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2D texture maps and 3D voxel arrays are widely used to add rich detail to the surfaces and volumes of
rendered scenes, and filtered texture lookups are integral to producing high-quality imagery. We show that
applying the texture filter after evaluating shading generally gives more accurate imagery than filtering
textures before BSDF evaluation, as is current practice. These benefits are not merely theoretical, but are
apparent in common cases. We demonstrate that practical and efficient filtering after shading is possible
through the use of stochastic sampling of texture filters.

Stochastic texture filtering offers additional benefits, including efficient implementation of high-quality
texture filters and efficient filtering of textures stored in compressed and sparse data structures, including
neural representations. We demonstrate applications in both real-time and offline rendering and show that
the additional error from stochastic filtering is minimal. We find that this error is handled well by either
spatiotemporal denoising or moderate pixel sampling rates.
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1 INTRODUCTION
Image texture maps play a crucial role in achieving rich surface detail in most rendered images.
The availability of advanced texture painting tools provides artists with precise and natural control
over the material appearance. Three-dimensional voxel grids play a similar role for volumetric
effects like clouds, smoke, and fire, allowing detailed offline physical simulations to be used. The
number and resolution of both has continued to increase over the years.

Typical practice in rendering is to perform filtered texture lookups to find the values of shading
parameters. We demonstrate that filtering before shading introduces error if those parameters
make a nonlinear contribution to the final result. We show that applying the texture filter after
shading instead gives a more accurate result in these cases. However, a naive implementation of
filtering after shading imposes an increased computational cost. A family of efficient stochastic
texture filtering algorithms allows to efficiently filter after shading, potentially with only a single
texel access for each texture map lookup (Figure 1).
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Fig. 1. A section of the Disney Cloud rendered with path tracing. Trilinear filtering leads to blocky artifacts
in the image. Tricubic filtering gives a much better result, but requires 64 voxel lookups to compute each
filtered value. Stochastic filtering performs a single voxel lookup yet provides indistinguishable results, with
rendering time speedups of 1.60× and 2.77× for the trilinear and tricubic filters. Times reported are for pbrt-v4
running on an NVIDIA 4090 RTX GPU, rendering at 1080p with 256 samples per pixel.

Stochastic texture filtering demonstrates other performance and filtering quality advantages. It
is especially beneficial for textures stored using custom representations such as UDIM’s adaptive
tiling, multi-level sparse grids [Museth 2013], or neural representations [Vaidyanathan et al. 2023],
which are generally incompatible with hardware-accelerated filtering and have computationally
costly texture accesses.
We note that the idea of stochastic texture filtering has been presented earlier in the literature

and used in production. However, we are not aware of a comprehensive or formal overview of its
methods or analysis of their advantages and drawbacks. Our contributions are as follows:

• We show that using stochastic texture filtering allows filtering after shading, rather than
filtering the texture data before shading. Doing so produces more accurate and appearance-
preserving results, especially during minification.

• We describe twoways of stochastically filtering textures, discuss their theoretical and practical
differences and connect them to prior work.

• We demonstrate that in real-time rendering the additional noise introduced by stochastic
filtering is effectively suppressed by using spatiotemporal reconstruction algorithms and
blue-noise sampling patterns. We further show that for offline rendering moderate pixel
sampling rates are sufficient to handle the noise well.

• Finally, we show that stochastic texture filtering can further improve image quality by
allowing the use of high-quality texture filters at a lower cost than trilinear filtering.

2 BACKGROUND AND PREVIOUS WORK
The use of image textures in rendering dates to Blinn and Newell [Blinn and Newell 1976; Catmull
1974]. See Heckbert’s survey article [1986] for comprehensive coverage of early work in this area.
Nehab and Hoppe [2011] present a modern take on the topic of texture interpolation and prefiltering
and expand it to different prefilters.
Monte Carlo estimation via stochastic sampling [Kajiya 1986] has become the foundation of

most approaches to rendering today. Production rendering has embraced path tracing for over a
decade [Křivánek et al. 2010], and real-time rendering begins to adopt path tracing as well [Clarberg
et al. 2022]. Although lighting integrals are evaluated stochastically, their integrands are usually
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evaluated analytically. Integrands that are themselves stochastic have been used for complex BSDF
models [Guo et al. 2018; Heitz et al. 2016], multi-lobe BSDF evaluation [Szécsi et al. 2003] and for
many light sampling [Estevez and Kulla 2018; Shirley et al. 1996].
Real-time rendering has also embraced stochastic approaches, including stochastic texturing.

UV jittering and using nearest-neighbor filtering as an alternative to bilinear filtering dates as far
back as the 1990s and the video game Star Trek: 25th Anniversary [Interplay 1992] and the original
Unreal Engine [Sweeney and Nettle 2000]. More contemporary examples include stochastic alpha
testing [Enderton et al. 2010; Wyman and McGuire 2017], filtering of reflections [Stachowiak 2015],
and raytraced ambient occlusion [Barré-Brisebois et al. 2019]. Temporal anti-aliasing (TAA) [Karis
2014; Yang et al. 2020] and temporal super-resolution (TSS) [Liu 2022] are key enabling technologies
for these approaches. Both are based on recursive filters and exponential-moving-averaging with
adaptive history modification and rejection. Negative MIP biasing is often used with screen-space
jittering for sharper images and approximate anisotropic filtering when TAA and TSS are used.
We formalize this approach, analyze how it deviates from anisotropic filtering, and show why it
produces a more accurate filtered shading result than standard texture filtering.

The motivation for our work includes the stochastic filtering algorithms introduced by Hofmann
et al. [Hofmann et al. 2021] and Vaidyanathan et al. [Vaidyanathan et al. 2023], who used stochastic
trilinear filtering to improve performance. They showed significant speedups by avoiding evaluating
an expensive decompression algorithm multiple times per pixel. The OpenImageIO library [Gritz
2022] also supports stochastic sampling of MIP levels and anisotropic samples, and Lee et al. [Lee
et al. 2017] replaced filtered texture lookups with nearest-neighbor point samples in the MoonRay
renderer, relying on the high sampling rates common in film production to avoid texture aliasing.
We expand on their results, analyze the effect of stochastic texture filtering, and show how to use a
wider range of texture filters.

Applying filtering after a rendering non-linearity can be traced to the concept of pre-multiplied
alpha [Porter and Duff 1984], where alpha pre-multiplication avoids nonsensical interpolated values
during magnification and filtering of alpha-composited textures. The pioneering work of Reeves
et al. [Reeves et al. 1987] on shadow map filtering was the first to explicitly distinguish between
filtering before shading versus filtering afterward. Their percentage closer filtering algorithm is
based on filtering binary visibility rather than depth. We discuss how this approach applies to other
aspects of rendering and analyze the effects of swapping the filtering and shading order.

2.1 Texture Filtering
Textures are represented by discrete, uniformly-spaced samples 𝑡𝑢,𝑣1. Following Heckbert [1989],
they can be interpreted as a set of scaled and translated Dirac delta functions:

𝑡 (𝑢, 𝑣) =
∑︁
𝑢′

∑︁
𝑣′
𝛿 (𝑢 − 𝑢 ′)𝛿 (𝑣 − 𝑣 ′) 𝑡𝑢′,𝑣′ (1)

The texture function 𝑡 (𝑢, 𝑣) is defined over R2 but is only non-zero at the texel locations. A
continuous texture function can be defined by specifying a reconstruction filter 𝑓r and convolving
it with the texture function:

𝑡r (𝑢, 𝑣) = 𝑡 ⊗ 𝑓r =

∫∫
𝑡 (𝑢 ′, 𝑣 ′) 𝑓r (𝑢 − 𝑢 ′, 𝑣 − 𝑣 ′) d𝑢 ′ d𝑣 ′, (2)

where 𝑡 ⊗ 𝑓r represents the convolution of 𝑡 with 𝑓r. Bilinear and bicubic filters are commonly used
for the reconstruction filter.

1Without loss of generality, in this section, we assume the use of 2D textures.
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The continuous texture function may contain higher frequency detail than can be captured by
the pixel sampling Nyquist rate. Sampling such a signal would lead to visible aliasing in the final
image. In order to eliminate aliasing, the continuous texture function may be convolved with a
suitable low-pass filter 𝑓l to remove high frequencies. The pixel-space Nyquist frequency defines
the filter parameters, which can be found either by projecting a pixel’s extent onto the surface
tangent plane, by taking finite differences with adjacent pixels, or via ray differentials or a related
technique [Akenine-Möller et al. 2021; Igehy 1999]. This gives the final filtered texture function:

𝑡f (𝑢, 𝑣) = 𝑡 ⊗ 𝑓r ⊗ 𝑓l. (3)

Because the original texture function 𝑡 (𝑢, 𝑣) is only non-zero at discrete locations and because
practical filters typically have finite extent, 𝑡f takes the form of a sum over a limited number of
texture samples. For notational simplicity, we will generally write it as a single sum.

Under magnification, the low-pass filter is not necessary, as the shading rate is higher than the
discrete texture Nyquist rate. Similarly, under minification, neglecting the reconstruction filter
𝑓r generally introduces little error. Alternatively, a single unified texture filter that handles both
reconstruction and low-pass filtering may also be used. The elliptically weighted average (EWA)
filter [Greene and Heckbert 1986; Heckbert 1989] is a notable example.

Filtering texture lookups is expensive since the low-pass filter 𝑓l requires accessing multiple tex-
ture samples and may have different parameters at each sample. Prefiltering textures into multiple
resolutions that are stored in image pyramids substantially reduces the number of texels accessed
by the low-pass filter [Williams 1983]. Nehab and Hoppe [2011] expanded the concept of texture
prefiltering to different prefilters and reconstruction filters. For both prefiltering and lowpass filter-
ing, several techniques that approximate high-quality filters using multiple hardware-accelerated
bilinear lookups have been developed [Barkans 1997; Cant and Shrubsole 2000; McCormack et al.
1999].

