear Mitchell

Positivization – Results

	Slide 1: Filtering After Shading With Stochastic Texture Filtering
	Slide 2: Intro – textures and texture filtering (The way we traditionally teach it)
	Slide 3: Textures – essential for high quality rendering
	Slide 4: Texture mapping – why we need filtering?
	Slide 5: Texture mapping – why we need filtering?
	Slide 6: Texture mapping – why we need filtering?
	Slide 7: Texture mapping – why we need filtering?
	Slide 8: Texture filtering – minification
	Slide 9: Texture filtering – minification
	Slide 10: Texture filtering – minification
	Slide 11: Texture filtering – minification
	Slide 12: “Common knowledge”
	Slide 13: “Common knowledge”
	Slide 14: “Common knowledge”
	Slide 15: Motivation
	Slide 16: Project beginning : Stochastic neural texture filtering (performance)
	Slide 17: Project beginning : Stochastic neural texture filtering (performance)
	Slide 18: Project beginning : Stochastic neural texture filtering (performance)
	Slide 19: Related Work – Long History of Stochastic Filtering
	Slide 20: Related Work – Long History of Stochastic Filtering
	Slide 21: Related Work – Long History of Stochastic Filtering
	Slide 22: Related Work – Long History of Stochastic Filtering
	Slide 23: Stochastic texture filtering: do we have a problem?
	Slide 24
	Slide 25
	Slide 26: Literature review and historical precedents
	Slide 27: Precedent: Pre-multiplied alpha
	Slide 28: Precedent: Pre-multiplied alpha
	Slide 29: Precedent: Percentage Closer Shadow Filtering
	Slide 30: Precedent: Percentage Closer Shadow Filtering
	Slide 31: Precedent: Percentage Closer Shadow Filtering
	Slide 32: Precedent: Specular anti-aliasing (minification)
	Slide 33: Still a problem today: Metalness vs specular PBR workflow
	Slide 34: Motivation - summary
	Slide 35: Motivation - summary
	Slide 36: Motivation - summary
	Slide 37: Motivation - summary
	Slide 38: Motivation - summary
	Slide 39: Textures and the Rendering Equation
	Slide 40: Filtering Before Shading
	Slide 41: Filtering Before Shading
	Slide 42: Filtering Before Shading
	Slide 43: Filtering After Shading
	Slide 44: Filtering After Shading
	Slide 45: Filtering After Shading
	Slide 46: Filtering After Shading
	Slide 47: Even Single Sample! Real Time Rendering – Noise
	Slide 48: Even Single Sample! Real Time Rendering – Noise
	Slide 49: Even Single Sample! Real Time Rendering – Noise
	Slide 50: Even Single Sample! Real Time Rendering – Noise
	Slide 51: Two families of methods
	Slide 52: Sampling Texture Filters – Discrete, 1D
	Slide 53: Sampling Texture Filters – Discrete, 1D
	Slide 54: Sampling Texture Filters – Discrete, 1D
	Slide 55: Filter Reservoir Sampling
	Slide 56: Filter Reservoir Sampling
	Slide 57: Sampling Texture Filters Disadvantages of Filter Reservoir Sampling
	Slide 58: Sampling Texture Filters Disadvantages of Filter Reservoir Sampling
	Slide 59: Magnification What happens when you take a nearest-neighbor sample?
	Slide 60: Magnification What happens when you take a nearest-neighbor sample?
	Slide 61: Magnification Filter Importance Sampling through UV jittering
	Slide 62: Magnification Filter Importance Sampling through UV jittering
	Slide 63: Magnification Filter Importance Sampling through UV jittering
	Slide 64: Magnification Filter Importance Sampling through UV jittering
	Slide 65: Magnification Filter Importance Sampling through UV jittering
	Slide 66: Magnification Filter Importance Sampling through UV jittering
	Slide 67: Stochastic Filtering families compared
	Slide 68: Stochastic Filtering families compared
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Minification vs magnification jitter
	Slide 74: Appearance change and possible aliasing
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Filtering After Shading appearance difference
	Slide 80: Filtering After Shading appearance difference
	Slide 81: Filtering After Shading appearance difference
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Specular-like scenario
	Slide 87: Specular-like scenario
	Slide 88: Specular-like scenario
	Slide 89
	Slide 90
	Slide 91: Results
	Slide 92: Appearance preservation – real time
	Slide 93: Appearance preservation – real time
	Slide 94: Appearance preservation – real time
	Slide 95: Appearance Preservation – offline, volumetric textures
	Slide 96: Offline - Improved Image Quality & Performance No additional noise!
	Slide 97: Minification & Magnification DLSS + STBN Temporal Stability Test
	Slide 98: Stress Test: Real-Time Stochastic Filtering, high contrast, no mip-maps
	Slide 99: Stress Test: Real-Time Stochastic Filtering, high contrast, no mip-maps
	Slide 100: Discussion
	Slide 101: Noise
	Slide 102: Noise
	Slide 103: Noise
	Slide 104: Application – novel compression formats
	Slide 105: Application – novel compression formats
	Slide 106: Application – beyond filtering – material blending
	Slide 107: Application – better filters
	Slide 108: Recommendations
	Slide 109: Recommendations
	Slide 110: Recommendations
	Slide 111: Recommendations
	Slide 112: Recommendations
	Slide 113: Conclusions
	Slide 114: Conclusions
	Slide 115: Conclusions
	Slide 116: Summary
	Slide 117: Thank you for listening!
	Slide 118: Bonus Slides
	Slide 119: Enable Custom Texture Compression/Storage Algorithms
	Slide 120
	Slide 121
	Slide 122: Sampling Texture Filters – Negative Lobes
	Slide 123: Sampling Texture Filters – Negative Lobes
	Slide 124: Sampling Texture Filters – Negative Lobes
	Slide 125: Sampling Texture Filters – Negative Lobes
	Slide 126: Positivization – Results

