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Intro – textures and texture filtering
(The way we traditionally teach it)



Textures – essential for high quality rendering

“Physically Based Rendering: From Theory To Implementation”, 2004-2021 M. Pharr, W. Jakob, and G. Humphreys



Texture mapping – why we need filtering?

• Texture – a 1D/2D/3D/4D grid of discrete values
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Texture mapping – why we need filtering?

• Texture – a 1D/2D/3D/4D grid of discrete values

• Values defined only at texel centers

• “Pixel/texel is not a little square!”

• Infinitely small point – Dirac delta

• What happens between?

• Filtering and interpolation

• Weighted averaging of multiple texture samples
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Texture filtering – minification

• Multiple texels might cover a single pixel area

• Potentially thousands (millions?) texels

Solution – full filter – EWA, anisotropic filtering

• Possibly very slow

• Hundreds+ of texture samples

• Higher quality

Solution – prefilter – precomputed mipmap pyramid

• Very fast

• Low quality (blurry!)

(Often – hybrid, mipmapping + anisotropic/mip bias)

Texel

Pixel

Screen X



“Common knowledge”

Almost “axiomatic”

All modern graphics APIs standardize filtering

• Standard filters – (low-quality) bi/trilinear, anisotropic
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“Common knowledge”

Almost “axiomatic”

All modern graphics APIs standardize filtering

• Standard filters – (low-quality) bi/trilinear, anisotropic

• All modern GPUs have dedicated filtering hardware

• On most standardized formats -> zero cost for bi/trilinear

• Anisotropic still cheaper than naïve manual anisotropic

• Very easy and attractive to use without questioning

Feedback loop!



Motivation
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Project beginning : Stochastic neural texture filtering (performance)

Random-Access Neural Compression of Material Textures, Vaidyanathan et al., Siggraph 2023
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Project beginning : Stochastic neural texture filtering (performance)

Random-Access Neural Compression of Material Textures, Vaidyanathan et al., Siggraph 2023
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Related Work – Long History of Stochastic Filtering

• Percentage closer filtering

• Original UE software rasterizer: texture-space dithered nearest lookups

• Star Trek, 25th Anniversary: dithered bilinear filtering

• Negative LOD biasing (UE + everyone using TAA/DLSS…)

• OpenImageIO: stochastic LOD selection (via Max Liani)

• Dreamworks MoonRay: nearest sampling for minification, bilerp for 
magnification

• Interactive Path Tracing and Reconstruction of Sparse Volumes, 
Hofmann, Hasselgren, Clarberg, and Munkberg, i3d 2021: stochastic 
trilinear

• Random-Access Neural Compression of Material Textures, 
Vaidyanathan, Salvi, Wronski, Akenine-Möller, Ebelin, Lefohn, SIGGRAPH 
2023: stochastic trilinear
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Stochastic texture filtering: do we have a problem?

Random-Access Neural Compression of Material Textures, Vaidyanathan et al., Siggraph 2023

Filtering this way can look 

significantly different…



But which way is “correct”?



But which way is “correct”?

Bold question:

Are we teaching and using texture filtering “incorrectly”?!



Literature review and historical precedents
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Precedent: Pre-multiplied alpha

"Compositing digital images", Thomas Porter and Tom Duff., SIGGRAPH 1984.

Figure credit: “premultiplied alpha – 2022”, Inigo Quilez

filt(target)*filt(alpha) + (1-filt(alpha))*source
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Precedent: Pre-multiplied alpha

"Compositing digital images", Thomas Porter and Tom Duff., SIGGRAPH 1984.

Figure credit: “premultiplied alpha – 2022”, Inigo Quilez

filt(target)*filt(alpha) + (1-filt(alpha))*source filt(target*alpha) + (1-filt(alpha))*source
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Precedent: Percentage Closer Shadow Filtering

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.
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Precedent: Percentage Closer Shadow Filtering

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.

Jitter (u,v) to sample f
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Precedent: Percentage Closer Shadow Filtering

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.
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Precedent: Specular anti-aliasing (minification)

Mipmapping Normal Maps, Michael Toksvig, 2006

LEAN Mapping, Marc Olano and Dan Baker, I3D 2011

Figure credit: Spectacular Specular: LEAN and CLEAN Specular Highlights, Dan Baker, GDC 2011



33

Still a problem today: Metalness vs specular PBR workflow

Figure credit: Metallic magic, Daniel Rose

Specular reflectance = lerp(0.04, filt(color), filt(metalness))

Diffuse reflectance = lerp(filt(color), 0.0, filt(metalness))
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Motivation - summary

• Texture filtering theory and practice were developed for interpolating just “color”

• …in early work, not even gamma-corrected!
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Motivation - summary

• Texture filtering theory and practice were developed for interpolating just “color”

• …in early work, not even gamma-corrected!