2.2 Sampling Techniques
We briefly summarize the common sampling techniques we use. See the books by Pharr et al. [2023]
or Ross [2019] for further background. In the following, we will use 𝜉 to denote uniform random
variables in [0, 1) and angled brackets to denote expectation.
Separable functions: An 𝑛-dimensional function that is a product of 1D functions can be sampled
by independently sampling each dimension. Many filters used for textures, including Gaussian and
polynomials (linear, cubic, etc.) are separable.
Weighted sums: Since Equation 3 reduces to a weighted sum over texture samples, given weights
𝑤𝑖 that sum to 1 and texture values 𝑡𝑖 , the filtered texture value is given by

𝐹 =

𝑛∑︁
𝑖=1

𝑤𝑖 𝑡𝑖 . (4)

If a term 𝑗 of the sum is sampled with probability equal to 𝑤𝑖 , then an unbiased estimate of 𝐹 is
given by the corresponding texture value, unweighted:

⟨𝐹 ⟩ = 𝑡 𝑗 . (5)

This is a special case of sampling a term according to probabilities 𝑝𝑖 ∝ 𝑤𝑖 and applying the standard
Monte Carlo estimator 𝑓𝑗/𝑝 𝑗 .
Uniform sample reuse:Whenever a 1D random variable 𝜉 is used to make a discrete sampling
decision based on a probability 𝑝 , a new independent random variable 𝜉 ′ ∈ [0, 1) can be derived
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from 𝜉 [Shirley et al. 1996]:

𝜉 ′ =

{
𝜉/𝑝 if 𝜉 < 𝑝
(𝜉 − 𝑝)/(1 − 𝑝) otherwise.

(6)

This technique can be useful when 𝜉 is well-distributed (e.g., with a blue noise spectrum [Georgiev
and Fajardo 2016] or with low discrepancy), allowing additional dimensions to benefit from 𝜉 ’s
distribution as well as saving the cost of generating additional random samples.
Sampling arrays: An array of non-normalized weights𝑤𝑖 (as from Equation 4) can be sampled by
summing the weights and selecting the first item 𝑗 where 𝜉 <

∑𝑛
𝑗 𝑤 𝑗/

∑𝑛
𝑖 𝑤𝑖 .

Weighted reservoir sampling: Storing or recomputing all of the weights𝑤𝑖 to calculate the 1/
∑
𝑤𝑖

normalization factor may be undesirable, especially on GPUs. Weighted reservoir sampling [Chao
1982] with sample reuse [Ogaki 2021] can be applied with weights generated sequentially. In this
case, we skip normalization, sample 𝑗 with probability proportional to𝑤𝑖 , and still apply Equation 5.
Positivization: Although negative weights can be sampled with probability based on their absolute
value, doing so does not reduce variance as well as importance sampling of positive functions [Ernst
et al. 2006]. All interpolating filters of a higher order than the linear filter have negative lobes and
being able to estimate them with low variance is essential for stochastic texture filtering. We apply
positivization [Owen and Zhou 2000], partitioning the filter weights 𝑤𝑖 into positive (𝑤𝑖+ ) and
negative (𝑤𝑖− ) sets and sampling once from each set. The estimator of the filtered texture value of
Equation 4 is

⟨𝐹 ⟩ =𝑊 +
∑︁
𝑖

𝑤𝑖+𝑡𝑖+ −𝑊 −
∑︁
𝑖

𝑤𝑖−𝑡𝑖− . (7)

The resulting positive and negative parts are not normalized and need to be weighted. We include
an example of positivization used for the Mitchell bicubic filter in the supplementary material.

3 TEXTURE FILTERING AND RENDERING
Current practice in rendering is to filter textures before performing the lighting calculation, rather
than applying the texture filter to the result of the lighting calculation. We start by formalizing
the differences between those two approaches. In the following, we define 𝑓 as the BSDF times
the Lambertian cosine factor and parameterize it with the texture maps 𝑡 𝑗 that it depends on.
Without loss of generality, we assume the same reconstruction filter 𝑓r, low-pass filter 𝑓l, and (𝑢, 𝑣)
parameterization for all textures.

With this notation, the traditional lighting integral that gives outgoing radiance 𝐿o at a point 𝑝
with texture coordinates (𝑢, 𝑣) in direction 𝜔o is written:

𝐿o (𝑝,𝜔o) =
∫
S2
𝑓
(
𝜔o, 𝜔

′, (𝑡1 ⊗ 𝑓r ⊗ 𝑓l) (𝑢, 𝑣), . . .
)
𝐿i (𝑝,𝜔 ′) d𝜔 ′ (8)

where the BSDF’s parameters after the two directions are all filtered textures. We call this approach
filtering before shading.
Alternatively, we may write the integral with the order of integration exchanged, convolving

the outgoing radiance with one or both of the texture filters over its texture-space extent. With
the low-pass filter applied after shading but the reconstruction filter applied before it, we have the
split-filtering shading integral,

𝐿o (𝑝,𝜔o) =
[∫
S2
𝑓
(
𝜔o, 𝜔

′, (𝑡1 ⊗ 𝑓r) (𝑢, 𝑣)), . . .
)
𝐿i (𝑝,𝜔 ′) d𝜔 ′

]
⊗ 𝑓l. (9)
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Taking both filters outside the integral over the sphere gives the filtering after shading integral:

𝐿o (𝑝,𝜔o) =
[∫
S2
𝑓
(
𝜔o, 𝜔

′, 𝑡1 (𝑢, 𝑣)), . . .
)
𝐿i (𝑝,𝜔 ′) d𝜔 ′

]
⊗ 𝑓r ⊗ 𝑓l. (10)

If a texture makes an affine contribution to the lighting integral (i.e., is a linear term or a factor
of it, such as a diffuse coefficient), then filtering before or after shading with Equation 8, 9, or 10
gives the same result since integration is a linear operator. For textures that make non-affine
contributions (e.g., a normal map), the two differ. Filtering after shading eliminates systemic
error in such cases (Figure 2, Section 3.1) and has the further benefit of reducing aliasing from
high-frequency components of the shading function (Section 3.2).
Exact evaluation of Equations 9 and 10 can be costly. They reduce to sums just as Equation 3

does, but unlike texture filtering, the terms of these sums are costly to evaluate since they are not
simple texel accesses. This cost may be reduced by sharing intermediate results between terms
(e.g., the incident radiance function 𝐿i or the result of tracing a shadow ray), though importance
sampling algorithms may prefer different ray directions 𝜔 ′ for different terms due to varying BSDF
parameters. At minimum, the BSDF must be evaluated for each term. As we will show in Section 4,
these equations can be efficiently evaluated using stochastic sampling techniques.

Throughout the remainder of this paper, we will adhere to the filtering after shading formulation
presented in Equation 10, unless stated otherwise.

3.1 Examples of Nonlinearities
Linear filtering of quantities that have a nonlinear effect on shaded results introduces bias and error
in rendering. Examples include incorrect results from linear filtering of normal maps [Olano and
Baker 2010] and nonlinear texture encodings like sRGB. Nonlinear quantities must be

(a) Filtering
before shading

(b) Filtering
after shading

(c) Reference

Fig. 2. Appearance of a normal-mapped material
under minification. Filtering before shading incor-
rectly filters the surface normal before shading,
while filtering after shading more accurately re-
constructs the material’s appearance.

linearized for correct interpolation and minifica-
tion [Microsoft 2015]. This insight dates to Reeves
et al.’s work on percentage-closer shadow filtering
(PCF), which showed that filtering depth values be-
fore performing shadowmap lookups gives incorrect
results while filtering visibility is effective [Reeves
et al. 1987]. In their case, the binary visibility func-
tion is nonlinear (discontinuous step function). The
“Future Work” section of their paper mentions the
desirability of filtering other shading values, beyond
visibility.

In this section, we show a few examples where
filtering after shading gives a more accurate result
than filtering before shading.

Normal maps. Linear filtering of normal maps
leads to substantial changes in appearance [Olano and Baker 2010]. An example is shown in
Figure 2(a), where hardware texture filtering is used on a minified normal-mapped surface.
At points toward the horizon, the filter kernel is wide and filtering the normals gives val-
ues that are close to the average normal in the texture. Compared to the reference image in
Figure 2(c), rendered with no lowpass filtering and at a higher resolution (through evalua-
tion of many pixel samples), we see that filtering before shading introduces significant error.
With filtering after shading, shown in Figure 2(b), results are much closer to the reference.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.



Filtering After Shading With Stochastic Texture Filtering 1:7

(a) (b) (c)

Fig. 3. (a) Two texels with normals nearly
90 degrees apart. (b) With bilinear filtering,
a smooth distribution of normals is recon-
structed. (c) Filtering after shading always
uses single texel values from the image, so
filters two discrete normals in this case.

With filtering after shading using Equation 10 only
normals that are present in the normal map are used for
lighting calculations. Thus, it can be understood as filter-
ing discrete piecewise-linear microgeometry specified by
the normal map, rather than using the normals to recon-
struct a smooth underlying surface. Depending on the
artist’s intent, this behavior may or may not be desirable—
consider the example shown in Figure 3 where adjacent
texels have significantly-different normals. With bilinear
filtering, the filtered normals vary smoothly, correspond-
ing to a smooth underlying surface, while filtering after
shading blends the results of shading discrete normals. If

the former behavior is desired, the split filtering integral of Equation 9 may be used in an alternative
to Equation 10 in such cases.

Filtering of discrete quantities. Filtering BRDF properties prior to shading may violate the physical
constraints of a BRDF model. Consider a texture used for a scalar “metalness” parameter for a
physically-based material model, where only the values 0 and 1 have physical meaning. With
filtering after shading, the material is only evaluated with metalness values of 0 and 1. At areas
where the texture filter spans both values, the material itself is filtered, only using one of those
two values. With traditional texture filtering and split-filtering shading with Equation 9, metalness
values between 0 and 1 result, which may be nonsensical and produce visual error, depending on
the material model.

Filtering nonlinear physical properties. We show another example in Figures 4(a) and (b), where
a grid of temperature values is used to describe the full emission spectrum using Planck’s law,
which is nonlinear. With the filtering before shading, averaged temperature values are used to
compute the emission spectrum. In contrast, filtering after shading computes emission spectra
at the grid points and then filters those spectra; it thus preserves appearance under minification,
while filtering the temperatures does not. Figure 4(c) shows the error introduced when volumetric
prefiltered MIP maps are used for minification. Filtering after shading (here, with a Gaussian in the
plane perpendicular to the ray), preserves appearance under minification, Figure 4(d).

3.2 Nonlinearity-Introduced Aliasing

(a) (b)

Fig. 5. A magnified normal-mapped specular
surface. (a) Traditional filtering. (b) Filtering af-
ter shading with Equation 10 introduces aliasing.

