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Fig. 1. Rendering of free-space diffractions. (a) A 1 cm3 Cornell box is filled with a homogeneous participating medium and illuminated by a collimated
beam that enters from the centre of the left wall. The beam consists of several optical wavelengths: blue (𝜆 = 475 nm), green (𝜆 = 535 nm) and red (𝜆 = 620 nm).
A conductive screen is placed in the beam’s path with an aperture cut in the centre of screen (geometry shown in inset). Scene geometry, including the screen
and its aperture, are simple triangular meshes: no other information about the aperture is fed to the renderer, and all geometry in the scene dynamically
diffracts light. When light rays impinge upon the screen, our method looks at the geometry around the interaction point, and on-the-fly constructs the
free-space diffraction BSDF. This BSDF accurately quantifies the wave-optical effect of light diffracting through the aperture and around geometry—i.e. light
“bending” around the screen into the region shadowed by the screen—giving rise to the colourful diffraction pattern seen on the right wall. (b) The irradiance
(power per surface area) of long-wavelength cellular radiation (𝜆 = 10 cm) impinging upon the visible surfaces is colour-coded, demonstrating the ability of
our method to handle complex, real-life scenes with fine geometrical details. Radiation diffracts around the buildings, simulating wave-optical signal coverage
that cannot be correctly predicted by ray optics. See Fig. 7 for additional information. All rendering is done with a typical bi-directional path tracer.

Free-space diffractions are an optical phenomenon where light appears to
“bend” around the geometric edges and corners of scene objects. In this pa-
per we present an efficient method to simulate such effects. We derive an
edge-based formulation of Fraunhofer diffraction, which is well suited to
the common (triangular) geometric meshes used in computer graphics. Our
method dynamically constructs a free-space diffraction BSDF by consider-
ing the geometry around the intersection point of a ray of light with an
object, and we present an importance sampling strategy for these BSDFs.
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Our method is unique in requiring only ray tracing to produce free-space
diffractions, works with general meshes, requires no geometry preprocess-
ing, and is designed to work with path tracers with a linear rendering equa-
tion. We show that we are able to reproduce accurate diffraction lobes, and,
in contrast to any existing method, are able to handle complex, real-world
geometry. This work serves to connect free-space diffractions to the effi-
cient path tracing tools from computer graphics.

CCS Concepts: • Computing methodologies → Rendering; Scientific
visualization; Computer graphics; • Applied computing→ Physics.

1 INTRODUCTION
The simulation of light transport arises in a multitude of applica-
tions and targets different regions of the electromagnetic spectrum.
An important phenomenon that is challenging to capturewithmod-
ern rendering frameworks is the wave-optical effect of light “bend-
ing” around geometry: when electromagnetic light waves impinge
upon an obstacle, they diffract and reform, with some of the energy
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scattered into regions shadowed by the obstacle. We refer to such
effects as free-space diffractions. See Fig. 1.

Free-space diffractions arise with light of any wavelength. How-
ever, in the visible regime, only exceptional settings produce mean-
ingful observable effects of free-space diffraction (e.g. coherent laser
illuminating one or more very thin slits). The importance of these
effects rises dramatically with longer wavelengths: RADAR radi-
ation diffracts around pedestrians and cyclists (thereby masking
them from the receiver); WiFi and cellular radiation (e.g., in sig-
nal coverage simulations in urban environments) diffracts around
indoor objects, and by an edge of a building. At these frequencies,
free-space diffractions are the predominant phenomena that gov-
ern the distribution of energy in a scene. These effects allow light
to bend into the “shadow” region (in the classical sense) of objects,
in a manner that is contradictory to classical ray optics.
Practical, efficient simulation of long-wavelength light transport

in complex, real-world scenes remains an open problem and a very
active area of research. As free-space diffraction effects play a para-
mount role in these long-wavelength regimes, practical numeric
methods that are able to simulate free-space diffractions have been
extensively studied.Themost important and by-far themost widely
used ones are the geometric theory of diffraction (GTD) and its ex-
tension the uniform theory of diffraction (UTD). Due to their simi-
larity we refer to both simply as “UTD”. UTD is used to compute
the propagation of electromagnetic energy over or through obsta-
cles. It is an asymptotic method: ray-optical paths (rays) are used
for propagation, and edges are assumed to be very long compared
to wavelength. UTD quantifies how these rays diffract by geomet-
ric edges and corners, with different geometries requiring distinct
diffraction formulae.
At a first glance, UTD is attractive because propagation is done

via simple ray tracing, thereby enabling light transport simulations
in scenes that are far more complex than anything a traditional
wave solver would be able to handle. However, these rays carry
electromagnetic phase and interfere with each other. This interfer-
ence is mandatory to reproduce diffraction phenomena. However
interference marks a profound departure from the common ray op-
tical setting: rays do not superpose linearly, therefore a linear render-
ing equation (that governs the recursive light transport simulation)
cannot be formulated.
As we will show (Fig. 5), even in the simplest of settings, UTD

requires a very large number of samples to yield converged results:
(i) diffracting edges need to be sampled at a sub-wavelength fre-
quency, in order to correctly capture edge geometry; and (ii) sub-
-wavelength sampling is needed at the target (where we observe
the diffraction pattern, or compute other interactions). Because in-
terference between the rapidly-oscillating rays shapes the interfer-
ence patterns, when insufficient samples are used, high-frequency,
high-intensity noise arises. In addition, mutually-interfering rays
induce scene-wide noise that produces no meaningful interference
patterns: rays that arrive to the same spot from far-apart regions in
the scene give rise to what can be understood as optical speckle: the
superposition of effectively-randomphasors. In otherwords, our in-
tegrand is now a rapidly-oscillating complex-valued function, mak-
ing numeric integration more difficult. See Section S4 in our sup-
plemental material for a discussion of UTD and its shortcomings.