• Filtering and affine functions commute perfectly – this approach didn’t introduce errors

• Non-linearity and filtering do not commute and swapping the order results in error
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Motivation - summary

• Assumption: textures are authored by artists with ~1-1 pixel-texel ratio
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Motivation - summary

• Assumption: textures are authored by artists with ~1-1 pixel-texel ratio

• Minifying or magnifying textures before (non-linear) shading introduces error/bias

• Different techniques proposed to address specific types of errors
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Motivation - summary

•Can we do better in general?

• Let’s try to answer this question from 37y ago!

Rendering Antialiased Shadows With Depth Maps, Reeves et al., SIGGRAPH 1987.



Textures and the Rendering Equation
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Filtering Before Shading (Standard Practice Today)

shading
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filtering filtering

shading
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Filtering Before Shading (Standard Practice Today)

HW 16x Aniso Reference

filtering filtering

shading
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Filtering After Shading

Filter after shading

(real-time implementation)
Reference Filter before shading

filtering shading
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Filtering After Shading

Filter after shading

(real-time implementation)
Reference Filter before shading

filtering shading

????
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Filtering After Shading

filtering

• Sample

shading

• Use Monte Carlo!
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Filtering After Shading

filtering

• Sample

• Estimator:

Unfiltered single texel lookups!

shading

• Use Monte Carlo!
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Real Time Rendering – Noise

Single frame

White noise
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Even Single Sample!
Real Time Rendering – Noise

• DLSS as the robust temporal integrator

• Spatiotemporal Blue Noise reduces the noise appearance

• Makes DLSS job easier, together -> no visible noise in most cases

Single frame

DLSS

White noise (Spatiotemporal) Blue Noise



Two families of methods
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Sampling Texture Filters – Discrete, 1D
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Sampling Texture Filters – Discrete, 1D
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Sampling Texture Filters – Discrete, 1D

Chose a sample with probability ~f
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Filter Reservoir Sampling

• Importance sampling: Sample a texel with probability p~f

• Optimal if we don’t know the signal and cannot sample the product

• Sample an array of weights or online through weighted reservoir sampling
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Filter Reservoir Sampling

• Importance sampling: Sample a texel with probability p~f

• Optimal if we don’t know the signal and cannot sample the product

• Sample an array of weights or online through weighted reservoir sampling

Multidimensional interpolating/approximating filters are mostly separable:

• Sample each dimension independently

• In d dimensions, the filtering cost for an n-tap filter is n*d, not n^d!
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Sampling Texture Filters
Disadvantages of Filter Reservoir Sampling

• Discrete filter sampling – with large filters, can be costly

• Evaluate filter function K^M or K*M times

• Does not support infinite filters (Gaussian, sinc)
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Sampling Texture Filters
Disadvantages of Filter Reservoir Sampling

• Discrete filter sampling – with large filters, can be costly

• Evaluate filter function K^M or K*M times

• Does not support infinite filters (Gaussian, sinc)

There’s a different way!

• Let’s analyze and understand the “UV jitter + nearest neighbor” prior work.
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Magnification
What happens when you take a nearest-neighbor sample?
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Magnification
What happens when you take a nearest-neighbor sample?

Nearest neighbor = box filter
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Magnification
Filter Importance Sampling through UV jittering

Uniform UV jitter + nearest neighbor = ?
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Magnification
Filter Importance Sampling through UV jittering

Uniform UV jitter + nearest neighbor = tent kernel!

The same as linear interpolation

* =

Jitter PDF * Box Kernel Convolution
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Magnification
Filter Importance Sampling through UV jittering

Linear/tent UV jitter + nearest neighbor box = quadratic B-Spline

Quadratic UV jitter + nearest neighbor box = cubic B-Spline

* =

* =



Magnification
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• For B-Spline filters, this additional box is desirable!

• Can sample other, including infinite spatial support filters

• Jitter UVs according to PDF deconvolved with a box
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Stochastic Filtering families compared

• Main difference: discrete vs continuous domain

• In many cases, FRS is the only option (arbitrary discrete kernels, positivization)

• Otherwise, we recommend FIS – simpler implementation, see provided source code



• Anisotropic filtering or elliptically weighted average

• Many pixels, non-uniform mapping for jittering

• There’s a simpler, already-used method!