While filtering after shading gives superior results in
many cases, it can either reduce or amplify aliasing.
Nonlinearities in the lighting calculation always in-
troduce high frequencies that are not present in the
material texture. In discrete signals, those additional
high frequencies can exceed the original Nyquist limit
and alias irrecoverably. We describe and analyze this
effect from a signal processing perspective in the sup-
plemental material (Section S.3).
Reordering the texture filtering computation

changes the rate at which nonlinearity is introduced.
When filtering after shading, the nonlinearity is in-
troduced at the texture resolution. Conversely, when filtering before shading, the nonlinearity is
introduced at the screen resolution. Under minification, the screen resolution is lower than the
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(a) Filtering
before shading

(b) Filtering
after shading

(c)
Minification,
with filtering
before shading

(d)
Minification,
with filtering
after shading

Fig. 4. (a) The traditional approach filters first, then uses Planck’s law to compute the volumetric emission
spectrum. In contrast, (b) filtering after shading filters the emission spectra given by Planck’s law. Because
Planck’s law is highly nonlinear, the results differ. Under minification, (c) MIP mapping introduces error by
applying linear filtering to nonlinear quantities. Appearance is accurately preserved with (d) filtering after
shading and no MIP maps.

texture resolution and filtering after shading reduces aliasing (Figure 2). Under magnification, the
screen resolution is higher than the texture resolution.
When filtering after shading in this case, shading can introduce aliasing in the lower texture

resolution (Figure 5). In practice, the severity of this effect depends on the spectral contents of the
filtered textures, the magnification factor, and how nonlinear the shading is. For example, very
glossy specular surfaces introduce significantly higher spatial frequencies.

4 STOCHASTIC TEXTURE FILTERING
We introduce Stochastic Texture Filtering (STF)—stochastic estimation of the filtering after shading
that makes evaluating the split-filtering and filtering-after-shading equations computationally
efficient. Expanding the outer convolution in Equation 9 gives:

𝐿o (𝑝) =
∫

𝑓l (𝑢 ′, 𝑣 ′)
[∫
S2
𝑓
(
𝜔o, 𝜔

′, (𝑡1 ⊗ 𝑓r) (𝑢 ′, 𝑣 ′)), . . .
)
𝐿i (𝑝,𝜔 ′) d𝜔 ′

]
d𝑢 ′d𝑣 ′. (11)

If (𝑢 ′, 𝑣 ′) samples are drawn with probability proportional to the low-pass filter 𝑓l, then the standard
Monte Carlo estimator gives:

𝐿o (𝑝,𝜔o) ≈
∫
S2
𝑓
(
𝜔o, 𝜔

′, (𝑡1 ⊗ 𝑓r) (𝑢 ′, 𝑣 ′)), . . .
)
𝐿i (𝑝,𝜔 ′) d𝜔 ′, (12)

which stochastically samples the minification filter but still explicitly evaluates the reconstruction
filter. Alternatively, applying Monte Carlo to Equation 10 gives the estimator:

𝐿o (𝑝,𝜔o) ≈
∫
S2
𝑓

(
𝜔o, 𝜔

′, 𝑡1𝑢′,𝑣′, . . .

)
𝐿i (𝑝,𝜔 ′) d𝜔 ′, (13)

where a single texel is sampled.
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4.1 Filter Reservoir Sampling (FRS)
The texture filter can be sampled by evaluating its weight at all of the (𝑢, 𝑣) texel coordinates under
its extent and then sampling a (𝑢 ′, 𝑣 ′) with probability proportional to these weights. To avoid the
need to store all of these values, we use the weighted reservoir sampling technique. We call this
combination of techniques Filter Reservoir Sampling (FRS).
As an example, consider the multidimensional B-spline filter 𝐾bs defined as a product of 1D

cubic B-splines. In 2D, given a lookup point (𝑢, 𝑣) ∈ R2, the filtered shading value is given by 4 × 4
weighted texel values:

2∑︁
𝑖=−1

2∑︁
𝑗=−1

𝐾bs (⌊𝑢⌋ + 𝑖) 𝐾bs (⌊𝑣⌋ + 𝑗)
[∫
S2
𝑓

(
𝜔o, 𝜔

′, 𝑡1⌊𝑢 ⌋+𝑖, ⌊𝑣⌋+𝑗 , . . .
)
𝐿i (𝑝,𝜔 ′) d𝜔 ′

]
. (14)

The filter is separable so we can apply weighted reservoir sampling to each dimension independently.
For example, for 𝑢 ′, we sample 𝑖 ′ ∈ [−1, 0, 1, 2] according to the weights 𝐾bs (⌊𝑢 − 1⌋), 𝐾bs (⌊𝑢⌋),
𝐾bs (⌊𝑢 + 1⌋), and 𝐾bs (⌊𝑢 + 2⌋). The single texel value at (𝑢 ′, 𝑣 ′) can then be used in the shading
computation to produce an unbiased estimate of Equation 10. Sampling higher-dimensional B-spline
filters follows the same approach; for an 𝑛-dimensional filter, 4𝑛 texture lookups are replaced with
a single one. Separable sampling reduces the sample selection cost from 4𝑛 to 4𝑛.

Our implementation of stochastic elliptically weighted average filtering is also based on reservoir
sampling: after stochastically selecting a MIP level based on the ellipse’s extent, we then compute
all of the EWA filter weights and sample one based on their distribution.

4.2 Filter Importance Sampling (FIS)
It is also possible to stochastically sample continuous filters without discretizing them using a
technique based on filter importance sampling (FIS) [Ernst et al. 2006; Reeves et al. 1987; Shirley 1990].
However, it is not possible to directly apply FIS to the filtering after shading integral, Equation 10,
since FIS assumes the integration of a product of two continuous functions. In this case, the texture
functions 𝑡 (𝑢, 𝑣) are zero everywhere except at discrete texel coordinates (recall Equation 1), so
sampled (𝑢 ′, 𝑣 ′) coordinates have zero probability of finding a texture sample. If a continuous
texture function is defined using a reconstruction filter, however, then FIS can be applied.
A natural choice for the texture reconstruction filter 𝑓f is the 𝑛-dimensional unit box filter

[−1/2, 1/2]𝑛 . In turn, after a (𝑢 ′, 𝑣 ′) is sampled from the texture filter 𝑓 , applying nearest-neighbor
sampling is equivalent to applying the box filter. Introducing the nearest-neighbor reconstruction
filter corresponds to convolving the original filter function 𝑓 with a box filter, changing its shape.
Hence, the filter function that is sampled should be the deconvolution of the desired filter with the
box function.2
We can thus filter with a B-spline filter of degree 𝑛 by sampling a spline of degree 𝑛 − 1 and

performing a nearest lookup, since approximating B-splines are constructed by repeated convolution
of a box filter via the Cox–de Boor recursion formula [De Boor 1977]. (For example, a quadratic
approximating B-spline filter can be realized by sampling a triangular PDF over [−1.5, 1.5]2.)
Sampling can either be performed via CDF inversion or by adding 𝑛 uniformly-distributed random
variables (also following the Cox–de Boor recursion).

Filter importance sampling is appealing for stochastic texture filtering since it allows for filters
with infinite spatial support and has a cost that is independent of the filter’s width. It can be

2This perspective allows us to better understand Hofmann et al.’s stochastic trilinear sampling algorithm, which is based
on independent, uniform jittering in each dimension and then nearest neighbor sampling [Hofmann et al. 2021]. Their
jittering corresponds to applying FIS to sample the box filter which is then convolved with another box function, giving
their stochastic trilinear interpolant.
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Minification Magnification

Texel

Pixel

Screen X Screen X

UV jitter

XY jitter

Fig. 6. Image reconstruction filter screen-space jittering (left) and UV space filter importance sampling
jittering (right). During magnification, the spatial extent of the screen-space jitter can be significantly smaller
than a texel size, which can cover multiple pixels. For the texture reconstruction filter 𝑓f larger magnitude
jitters are necessary.

Fig. 7. Uniform jittering in screen-space within pixel bounds (left) produces trapezoid, non-uniform coverage
in the UV texture space (middle). Filter importance sampling then additionally jitters the resulting UVs in
texture space for a desired texture reconstruction filter 𝑓f (Section 4.2), for example with Gaussian distribution
(right).

used with positivization (Section 2.2) for low variance evaluation of filters with negative lobes.
Filter importance sampling a screen-space reconstruction filter is a common practice in production
renderers. It can effectively approximate a minification low-pass filter, such as an anisotropic
filter (Figure 7 left and middle). However, it is not enough to rely on screen-space jittering for
magnification, as the magnitude is too small (Figure 6) and it produces nearest-neighbor interpolated
texture. We propose to use FIS for texture reconstruction and sampling in addition to screen-space
reconstruction filtering jitter.

4.2.1 Screen-Space Anisotropic Minification. Anisotropic filtering techniques commonly model the
filter footprint as an ellipse, with axes derived from the partial derivatives of texture coordinates
relative to screen coordinates. To save computational cost, similarly to Lee et al. [Lee et al. 2017]
we do not sample the ellipse in the shader but rely on screen-space jittering within the pixel to
approximately sample the same extent. As shown in Figure 7, uniform jittering within the pixel
gives a trapezoidal shape and projection in UV space. Although this does not preserve area or the
original sample point distribution, it has no additional computational cost and in our experiments,
approximates anisotropic filtering well.
The degree of anisotropy is determined by the ratio between the major and minor axes of the

ellipse. We choose a MIP level based on the length of the minor axis and sample a single MIP level
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Filter Reservoir Sampling

0.0 0.1 0.1

0.1 0.2 0.2

0.0 0.1 0.1

(a) Find texture texels weights.

10% 10% 10%

10% 20% 20%

0% 10% 10%

(b) Convert weights to proba-
bilities.

10% 10% 10%

10% 20% 20%

0% 10% 10%

(c) Randomly select one texel.

10% 10% 10%

10% 20% 20%

0% 10% 10%

(d) Repeat in the next frame,
selecting a different texel.

Filter Importance Sampling

(a) Select continuous filter
PDF.

(b) Sample the continuous dis-
tribution to find UV offset.

(c) Align UV offset with texel
center and sample the texel.

(d) Repeat steps b and c in the
next frame.

Fig. 8. Comparison of two magnification filtering stochastic texture mapping methods. Note that with Filter
Importance Sampling, the final filter is the result of convolving the sampled distribution with the texel extent
box filter.

stochastically. Unlike current GPU hardware filtering, which has a maximum anisotropy ratio of 16,
our method allows any anisotropy. We limit the ratio to 64 to avoid GPU texture cache thrashing,
rescaling the minor axis if necessary. This approach of combining screen-space jittering with a
higher-resolution MIP selection is similar to the ad-hoc practice of negative MIP biasing [Karis
2014; Yang et al. 2020] used in contemporary rendering engines for improved texture sharpness and
reduced shading aliasing. We combine the screen-space jittering with either discrete filter sampling
or UV jittering filter importance sampling (Figure 7).
We note that using MIP maps with stochastic texture filtering introduces an error since MIP

maps encode prefiltered texture values. Therefore, the technique as described is no longer filtering
after shading, but a hybrid between filtering before and after shading. The choice of MIP map
defines the degree to which the textures are prefiltered and the resulting error. This error can
be reduced by using finer levels of the MIP chain, which can be achieved by applying a negative
LOD bias or by increasing the maximum amount of anisotropy. Alternatively, the error can be
minimized by generating MIP levels using an appearance-driven approach [Hasselgren et al. 2021].
If increased required memory bandwidth is not a concern, the error can be eliminated by not using
MIP mapping at all. We find that this error is usually not objectionable in practice; compare for
example Figures 9 (f) and (g), where the first uses MIP mapping and the second always samples the
finest MIP level. Both are nearly the same as the reference image, (h).

4.3 Comparison of FRS and FIS
FIS and FRS are graphically compared in Figure 8. Both approaches are straightforward to execute,
though for many filters, FIS is significantly easier to implement and requires fewer arithmetic
operations to evaluate. (We provide code examples of both in the supplementary material.) Unlike
FRS, the cost of filter importance sampling is constant and does not depend on the filter size,
including filters with infinite spatial support. The Gaussian convolutional filter is an example of an
infinite filter; although it is often truncated in practice, with FIS it is possible to evaluate it without
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(a) Filter Before

1 spp

(b) Filter Before

1 spp + DLSS

(c) Filter Before

1024 spp

(d) Filter After

1 spp

(e) Filter After

1 spp + DLSS

(f) Filter After

1024 spp

(g) Filter After

LOD 0, 1 spp, DLSS

(h) Reference

1024 spp

Fig. 9. Appearance of a normal-mapped surface under minification. (a)–(c) use filtering before shading with
hardware texture filtering, MIP maps, and a maximum anisotropy of 16. (d)–(g) use filtering after shading
with a stochastic bicubic filter and a maximum anisotropy of 64. MIP maps are used in (d)–(f), while (g) uses
no MIP maps. (h) is a point sampled reference image. All variants of filtering after shading more accurately
preserve the material’s appearance, while traditional texture filtering introduces significant error.

truncation. This can simplify implementation (it is not necessary to carefully window the filter), as
well as save the computational cost of multiple discrete weight evaluations and sample selection.

The box reconstruction filter introduced in filter importance sampling can be useful for rapidly
changing filters such as a small-sigma Gaussian: evaluating it at discrete points results in subsam-
pling error [Wronski 2021] and the correction requires evaluating the costly erf error function.
Filter importance sampling an analytical normal distribution produces the same effect due to the
convolution of a nearest-neighbor box function with the Gaussian.

The cases where FRS is preferred over FIS include applications where the filter is given only in a
discrete form (such as convolutional neural networks). Also, some continuous filters are difficult to
sample due to the lack of closed-form PDF sampling procedure. Similarly, filters with negative lobes
are significantly more difficult to sample with FIS. Finally, FIS requires multiple random numbers
and it is easier to preserve stratification with FRS.

4.4 Material Graphs
Complex patterns are often generated using graphs composed of simple nodes, with textures at
the leaves. In offline rendering, it is not uncommon for these graphs to have hundreds of nodes
and use many source textures, each of which is filtered at each shading point. Linear combinations
of textures can be evaluated stochastically using Equation 5 and more complex blends such as
triplanar mapping, based on a blend of three textures weighted by the orientation of the surface,
can also be sampled stochastically.

5 RESULTS
We have evaluated stochastic texture filtering in the context of both real-time rasterization and
path tracing using Falcor [Kallweit et al. 2022], as well as offline rendering using pbrt-v4 [Pharr
et al. 2022]. All performance measurements were taken on an NVIDIA RTX 4090 GPU.

We evaluate stochastic texture filtering in a real-time renderer, using DLSS [Liu 2022] as a robust
temporal integrator. Screen-space jittering for DLSS employs a 32-sample Halton sequence, while
Spatio-Temporal Blue Noise (STBN) masks [Wolfe et al. 2022] are used as the source of random
numbers for stochastic filtering. Our implementation performs stochastic filtering in the shading
pass, which uses the Disney BRDF [Burley 2012] and a single directional light. All real-time images
and performance measurements were taken at 4K (3840 × 2160) resolution.

Unlike software (CPU) renderers, real-time rendering with GPUs can use the hardware texturing
unit with excellent bilinear filtering performance on standard texture formats. We do not expect
stochastic texture filtering to provide performance benefits with those formats when magnifying
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(a) Bilinear (b) Mitchell (c) Gaussian

Fig. 10. Bilinear filtering (a) compared to stochastic, single sample estimation of the bicubic Mitchell (b) and
Gaussian (c) filters, resolved with DLSS’s temporal accumulation. The Mitchell filter is much sharper than
the bilinear and does not produce diamond-like artifacts. The Gaussian filter is isotropic and although it
tends to blur textures, it gives the best results for reconstruction of diagonal lines.

textures. We show, however, that it allows for efficient and high-performance use of novel texture
representation and compression formats not supported by existing hardware, as well as optimiza-
tion of material graphs. Furthermore, we demonstrate how stochastic texture filtering enables
magnification filters of significantly higher quality than the bilinear filter at the same cost, and
more correct appearance preservation and minification.
Filtering After Shading:We present a combined effect of stochastic magnification and minifi-
cation on Figure 9. Since we do not fully supersample the source texture, but still use MIP maps
(Section 4.2.1) our proposed stochastic filters introduce a small error, visible by comparing Fig-
ure 9(e) and (g). Figure 9(g) uses only the most detailed MIP level. All variants of STF are closer to
the reference than the filtering before shading approach.
Magnification, Filter Reservoir Sampling: For magnification, we analyze the visual benefits of
high-quality bicubic Mitchell and Gaussian filters with stochastic texture filtering by comparing
with a bilinear filter, which is known for producing diamond-like artifacts and over-blurring. While
the implementation of the stochastic Gaussian filter is straightforward, the Mitchell filter has
negative weights and so we apply positivization (Section 2.2), which doubles the cost of stochastic
filtering. In Figure 10 we observe better image quality from the higher-quality filters: either sharper
response without bilinear filtering artifacts, or more pleasant diagonal edges and image smoothness.
The use of STBN and DLSS results in no objectionable noise or flicker.
Magnification, Filter Importance Sampling: Filter importance sampling allows to use infinite-
extent filters without truncation. We compare FIS to FRS using three Gaussian filters in Figure 11.
For FRS, we choose a single sample in the closest 4 × 4 window of texels and for FIS, we use the
Box–Muller transform to sample the Gaussian, followed by a nearest-neighbor lookup.

Results are visually indistinguishable for 𝜎 = 0.5 but differ for the two other sigmas. With a very
small 𝜎 , we observe undersampling with discrete sample weights. For the large 𝜎 , the limited radius
of discrete sampling truncates the Gaussian kernel and produces subtle, grid-like visual artifacts.
This can be improved by enlarging the filtering window, with a corresponding increase in the cost
of sampling. FIS does not suffer from either of those issues, though it requires two random variables
and cannot filter with exact kernels when additional convolution with a box filter is not desirable.
Anisotropic filtering and minification: Lowpass filtering is more difficult to resolve than
reconstruction filtering, as it needs to average significantly more samples. We verify that the
commonly used temporal filter, DLSS, can resolve it in Figure 12. We use a plane textured with a
challenging, high-contrast checkerboard pattern. The image reconstructed by DLSS is temporally
stable, with occasional flickering in regions containing very high-frequency details. In motion,
we observe sporadic ghosting and other temporal artifacts introduced by DLSS, but the overall
image quality remains comparable to hardware anisotropic filtering. We present those results in
the supplementary video. Although DLSS does not completely remove noise caused by stochastic
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𝜎 = 0.3 𝜎 = 0.5 𝜎 = 0.8

FR
S

FI
S

Fig. 11. Gaussian texture filtering with varying 𝜎 , comparing FRS and FIS. For 𝜎 = 0.5, both produce very
similar results. FIS gives better results for both relatively small and large 𝜎 . We encourage the reader to zoom
in to see the difference in the last column.

texture sampling on such a high-contrast pattern, STBN reduces it, making it barely perceptible
and only in magnified areas. Figure 9 also demonstrates that temporal reconstruction is effective in
recovering a high-quality anisotropically filtered image while only using 1 spp.

Stochastic Bilinear
1 spp

Stochastic Bicubic
1 spp

Stochastic Bilinear
1 spp + DLSS

Stochastic Bicubic
1 spp + DLSS

HW Filtering
1 spp

Stochastic Bicubic
1024 spp

Fig. 12. A checkerboard rendered using stochastic anisotropic and bicubic filtering (top). Red and blue insets
(bottom rows) show minified and magnified areas, respectively, comparing stochastic bilinear and bicubic
filtering with hardware anisotropic filtering and a 1024 spp reference solution. Stochastic filtering uses FIS
with STBN, except for the reference image that used a uniform distribution for the filtering.

Triplanar mapping: Triplanar mapping samples all textures three times with UV coordinates
aligned to the XY , XZ , and YZ planes and blends the filtered results based on the surface normal
direction to avoid excessive texture stretching. Since it is a weighted average of three values,
we can evaluate it stochastically using Equation 5. Results are shown in Figure 13. We find that
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Fig. 13. Full triplanar mapping (top) compared to its stochastic, single sample estimation (bottom). From
left to right we present pure diffuse shading without normal mapping, diffuse shading with normal mapping,
and full specular and diffuse lighting. Insets show error magnified 10×.

DLSS resolves the stochastic sampling error effectively and observe no temporal visual artifacts
such as flicker or ghosting. The difference for the diffuse-only case comes from the use of the
temporal reconstruction filter, as filtering before and after shading is mathematically equivalent.
For normal-mapped and specular surfaces, filtering after shading is different than filtering before
shading, but in this scene, the visual differences after shading are minor.
Texture compression: Stochastic texture filtering enables the use of more advanced texture
compression and decompression algorithms by requiring only a single texel to be decoded at
each lookup [Hofmann et al. 2021; Vaidyanathan et al. 2023]. To connect those observations to
our work, we implemented a much simpler real-time decompression algorithm—the 2D discrete
cosine transform (DCT), where 8 × 8 texel blocks store only 4 bytes per channel. We store the six
lowest-frequency DCT coefficients for each channel, allocating 7 bits for the DC component and 5
bits for the remaining coefficients, achieving 16× compression for 8-bit data. Texel values must be
decoded in the material evaluation shader and filtering must be performed manually.