Minification
Stochastic Filtering After Shading
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Minification
Stochastic Filtering After Shading

• Common practice – jitter the projection matrix for anti-aliasing reconstruction filter

• Used offline (e.g., MoonRay) and real-time (TAA, DLSS)

• Projects to trapezoid, minification supersampling -> filtering after shading!

• Add magnification/translation UV jitter -> unified minification and magnification



Minification vs magnification jitter

Minification Magnification

Texel

Pixel

Screen X Screen X

UV jitter

XY jitter



Appearance change and possible aliasing



Magnification specular appearance change

Filtering before shading

Filtering after shading



Appearance change explained

Filtering before shading:

Interpolated surface and normals



Appearance change explained

Filtering after shading:

Two adjacent geometric facets and normals

Filtering before shading:

Interpolated surface and normals



Filtering lighting does not produce surface curvature

Filtering before shading

Filtering after shading
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Filtering After Shading appearance difference

Note: it’s neither “good” or “bad”, depends on the intent

• But it changes the appearance – artists need to be aware!

Our original assumption:

• “Textures are authored by artists with ~1-1 pixel-texel ratio”

• Sometimes can be violated! Relying on smooth curvature

• Extreme example of relying on interpolation: SDF fonts

Improved Alpha-Tested Magnification for Vector Textures and Special Effects, Chris Green, Siggraph 2007



Worse example – magnification aliasing

Filtering before shading Filtering after shading
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For formal analysis, please see the paper

• Any non-linearity always introduces new, higher signal frequencies (“harmonics”)

• sin(x)^2 == (sin(2x)+1)/2



Non-linearity introduced aliasing

For formal analysis, please see the paper

• Any non-linearity always introduces new, higher signal frequencies (“harmonics”)

• sin(x)^2 == (sin(2x)+1)/2

• The same for further powers, sums of sums generate sum of frequencies (“intermodulation”)

• This is an extreme example, but every non-trivial non-linearity introduces higher frequencies

• (Can analyze through Taylor expansion etc.)



Non-linearity introduced aliasing

When applied to discrete signals… 

• Those frequencies alias immediately

• Amount of aliasing depends on the non-linearity, original spectral content, phases

• We did not see this problem for many months!



Specular-like scenario



Specular-like scenario



Specular-like scenario



Non-linearity introduced aliasing

Magnification: screen Nyquist higher than texture Nyquist

• After magnification, more bandwidth headroom before aliasing happens

• If we apply non-linearity first, we alias more and cannot recover

Filtering before shading Filtering after shading



Non-linearity introduced aliasing

Minification: screen Nyquist lower than texture Nyquist

• More headroom -> less aliasing

• Filtering after shading can remove most of the nonlinearity-induced aliasing!

Filter after shading

(real-time implementation)
Reference Filter before shading



Results



Appearance preservation – real time



Appearance preservation – real time



Appearance preservation – real time

Hybrid: Use a mipmap, but higher resolution

(reduce cache trashing, make it easier for DLSS)



Appearance Preservation – offline, volumetric textures



Offline - Improved Image Quality & Performance
No additional noise!



Minification & Magnification 
DLSS + STBN Temporal Stability Test
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Stress Test: Real-Time Stochastic Filtering, high contrast, no mip-maps
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Discussion
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Noise

Even on the most noisy materials, does not flicker and is mild.
Future:
• Constant improvements to temporal reconstruction methods
• ML-based reconstruction can be trained
• STBN/LDS advances

A general trend in graphics, two families of methods:
• Monte Carlo methods are general and can be unbiased, but initially too noisy and too slow
• Approximate, semi-analytical solutions used as a stopgap

Long term, Monte Carlo becomes practical and wins:
• TAA vs MSAA
• Shadowmap pre-filtering not very relevant today
• Path traced movies and even games!



Application – novel compression formats



Application – novel compression formats

Not just NTC!

In the paper, we evaluate DCT

NeuralVDB -> octrees + NNs



Application – beyond filtering – material blending

Not just filtering… any interpolation!
• Includes material blending

Example: stochastic triplanar mapping
• Already practiced by game developers
• 3x faster
• Not just performance saving - unbiased!