As shown in Figure 14, stochastic trilinear filtering gives nearly identical visual results to deter-
ministic trilinear filtering and measure a 2.9× performance improvement. To further demonstrate
the applicability of the proposed methods, we combine it with stochastic triplanar mapping, yielding
a total 7.9× performance improvement as compared to fully-deterministic filtering.
Visual noise ablation study: To validate the effectiveness of DLSS [Liu 2022] as the temporal
integrator and Spatio-Temporal Blue Noise (STBN) [Wolfe et al. 2022] as the source of the ran-
domness, we performed an ablation study presented in Figure 15 and using extreme zoom-in on
a high contrast area. We verify that as compared to white noise, STBN dramatically reduces the
appearance of noise and improves its perceptual characteristics. Similarly, DLSS removes most
of the noise—both in the case of white noise and STBN. When DLSS is used in combination with
white noise, some visual grain remains, but it disappears completely when combined with STBN.
Offline-Rendering: In order to evaluate the error introduced by stochastic filtering when used
with volumetric path tracing, we rendered a view of the Disney Cloud [Walt Disney Animation
Studios 2017]. pbrt’s volumetric path tracer is based on delta tracking with null scattering [Kutz
et al. 2017; Miller et al. 2019] and uses ratio tracking [Novák et al. 2014] for transmittance. Because
the cloud’s density is used to scale the absorption and scattering coefficients and since those make
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Fig. 14. Stochastic filtering of a DCT-compressed texture set (left). Despite some loss of higher frequency
details in the original uncompressed texture (upper left inset), the stochastic trilinear (upper right inset)
and deterministic trilinear (lower left inset) filtering results appear virtually identical, as shown by the 10×
magnified error image (bottom right). Stochastic filtering reduces rendering time from 1.66 ms to 0.57 ms.

(a) (b) (c) (d)

Fig. 15. Effectiveness of DLSS and STBN on noise removal in a real-time setting. White noise (a) creates
visually distracting patterns of noise, while STBN (b) dramatically reduces its appearance. When using DLSS
as a temporal integrator (c) noise is dramatically reduced as compared to a single frame result (a). DLSS and
STBN combined (d) make the noise almost imperceptible.

affine contributions to the estimated radiance values, both filtering approaches converge to the
same result.
We converted the OpenVDB data set to NanoVDB for use on the GPU and used the 8× down-

sampled version of the cloud in order to make the visual difference between filters more apparent.
The image in Figure 1 was rendered at 1080p resolution with 256 samples per pixel (spp). Trilinear
filtering causes block- and diamond-shaped artifacts that are not present with tricubic filtering.
Stochastic filtering gives images that are visually indistinguishable from traditional filtering; the
error it introduces is far less than the error from Monte Carlo path tracing. For this scene, we saw
less than a 5% increase in mean squared error (MSE) due to the stochastic filters. Compared to
trilinear filtering, tricubic filtering doubles rendering time since it requires 8×more texel lookups in
the NanoVDB multilevel grid. With stochastic filtering, we can render using a high-quality tricubic
filter in less time than trilinear filtering, with 1/8 as many texel lookups.

6 RECOMMENDATIONS
While we believe that filtering after shading is more correct for most nonlinear operations and
textures, we note that the change of filtering order presents a practical challenge. Different filtering
methods may produce varying results, even if their lighting and material systems are the same.
It means that our method could change the appearance of existing 3D assets and require an art
review before being used as a replacement.
We note that filtering after shading is visually indistinguishable from filtering before shading

for mostly diffuse or rough surfaces. Higher degrees of non-linearity present in shading such as
transparency can cause significant deviations in appearance—for instance, alpha testing becomes
stochastic transparency, which may or may not be desired. Furthermore, our proposed framework
works best when there is enough spatiotemporal data to reconstruct the shaded surfaces. Even the
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most sophisticated machine-learning-based reconstruction techniques break down with subpixel
geometric detail that flickers from frame to frame. This can result in excessive noise, flicker, or
blurring, depending on the used algorithm.
Filtering after shading and STF work especially well for minification and reduce aliasing. Ren-

dering non-linearity introduces new high-frequency content at high texture resolution, which
can be efficiently filtered over multiple pixels or samples. Swapping the order of filtering during
magnification can instead enhance aliasing caused by nonlinearities applied at lower resolutions,
as shown in Figure 5.
If the magnification factors are large, rendering is highly nonlinear, and textures contain high-

frequency content, stochastic magnification can yield subjectively poorer results. This problem can
be addressed by maintaining a close 1-to-1 texel-to-pixel ratio and limiting magnification factors.
With the ubiquity of texture streaming and virtual texturing, this can be achieved with sufficient
disk storage, or through upsampling and generative techniques during texture streaming.

7 DISCUSSION AND FUTUREWORK
We have shown that stochastic texture filtering allows efficiently filtering outside of the lighting
integral, rather than first filtering the texture parameters used by it. By doing so, systematic error is
eliminated from rendered images in the common case where a textured parameter has a non-affine
contribution to the final result during minification. Examples include normal mapping, many BSDF
properties, and temperatures mapped to emission spectra. Filtering lighting preserves appearance
at different scales.
Stochastic filtering offers additional benefits, including making complex compressed texture

representations viable by reducing filters to a single texel lookup. It allows the use of higher-quality
texture filters in high-performance code, as we have shown with bicubic and Gaussian filters,
providing further improvements in image quality. We hope that our work will contribute to the
adoption of higher-order texture filters in real-time rendering and reduce the reliance on low-quality
bilinear filters.

We demonstrated that the minor noise introduced by stochastic texture filtering can be effectively
managed using temporal filtering algorithms like DLSS. While the overall reconstruction quality is
satisfactory, minor flickering and ghosting artifacts remain, especially in high-contrast areas and
patterns like a checkerboard. DLSS is a learning-based solution and was not trained on data that
includes stochastic texture filtering. Including stochastically filtered inputs in the training datasets
would likely further improve the reconstruction quality.

Finally, our approach makes it feasible to use more complex, non-linear reconstruction filters,
such as steering or bilateral kernels. Such filter can be effective at reconstructing features like edges
in images [Takeda et al. 2007] and volumes [Yu and Turk 2013] and are essential for super-resolution.
If such nonlinear, local filter parameters or weights can be obtained cheaply (for example, computed
at a lower resolution [Wronski et al. 2019]), our stochastic filtering framework could be applied to
them, giving further improvements to image quality.

ACKNOWLEDGMENTS
We would like to thank Aaron Lefohn and NVIDIA for supporting this work, John Burgess for
suggesting the connection to percentage closer filtering, Karthik Vaidyanathan for many discus-
sions and suggestions, Johannes Deligiannis for finding the problem with nonlinearity introduced
aliasing, Markus Kettunen for comments about texture reconstruction versus low-pass filtering,
and Tomas Akenine–Möller for helpful comments on a draft of this paper. We thank the wide
graphics community on social media for discussion and historical references to the earliest uses
of stochastic texture filtering in video games. We are grateful to Walt Disney Animation Studios

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.



1:18 Matt Pharr, Bartlomiej Wronski, Marco Salvi, and Marcos Fajardo

for making the detailed cloud model available and to Lennart Demes, author of the ambientCG
website, for providing a public-domain PBR material database that we used to produce the real-time
rendering figures.

REFERENCES
Tomas Akenine-Möller, Cyril Crassin, Jakub Boksansky, Laurent Belcour, Alexey Panteleev, and Oli Wright. 2021. Improved

Shader and Texture Level of Detail Using Ray Cones. Journal of Computer Graphics Techniques (JCGT) 10, 1 (25 January
2021), 1–24. http://jcgt.org/published/0010/01/01/

Anthony C. Barkans. 1997. High Quality Rendering Using the Talisman Architecture. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware (Los Angeles, California, USA). 79–88. https://doi.org/10.1145/
258694.258722

Colin Barré-Brisebois, Henrik Halén, Graham Wihlidal, Andrew Lauritzen, Jasper Bekkers, Tomasz Stachowiak, and Johan
Andersson. 2019. Hybrid Rendering for Real-time Ray Tracing. Ray Tracing Gems: High-Quality and Real-Time Rendering
with DXR and Other APIs (2019), 437–473.

James F. Blinn and Martin E. Newell. 1976. Texture and Reflection in Computer Generated Images. Commun. ACM 19, 10
(Oct. 1976), 542–547. https://doi.org/10/dct2v6

Brent Burley. 2012. Physically-Based Shading at Disney. In Practical Physically-Based Shading in Film and Game Production.
10:1–10:7.

R. J. Cant and P. A. Shrubsole. 2000. Texture Potential MIP Mapping, a New High-Quality Texture Antialiasing Algorithm.
ACM Trans. Graph. 19, 3 (July 2000), 164–184. https://doi.org/10.1145/353981.353991

Edwin E. Catmull. 1974. A Subdivision Algorithm for Computer Display of Curved Surfaces. Ph. D. Dissertation. Dept. of CS,
U. of Utah.

Min-Te Chao. 1982. A General Purpose Unequal Probability Sampling Plan. Biometrika 69, 3 (Dec. 1982), 653–656.
https://doi.org/10/fd87zs

Petrik Clarberg, Simon Kallweit, Craig Kolb, Pawel Kozlowski, Yong He, Lifan Wu, Edward Liu, Benedikt Bitterli, and Matt
Pharr. 2022. Real-Time Path Tracing and Beyond. HPG 2022 Keynote.

Carl De Boor. 1977. Package for calculating with B-splines. SIAM J. Numer. Anal. 14, 3 (1977), 441–472.
Claude E Duchon. 1979. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology and Climatology 18, 8

(1979), 1016–1022.
Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. 2010. Stochastic transparency. In Proceedings of the ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games. 157–164.
Manfred Ernst, Marc Stamminger, and Günther Greiner. 2006. Filter Importance Sampling. In Proceedings of IEEE Symposium

on Interactive Ray Tracing. 125–132. https://doi.org/10/c2q6gj
Alejandro Conty Estevez and Christopher Kulla. 2018. Importance Sampling of Many Lights with Adaptive Tree Splitting.

Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (Aug. 2018), 25:1–25:17. https://doi.org/10/
ggh89v

Iliyan Georgiev and Marcos Fajardo. 2016. Blue-Noise Dithered Sampling. In ACM SIGGRAPH Talks. ACM Press, 35:1–35:1.
https://doi.org/10/gfznbx

Ned Greene and Paul S. Heckbert. 1986. Creating Raster Omnimax Images from Multiple Perspective Views Using the
Elliptical Weighted Average Filter. IEEE Computer Graphics and Applications 6, 6 (1986), 21–27. https://doi.org/10.1109/
MCG.1986.276738

Larry Gritz. 2022. OpenImageIO 2.4. https://github.com/OpenImageIO/oiio/releases/tag/v2.4.4.1
Yu Guo, Miloš Hašan, and Shuang Zhao. 2018. Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs. ACM

Transactions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (Dec. 2018), 279:1–279:14. https://doi.org/10/db3c
Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine. 2021. Appearance-Driven Automatic

3D Model Simplification. In Eurographics Symposium on Rendering.
Paul Heckbert. 1989. Fundamentals of Texture Mapping and Image Warping. Ph. D. Dissertation. UC Berkeley.
Paul S. Heckbert. 1986. Survey of Texture Mapping. IEEE Computer Graphics and Applications 6, 11 (1986), 56–67. https:

//doi.org/10.1109/MCG.1986.276672
Eric Heitz, Johannes Hanika, Eugene d’Eon, and Carsten Dachsbacher. 2016. Multiple-Scattering Microfacet BSDFs with the

Smith Model. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 35, 4 (July 2016), 58:1–58:14.
Nikolai Hofmann, Jon Hasselgren, Petrik Clarberg, and Jacob Munkberg. 2021. Interactive Path Tracing and Reconstruction

of Sparse Volumes. Proc. ACM Comput. Graph. Interact. Tech. 4, 1, Article 5 (April 2021), 19 pages. https://doi.org/10.1145/
3451256

Homan Igehy. 1999. Tracing Ray Differentials. In Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 179–186. https://doi.org/

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

http://jcgt.org/published/0010/01/01/
https://doi.org/10.1145/258694.258722
https://doi.org/10.1145/258694.258722
https://doi.org/10/dct2v6
https://doi.org/10.1145/353981.353991
https://doi.org/10/fd87zs
https://doi.org/10/c2q6gj
https://doi.org/10/ggh89v
https://doi.org/10/ggh89v
https://doi.org/10/gfznbx
https://doi.org/10.1109/MCG.1986.276738
https://doi.org/10.1109/MCG.1986.276738
https://github.com/OpenImageIO/oiio/releases/tag/v2.4.4.1
https://doi.org/10/db3c
https://doi.org/10.1109/MCG.1986.276672
https://doi.org/10.1109/MCG.1986.276672
https://doi.org/10.1145/3451256
https://doi.org/10.1145/3451256
https://doi.org/10.1145/311535.311555
https://doi.org/10.1145/311535.311555


Filtering After Shading With Stochastic Texture Filtering 1:19

10.1145/311535.311555
Productions Interplay. 1992. Texture Scaling in Star Trek: 25th Anniversary. https://st25sprites.neocities.org/scaling
James T. Kajiya. 1986. The Rendering Equation. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 143–150.

https://doi.org/10/cvf53j
Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa Foley, Yong He, Lifan Wu, Lucy

Chen, Tomas Akenine-Möller, Chris Wyman, Cyril Crassin, and Nir Benty. 2022. The Falcor Rendering Framework.
https://github.com/NVIDIAGameWorks/Falcor

Brian Karis. 2014. High-quality Temporal Supersampling. Advances in Real-Time Rendering in Games, SIGGRAPH Courses 1,
10.1145 (2014), 2614028–2615455.

Jaroslav Křivánek, Marcos Fajardo, Per H Christensen, Eric Tabellion, Michael Bunnell, David Larsson, and Anton Kaplanyan.
2010. Global Illumination across Industries. In ACM SIGGRAPH Courses. ACM Press.

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering
Heterogeneous Volumes. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 111:1–111:16.
https://doi.org/10/gbxjxg

Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized Production Path Tracing. In Proceedings of High
Performance Graphics (Los Angeles, California) (HPG ’17). Association for Computing Machinery, New York, NY, USA,
Article 10, 11 pages. https://doi.org/10.1145/3105762.3105768

Edward Liu. 2022. DLSS 2.0 - Image Reconstruction for Real-Time Rendering with Deep learning. In Game Developers
Conference.

Joel McCormack, Ronald Perry, Keith Farkas, and Norman Jouppi. 1999. Feline: Fast Elliptical Lines for Anisotropic Texture
Mapping. In Proceedings of SIGGRAPH. 243–250. https://doi.org/10.1145/311535.311562

Microsoft. 2015. Direct3D 11.3 Functional Specification. https://microsoft.github.io/DirectX-Specs/d3d/archive/
D3D11_3_FunctionalSpec.htm

Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. 2019. A Null-Scattering Path Integral Formulation of Light Transport.
ACM Transactions on Graphics (Proceedings of SIGGRAPH) 38, 4 (July 2019), 44:1–44:13. https://doi.org/10/gf6rzb

Don P. Mitchell and Arun N. Netravali. 1988. Reconstruction Filters in Computer Graphics. SIGGRAPH Comput. Graph. 22,
4 (June 1988), 221–228. https://doi.org/10/fggxbg

Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Transactions on Graphics 32, 3
(July 2013), 27:1–27:22. https://doi.org/10/gfzq7s

Diego Nehab and Hugues Hoppe. 2011. Generalized sampling in computer graphics. Microsoft Research, Redmond, WA, USA,
Tech. Rep. MSR-TR-2011-16 (2011).

Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for Estimating Attenuation in Participating
Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (Nov. 2014), 179:1–179:11. https://doi.org/
10/f6r2nq

Shinji Ogaki. 2021. Vectorized Reservoir Sampling. In SIGGRAPH Asia 2021 Technical Communications. Association for
Computing Machinery, Article 20, 4 pages. https://doi.org/10.1145/3478512.3488602

Marc Olano and Dan Baker. 2010. LEAN Mapping. In Proceedings of the Symposium on Interactive 3D Graphics and Games.
181–188. https://doi.org/10/fkbvpn

Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. Amer. Statist. Assoc. 95, 449 (2000), 135–143.
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2022. pbrt-v4. https://github.com/mmp/pbrt-v4
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering: From Theory to Implementation (4th ed.).

MIT Press, Cambridge, MA.
Thomas Porter and Tom Duff. 1984. Compositing Digital Images. Computer Graphics (Proceedings of SIGGRAPH) 18, 3 (July

1984), 253–259. https://doi.org/10/dzsnj2
William T. Reeves, David H. Salesin, and Robert L. Cook. 1987. Rendering Antialiased Shadows with Depth Maps. Computer

Graphics (Proceedings of SIGGRAPH) (1987), 283–291. https://doi.org/10/bc4hw2
Sheldon M. Ross. 2019. A First Course in Probability (10th ed.). Pearson.
Peter Shirley. 1990. Physically Based Lighting Calculations for Computer Graphics. Ph. D. Dissertation. University of Illinois,

Urbana–Champaign.
Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo Techniques for Direct Lighting Calculations.

ACM Transactions on Graphics 15, 1 (Jan. 1996), 1–36. https://doi.org/10/ddgbgg
Tomasz Stachowiak. 2015. Stochastic Screen-Space Reflections. In Advances in Real-Time Rendering in Games, Part I (ACM

SIGGRAPH Courses). https://doi.org/10/gf3s6n
Tim Sweeney and Paul Nettle. 2000. Texturing As In Unreal. https://www.flipcode.com/archives/

Texturing_As_In_Unreal.shtml
Laszlo Szécsi, Laszlo Szirmay-Kalos, and Csaba Kelemen. 2003. Variance Reduction for Russian-roulette. Journal of the

World Society for Computer Graphics (WSCG) 11, 1–3 (2003).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

https://doi.org/10.1145/311535.311555
https://doi.org/10.1145/311535.311555
https://doi.org/10.1145/311535.311555
https://st25sprites.neocities.org/scaling
https://doi.org/10/cvf53j
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10/gbxjxg
https://doi.org/10.1145/3105762.3105768
https://doi.org/10.1145/311535.311562
https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm
https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm
https://doi.org/10/gf6rzb
https://doi.org/10/fggxbg
https://doi.org/10/gfzq7s
https://doi.org/10/f6r2nq
https://doi.org/10/f6r2nq
https://doi.org/10.1145/3478512.3488602
https://doi.org/10/fkbvpn
https://github.com/mmp/pbrt-v4
https://doi.org/10/dzsnj2
https://doi.org/10/bc4hw2
https://doi.org/10/ddgbgg
https://doi.org/10/gf3s6n
https://www.flipcode.com/archives/Texturing_As_In_Unreal.shtml
https://www.flipcode.com/archives/Texturing_As_In_Unreal.shtml


1:20 Matt Pharr, Bartlomiej Wronski, Marco Salvi, and Marcos Fajardo

H. Takeda, S. Farsiu, and P. Milanfar. 2007. Kernel Regression for Image Processing and Reconstruction. IEEE Transactions
on Image Processing 16, 2 (Feb. 2007), 349–366. https://doi.org/10/b4gfwp

Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Möller, Pontus Ebelin, and Aaron Lefohn. 2023.
Random-Access Neural Compression of Material Textures. In Proceedings of SIGGRAPH.

Walt Disney Animation Studios. 2017. Cloud Data Set. https://disneyanimation.com/data-sets/
Lance Williams. 1983. Pyramidal Parametrics. Computer Graphics (Proceedings of SIGGRAPH) 17, 3 (July 1983), 1–11.

https://doi.org/10/cq4xrd
Alan Wolfe, Nathan Morrical, Tomas Akenine-Möller, Ravi Ramamoorthi, A Ghosh, and LY Wei. 2022. Spatiotemporal Blue

Noise Masks. In Eurographics Symposium on Rendering. 117–126.
Bartlomiej Wronski. 2021. Practical Gaussian filtering: Binomial filter and small sigma Gaussians. https://bartwronski.com/

2021/10/31/practical-gaussian-filter-binomial-filter-and-small-sigma-gaussians/
Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, Damien Kelly, Michael Krainin, Chia-Kai Liang, Marc Levoy,

and Peyman Milanfar. 2019. Handheld Multi-Frame Super-Resolution. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 38, 4 (July 2019), 28:1–28:18. https://doi.org/10/gf6d4v

Chris Wyman and Morgan McGuire. 2017. Hashed alpha testing. In Proceedings of the 21st ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. 7:1–7:9.