Application – better filters

B-Spline

Bicubic

Mitchell

Lanczos3

Bilinear

Less aliased, sharper, smoother… up to you!
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Recommendations

• Minification: Filtering After Shading is always better

• Minification: Offline rendering can remove mip-maps: rendering Monte Carlo noise dominates

• Minification: Real-time rendering: “hybrid” (performance, temporal stability but some bias remains)
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Recommendations

• Minification: Filtering After Shading is always better

• Minification: Offline rendering can remove mip-maps: rendering Monte Carlo noise dominates

• Minification: Real-time rendering: “hybrid” (performance, temporal stability but some bias remains)

• Magnification: Filtering After Shading is unbiased and removes errors

• Magnification: Filtering After Shading simplifies logic (alpha, metalness, texture padding)

• Magnification: Filtering After Shading allows for better filters and new texture representations

• Magnification: Filtering After Shading can introduce aliasing

• Magnification: It depends! Decide based on use-case, content type, maximum magnification
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Recommendations

Magnification: If you can get 16x better compression by using novel compression format and STF…

Having 16x more real texels is better than relying on interpolation!
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Recommendations

Magnification: If you can get 16x better compression by using novel compression format and STF…

Having 16x more real texels is better than relying on interpolation!

• You don’t have to go “all in”, we recommend a pragmatic approach:

• There are trade-offs and cases where one is preferred over the other

• Don’t stochastically sample something that relies on interpolation (e.g., SDF fonts)

• Use STF/non-STF/different filters on different assets – only shader code changes!
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Conclusions

• Our proposal of “filtering after shading” might seem radical…

• We simply formalize decades of the different film industry and gamedev practices

• Filtering after shading is unbiased and better for appearance preservation

• We need to change the way we teach filtering and blending



114

Conclusions

• Our proposal of “filtering after shading” might seem radical…

• We simply formalize decades of the different film industry and gamedev practices

• Filtering after shading is unbiased and better for appearance preservation

• We need to change the way we teach filtering and blending

• Stochastic texture filtering present for ~40y in literature in various one-off flavors

• We explain the prior approaches and generalize them

• We propose two families of techniques with different trade-offs



115

Conclusions

• Our proposal of “filtering after shading” might seem radical…

• We simply formalize decades of the different film industry and gamedev practices

• Filtering after shading is unbiased and better for appearance preservation

• We need to change the way we teach filtering and blending

• Stochastic texture filtering present for ~40y in literature in various one-off flavors

• We explain the prior approaches and generalize them

• We propose two families of techniques with different trade-offs

• We expand those to more filters, including negative lobe filters

• Source code of efficient implementations – drop-in, zero integration cost!
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Summary

Filtering After Shading by Stochastic Texture Filtering is a valuable tool:

• Remove workarounds and simplify code

• Enables efficient filtering of novel compression and storage formats

• Efficient and better filters

• Beyond textures: optimize and stochastically sample complex shader graphs

It is practical today! Just try it out. ☺



Thank you for listening!
https://research.nvidia.com/publication/2024-05_filtering-after-shading-stochastic-texture-filtering
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Bonus Slides



Enable Custom Texture Compression/Storage Algorithms



Minification vs Magnification jitter

Minification Magnification

Texel

Pixel

Screen X Screen X

UV jitter

XY jitter



Bonus: unexpected consequence

Upsampling in sRGB Upsampling in linear

• Something that bothered me for many years…

• We always recommend decoding to linear before generating mip-maps (minification)…

• But why upsampling/sharpening looks way better applied in sRGB/gamma space?

• Gamma conversion in either direction – introduces aliasing!

• Doing/undoing gamma correction: Alias -> upsample -> Alias

Figure credit: A Fresh Look at Generalized Sampling, Diego Nehab and Hugues Hoppe
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Sampling Texture Filters – Negative Lobes

• Image Processing uses almost exclusively negative lobe filters

• Approximations of a “perfect” interpolation filter

• Sharp, anti-aliased

B-Spline Bicubic Mitchell Lanczos3
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Sampling Texture Filters – Negative Lobes

• Image Processing uses almost exclusively negative lobe filters

• Approximations of a “perfect” interpolation filter

• Sharp, anti-aliased

• Examples: Sinc, Lanczos, Mitchell…
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Sampling Texture Filters – Negative Lobes

• Sample proportionally to abs(f) -> works, but…

• Generates negative values

• Very high variance and noise
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Sampling Texture Filters – Negative Lobes

• Sample proportionally to abs(f) -> works, but…

• Generates negative values

• Very high variance and noise

Solution – positivization

• Importance sample the positive and negative parts separately

• Always evaluate two samples

• Weight sum always positive

• 2X the cost

• Low variance



Bilinear Mitchell

Positivization – Results
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