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A Survey of Temporal Antialiasing Techniques. Computer Graphics Forum 39, 2
(2020), 607–621.

Jihun Yu and Greg Turk. 2013. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Transactions
on Graphics (TOG) 32, 1 (2013), 1–12.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

https://doi.org/10/b4gfwp
https://disneyanimation.com/data-sets/
https://doi.org/10/cq4xrd
https://bartwronski.com/2021/10/31/practical-gaussian-filter-binomial-filter-and-small-sigma-gaussians/
https://bartwronski.com/2021/10/31/practical-gaussian-filter-binomial-filter-and-small-sigma-gaussians/
https://doi.org/10/gf6d4v


Filtering After Shading With Stochastic Texture Filtering 1:1

Supplemental Material for “Filtering After Shading With Stochastic Texture Filtering”

S.1 LINEAR FILTERS
Direct application of the array sampling algorithm from Section 2.2 and then Equation 5 gives the
following estimator for linear interpolation over [0, 1], lerp(𝑣0, 𝑣1, 𝑡) = (1 − 𝑡)𝑣0 + 𝑡𝑣1:

⟨lerp⟩ =
{
𝑣0, if 𝜉 > 𝑡
𝑣1 otherwise.

(15)

Bilinear interpolation of values at the four corners of the unit square, bilerp (𝑣00, 𝑣10, 𝑣01, 𝑣11, 𝑠, 𝑡),
can be implemented with nested linear interpolations. Applying the same approach and reusing
the sample, we have:

⟨bilerp⟩(𝑠, 𝑡) =


𝑣00, if 𝜉 > 𝑠 and (𝜉 − 𝑠)/(1 − 𝑠) > 𝑡
𝑣01, if 𝜉 > 𝑠 and (𝜉 − 𝑠)/(1 − 𝑠) ≤ 𝑡
𝑣10, if 𝜉 ≤ 𝑠 and 𝜉/𝑠 > 𝑡
𝑣11, otherwise.

(16)

It is straightforward to extend this estimator to trilinear interpolation, as used with MIP mapping
and 3D voxel grids. More generally, the technique can be applied to 𝑛-dimensional interpolation,
reducing from 2𝑛 texture lookups to a single one.

S.2 FILTER KERNELS
For reference, we summarize some commonly used filter kernels, starting with interpolating
polynomials. Their one-dimensional definitions are listed here; 𝑛-dimensional filtering is performed
by filtering each dimension independently—the filters are separable. See Figure 16 for graphs of the
kernels and how they filter an example set of samples.

The 0th-order kernel is a unit box function, which corresponds to nearest-neighbor sampling.

𝐾0 (𝑡) =
{
1, if |𝑡 | < 1

2
0 otherwise.

(17)

The first order kernel is the unit tent, which gives linear sampling.

𝐾1 (𝑡) =
{
(1 − |𝑡 |), |𝑡 | < 1
0 otherwise.

(18)

The cubic polynomial kernel is defined as

𝐾3 (𝑡) =


(𝑎 + 2) |𝑡 |3 − (𝑎 + 3) |𝑡 |2 + 1, |𝑡 | < 1
𝑎 |𝑡 |3 − 5𝑎 |𝑡 |2 + 8𝑎 |𝑡 | − 4𝑎, 1 < |𝑡 | < 2
0 otherwise,

(19)

where 𝑎 is an extra degree of freedom in cubic interpolation. Mitchell and Netravali [Mitchell and
Netravali 1988] recommend a value of −0.5 and it is the closest to Lanczos2, a windowed sinc
kernel [Duchon 1979] while keeping low evaluation cost.

The Lanczos 𝑛 kernel has a spatial support of 2𝑛 and is defined:

𝐾Ln (𝑡) =


1 𝑡 = 0,
sin(𝑥𝜋 )

𝑥

sin(𝜋𝑥/𝑛)
𝑥/𝑛 , 0 < |𝑡 | < 𝑛

0 otherwise.
(20)
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Fig. 16. Commonly used 1D interpolation kernels and resulting interpolation of a random 1D points – nearest-
neighbor (box filter), linear, Mitchell cubic, and Lanczos2. Lanczos2 is almost identical to the Mitchell kernel.

S.2.1 Convolutional
The non-interpolating cubic B-spline is often used as it approximates the Gaussian filter and
produces smooth results while being cheap to evaluate. It is used for the offline rendering example
in Figure 1.

𝐾bs (𝑡) =
1
6


4 − 3𝑡2 (2 − |𝑡 |) |𝑡 | ≤ 1
(2 − |𝑡 |)3 1 < |𝑡 | ≤ 2
0 otherwise.

(21)

S.3 SPECTRAL EFFECTS OF NONLINEARITIES
Without loss of generality, let’s consider a 1D signal. We start by looking at the simplest analytical
nonlinearities, polynomials. Applying a squaring function to a signal comprising a single sinusoid
function 𝑠𝑖𝑛(𝑤) doubles the frequency from a well-known trigonometric identity:

sin2 (𝑤𝑥) = 1 − cos(2𝑤𝑥)
2

(22)

Considering two sine functions, we get:

(sin(𝑤0𝑥) + sin(𝑤1𝑥))2 =
−2 cos((𝑤0 +𝑤1)𝑥) − cos(2𝑤1𝑥) + 2 cos((𝑤0 −𝑤1)𝑥) − cos(2𝑤0𝑥) + 2

2
(23)

We observe so-called intermodulations and the appearance of new frequencies depending on both
input signal frequencies. The maximum new frequency is the maximum of 2𝑤0 and 2𝑤1.
The same pattern continues for sums of multiple trigonometric functions. Similarly, the power

𝑁 and a degree 𝑁 polynomial produce up to the 𝑁 -multiple of the highest frequency present in
the original signal.
Real nonlinear and practical functions are not just polynomials, but a similar analysis can be

performed. We observe a similar effect of new harmonics appearing, including inter-modulations
of the more complex signals. One of the easiest ways to understand an approximate effect of an
arbitrary non-linearity is by considering the Taylor series expansion of the original function around
the sample points. The smoother the non-linear function and better approximated by a lower
order polynomial around all the values present in the original signal, the less high frequencies are
produced. Very highly discontinuous functions and ones with high local curvatures produce a lot
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Fig. 17. Effect of various nonlinearities applied to a single sine function creating new harmonics and higher
signal frequencies.

of new harmonics and very high-frequency content. We plot the frequency effect of some common
nonlinearities on a single sine function in Figure 17.

Any non-trivial nonlinearity will introduce a significant amount of new, higher-frequency signal
content. Functions that are only 𝐶0 continuous, such as maximum (clipping) or absolute values
dramatically increase the signal bandwidth.

S.3.1 Nonlinearity introduced aliasing
One of the consequences of nonlinearities adding new frequency content is that they can introduce
significant aliasing on both continuous data to be sampled (by changing its bandwidth and increasing
the required sampling frequency if no additional lowpass filtering is applied) and already sampled,
discrete data.

Consider what happens to a simple sine function that gets sampled at different frequencies:

sin( [−1,−
√
2
2 , 0,

√
2
2 , 1,

√
2
2 ])

2 = [1, 12 , 0,
1
2 , 1,

1
2 ]

sin( [−1, 0, 1, 0,−1, 0])2 = [1, 0, 1, 0, 1, 0]
sin( [−1, 1,−1, 1,−1, 1])2 = [1, 1, 1, 1, 1, 1]

(24)

In the second and third examples, we observe aliasing and incorrect frequencies appearing despite
critical sampling of the original function. When the original sine is sampled at a higher signal
frequency, we can recover the second harmonic and the constant bias correctly. To prevent aliasing
when applying a nonlinearity, the processed signal has to be either sampled at a significantly higher
frequency than as implied by the Nyquist theorem or upsampled to a higher frequency before
applying the nonlinearity.

This is not an intuitively expected, but a common problem in rendering and computer graphics.
The resulting aliasing can be severe since rendering always operates on discrete signals and in-
troduces strong nonlinearities. In many ways, the growing popularity of post-filtering techniques
has hidden some of the most severe instances of this problem but can manifest itself even there.
When applying anti-aliasing on the non-tone-mapped scene image, the tone-mapping operator can
reintroduce significant aliasing, irrespective of the anti-aliasing technique used (MSAA, temporal
AA). This leads to complex practices, such as multiple anti-aliasing stages in the modern rendering
pipeline (for post-processing buffers, final color buffers, reflection buffers, and more). Aliasing from
nonlinearity affects the stochastic texture filtering as well, both minification and magnification.
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When the shading happens in lower resolution (during stochastic magnification), aliasing is in-
creased. The converse effect is present during the stochastic minification – aliasing is significantly
reduced as shading occurs at a higher resolution.

S.4 FILTER IMPLEMENTATIONS
For reference, implementations of most of the stochastic filters in the paper are in the following.
(We skip cases like the stochastic trilinear filter, since it is a straightforward modification to the
stochastic bilinear filter, for example.)

All of the following parameters take a parameter u, which should be a uniform random sample
in [0, 1] and a lookup point that is assumed to be with respect to texture raster coordinates (i.e., it
ranges between 0 and the texture’s resolution in each dimension). They return (by reference) a
remapped uniform random sample that may be reused and stochastically-sampled integer texel
coordinates.

StochasticBilinear stochastically samples the bilinear function.

Listing 1. Sampling a 2D bilinear kernel
Point2i StochasticBilinear(Point2f st, float &u) {

int s = std::floor(st[0]), t = std::floor(st[1]);
float ds = st[0] - std::floor(st[0]);
float dt = st[1] - std::floor(st[1]);
if (u < ds) {

++s;
u /= ds;

} else
u = (u - ds) / (1 - ds);

if (u < dt) {
++t;
u /= dt;

} else
u = (u - dt) / (1 - dt);

return Point2i(s, t);
}

The bicubic kernel based on Equation 21 is stochastically sampled by StochasticBicubic.
The computed weights correspond to the weights for the two texels to the left of the lookup
point (weights[0] and weights[1]) and the two to the right (weights[2] and weights[3]). This
implementation stores each dimension’s filter weights in an array and then samples a single filter
tap.
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Listing 2. Sampling a B-spline cubic kernel in 2D
Point2i StochasticBicubic(Point2f st, float &u) {

// Compute filter weights
auto weights = [](float t, float w[4]) {

float t2 = t*t;
w[0] = (1.f/6.f) * (-t*t2 + 3*t2 - 3*t + 1);
w[1] = (1.f/6.f) * (3*t*t2 - 6*t2 + 4);
w[2] = (1.f/6.f) * (-3*t*t2 + 3*t2 + 3*t + 1);
w[3] = (1.f/6.f) * t*t2;

};
float ws[4], wt[4];
weights(st[0] - std::floor(st[0]), ws);
weights(st[1] - std::floor(st[1]), wt);

// Sample index based on weights in each dimension.
int s0 = std::floor(st[0]-1), t0 = std::floor(st[1]-1);
int s = SampleDiscrete(ws, u, nullptr, &u);
int t = SampleDiscrete(wt, u, nullptr, nullptr);
return {s0+s, t0+t};

}

In the following implementation, StochasticTricubic uses weighted reservoir sampling to
sample the filter in each dimension. In this way, the filter weights can be computed on the fly and
do not all need to be stored at once.

Listing 3. Sampling a cubic B-spline kernel in 3D
Point3i StochasticTricubic(Point3f pIndex, float &u) {

int ix = std::floor(pIndex.x);
int iy = std::floor(pIndex.y);
int iz = std::floor(pIndex.z);
float deltas[3] = {pIndex.x - ix, pIndex.y - iy, pIndex.z - iz};

int idx[3];
for (int i = 0; i < 3; ++i) {

float sumWt = 0;
float t = deltas[i];
float t2 = t*t;

// Weighted reservoir sampling, first tap always accepted
float w0 = (1.f/6.f) * (-t*t2 + 3*t2 - 3*t + 1);
sumWt = w0;
idx[i] = 0;

// Weighted reservoir sampling helper
auto wrs = [&](int j, float w) {

sumWt += w;
float p = w/sumWt;
if (u < p) {

idx[i] = j;
u /= p;

} else
u = (u - p) / (1 - p);

};
// Sample the other 3 filter taps
wrs(1, (1.f/6.f) * (3*t*t2 - 6*t2 + 4));
wrs(2, (1.f/6.f) * (-3*t*t2 + 3*t2 + 3*t + 1));
wrs(3, (1.f/6.f) * t*t2);

};

// idx stores the index of the sampled filter tap in
// each dimension.
return Point3i(ix-1+idx[0], iy-1+idx[1], iz-1+idx[2]);

}
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Our implementation for sampling the EWA kernel [Greene and Heckbert 1986; Heckbert 1989]
is in StochasticEWA. It largely follows the implementation of EWA filtering in pbrt, except that as
filter weights are computed in the innermost loop, vectorized weighted reservoir sampling [Ogaki
2021] is used to select a single filter tap.

Listing 4. Stochastic sampling of the EWA kernel
Point2i StochasticEWA(Point2f st, Vector2f dst0, Vector2f dst1,

float &u) {
// Find ellipse coefficients that bound EWA filter region
float A = Sqr(dst0[1]) + Sqr(dst1[1]) + 1;
float B = -2 * (dst0[0] * dst0[1] + dst1[0] * dst1[1]);
float C = Sqr(dst0[0]) + Sqr(dst1[0]) + 1;
float invF = 1 / (A * C - Sqr(B) * 0.25f);
A *= invF;
B *= invF;
C *= invF;

// Compute the ellipse's $(s,t)$ bounding box in texture space
float det = -Sqr(B) + 4 * A * C;
float invDet = 1 / det;
float uSqrt = SafeSqrt(det * C), vSqrt = SafeSqrt(A * det);
int s0 = std::ceil(st[0] - 2 * invDet * uSqrt);
int s1 = std::floor(st[0] + 2 * invDet * uSqrt);
int t0 = std::ceil(st[1] - 2 * invDet * vSqrt);
int t1 = std::floor(st[1] + 2 * invDet * vSqrt);

// Scan over ellipse bound and evaluate quadratic equation
float sumWts = 0;
Point2i coords;
for (int it = t0; it <= t1; ++it) {

float tt = it - st[1];
for (int is = s0; is <= s1; ++is) {

float ss = is - st[0];
float r2 = A * Sqr(ss) + B * ss * tt + C * Sqr(tt);
if (r2 >= 1)

continue;

int index = std::min<int>(r2 * MIPFilterLUTSize,
MIPFilterLUTSize - 1);

float weight = MIPFilterLUT[index];
if (weight <= 0)

continue;

sumWts += weight;
float p = weight / sumWts;
if (u < p) {

coords = Point2i(is, it);
u /= p;

} else
u = (u - p) / (1 - p);

}
}
return coords;

}

S.4.1 The interpolating (negative lobe) bicubic filter
In Section 5 we presented results of real-time rendering with a stochastically estimated variant
of the Mitchell bicubic filter. This filter has negative lobes and for most of the fractional subpixel
offsets, has a mix of negative and positive weights. As described in Section 2.2, the solution that
minimizes the variance of such a filter splits the integral into two parts.

From the set of all filter weights, we consider the sets of positive and negative weights separately
and select a sample from each of the sets independently. Then, the filter takes two samples, weighted
by the sum of the absolute values of each of the sampling sets. One way of implementing it uses
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weighted reservoir sampling with warping (also described in Section 2.2) and two separate reservoirs
for the negative and positive samples. An example implementation in C++-like pseudocode is
presented in Listing 5.

Listing 5. Sampling an interpolating (negative lobe) bicubic kernel.
TexelValue SampleBicubic(const Texture& texture,

const Vector2& pixel_coord,
float& u) {

const Vector2 top_left = floor(pixel_coord);
const Vector2 fract_offset = pixel_coord - top_left;

float pos_weights_sum = 0.0f;
float neg_weights_sum = 0.0f;
Vector2 selected_neg_offset;
Vector2 selected_pos_offset;
for (int dy = -1; dy <= 2; ++dy) {

float weight_dy = MitchellCubic(fract_offset.y - dy);
for (int dx = -1; dx <= 2; ++dx) {

float weight_dx = MitchellCubic(fract_offset.x - dx);
float w = weight_dy * weight_dx;
float& selected_reservoir_sum = w < 0.0f ?

neg_weights_sum :
pos_weights_sum;

Vector2& selected_reservoir = w < 0.0f ?
selected_neg_offset :
selected_pos_offset;

selected_reservoir_sum += abs(w);
float p = abs(w) / selected_reservoir_sum;
if (u <= p) {

selected_reservoir = Vector2(dx, dy);
u = u / p;

} else {
u = (u - p)/(1 - p);

}
}

}
Vector2 pos_coord = top_left + selected_pos_offset;
TexelValue sampled_val = pos_weights_sum *

SampleTexture(texture, pos_coord);
// It's possible to not have any negative sample, for example,
// when the fractional offset is exactly 0 or very small.
if (neg_weights_sum != 0.0f) {

Vector2 neg_coord = top_left + selected_neg_offset;
sampled_val += -neg_weights_sum *

SampleTexture(texture, neg_coord);
}
return sampled_val;

}

S.4.2 Real-time discrete and filter importance sampling
In Section 5 we compared discrete sampling to FIS and their pros and cons for filtering with
an infinite Gaussian, discrete approximation, and the impact on the image quality. In Listing 6
and Listing 7 we present an HLSL implementation of both filters. Both implementations produce
perturbed UVs for use with a texture sampler set to the Nearest Neighbor texture filtering mode, or
to be used with integer Load instructions. Filter Importance Sampling is significantly simpler and
uses less arithmetic, but this implementation requires the use of two random variables.
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Listing 6. Gaussian Filter Importance Sampling.
float2 boxMullerTransform(float2 u)
{

float2 r;
float mag = sqrt(-2.0 * log(u.x));
return mag * float2(cos(2.0 * PI * u.y), sin(2.0 * PI * u.y));

}

float2 FISGaussianUV(float2 uv, float2 dims,
float sigma, float2 u)

{
float2 offset = sigma * boxMullerTransform(u);

return uv + offset / dims;
}

Listing 7. Gaussian Filter Discrete Sampling.
float2 discreteStochasticGaussianUV(float2 uv, float2 dims,

float sigma, float u)
{

float2 uv_full = uv * dims - 0.5;
float2 left_top = floor(uv_full);
float2 fract_part = uv_full - left_top;

float inv_sigma_sq = 1.0f / (sigma*sigma);

float weights_sum = 0.0f;
float2 offset = float2(0.0f, 0.0f);

#define FILTER_EXTENT 4
#define FILTER_NEG_RANGE ((EXTENT-1)/2)
#define FILTER_POS_RANGE (EXTENT-NEG_RANGE)
for (int dy = -NEG_RANGE; dy < POS_RANGE; ++dy) {

for (int dx = -NEG_RANGE; dx < POS_RANGE; ++dx) {
float offset_sq = dot(float2(dx, dy) - fract_part,

float2(dx, dy) - fract_part);
float w = exp(-0.5 * dist_sq * inv_sigma_sq);
weights_sum += w;
float p = w / weights_sum;
if (u <= p) {

offset = float2(dx, dy);
u = u / p;

} else {
u = (u - p)/(1 - p);

}
}

}

return (left_top + offset + 0.5) / dims;
}

S.4.3 Real-time anisotropic filtering
In Section 5 we described the stochastic anisotropic LOD for use with screen-space jittering. In
Listing 8 we include the HLSL code for this computation.
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Listing 8. Texture MIP computation used in real-time implementation.
float computeLodAniso(float2 dims, float2 textureGradX, float2 textureGradY,

float minLod, float maxLod, float u)
{

float dudx = dims.x * textureGradX.x;
float dvdx = dims.y * textureGradX.y;
float dudy = dims.x * textureGradY.x;
float dvdy = dims.y * textureGradY.y;

// Find min and max ellipse axis
maxAxis = float2(dudy, dvdy);
float2 minAxis = float2(dudx, dvdx);
if (dot(minAxis, minAxis) > dot(maxAxis, maxAxis))
{

minAxis = float2(dudy, dvdy);
maxAxis = float2(dudx, dvdx);

}

float minAxisLength = length(minAxis);
float maxAxisLength = length(maxAxis);

float maxAnisotropy = 64;

if ( minAxisLength > 0 &&
(minAxisLength * maxAnisotropy) < maxAxisLength)

{
float scale = maxAxisLength / (minAxisLength * maxAnisotropy);
minAxisLength *= scale;

}
return clamp(log2(minAxisLength) + (u - 0.5), minLod, maxLod);

}
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