The difficulties mentioned above make UTD, and other meth-
ods with mutually-interfering rays, a poor fit for use with tradi-
tional light transport tools, specifically path tracing and the re-
lated techniques developed by the computer graphics community.
Other methods, like explicit interference integrals, are also not a
good fit: only some specific aperture geometries yield a closed-form
solution for such integrals. As a consequence, the state-of-the-art
that simulates light transport with free-space diffractions, often us-
ing a UTD-based approach, only works on either 2D scenes or 3D
scenes that would be considered exceedingly simple by the com-
puter graphics community. These methods only consider very shal-
low paths, usually one or at most two interactions with the scene,
and often require highly simplified geometry (e.g., a single quad for
the entire face of a building).

The poor scalability of existing methods is a problem. Real-world
scenes with complex geometries, where deeper paths contribute
non-negligibly, are of real practical interest for the applications
listed above: e.g., cellular radiation interacts with the scene many
times while propagating through a city. Path tracing techniques,
with a linear rendering equation, have been extensively researched
and are responsible for the vastmajority of the computer-generated
content in multimedia and films; these techniques are able to han-
dle the complex, real-world scenes where we would like to be able
to simulate free-space diffractions.

The purpose of this paper is to introduce a novel free-space diffrac-
tion BSDF (bi-directional scattering distribution function; quantify-
ing the angular scattering distribution), that is designed to operate
with a typical path tracer, where propagation continues to be done
by simple ray tracing. Our BSDF requires essentially no changes to
the internal workings of the path tracer. Conceptually, our method
can be summarised as follows:

• Propagation continues as usual, via ray tracing.
• When a ray is incident upon geometry, we look at the geom-
etry around the impact point and identify relevant edges.
• If no edges that induce free-space diffraction are detected
(e.g., the ray is incident upon a wall with no openings), then
path tracing continues unaltered.
• Otherwise, from this set of edges, a BSDF is constructed that
quantifies how light propagates around the geometry, as well
aswhich portion of the incident energy undergoes free-space
diffraction. That BSDF is easy to evaluate and can be impor-
tance sampled.

To allow the use of (linear) ray tracing only, a few approximations
are made. Most notably, we only diffract rays that impinge upon
scene geometry; rays that pass close to obstacles continue unim-
peded, even though a fraction of their energy should also undergo
diffraction. We compensate by having rays that do diffract also ac-
count for the energy of rays that should have diffracted, but did
not (see Section 4). As we will show, this reproduces the diffraction
lobes accurately.

The guiding optical principle for our formulation of free-space
diffraction is the well-known theory of Fraunhofer diffraction, sum-
marised in Subsection 3.1. This choice is motivated by our abil-
ity to derive a novel closed-form expression for Fraunhofer edge
diffraction, under illumination by a spatially-modulated incident
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beam. See Fig. 3 for an overview of our method. The benefits of our
method over the state-of-the-art are:

(1) Compatibility with linear path tracers: We formulate a
classical BSDF, that operates on radiometric quantities. No
interference between rays is required, and our BSDF is easy
to implement in a modern path tracer.

(2) Performance: Our method calculates the aggregated angu-
lar scatter that is induced by the entire aperture, and is devoid
of the high-frequency noise that is prevalent with interfer-
ing rays and non-linear methods. In contrast, methods that
depend onmutually-interfering, phase-carrying rays require
dense sampling—multiple samples per wavelength.

(3) Formulation as an angular scattering function (BSDF):
Our formulations produce a classical BSDF that only depends
on the incident and scattering directions. UTD, and similar
methods, require knowledge of the distance of propagation
of each ray from the edge to the destination, which is un-
known, a priori, in a typical path tracing simulation.

(4) Ease of use: Our method is designed to work with (non-
degenerate, non self-intersecting) triangular meshes, which
are widespread in computer graphics. No special mesh pre-
processing or treatment is required. We do not require ex-
tending the geometric silhouettes (in order to capture rays
that do not intersect objects), as for example done by Xia
et al. [2020] for fibre rendering. On the other hand, UTD
diffraction formulae depend on an edge’s underlying geom-
etry, like wedge opening angle, corner topology, and so on.

2 RELATED WORK
GTD/UTD-based ray tracing. Methods based on the Geometric/u-

niform theory of diffraction (UTD) [Bilibashi et al. 2020; Paknys
2016; Son and Myung 1999; Yi et al. 2022] remain the state-of-the-
art in the simulation of long-wavelength radiation, with applica-
tions in, for example, automotive-targeted simulation of RADAR
[Boban et al. 2014; Guan et al. 2020], or simulation of WiFi/cellular
radiation (e.g., for analysis of signal coverage in an urban environ-
ment) [Celaya-Echarri et al. 2020; Choi et al. 2023; de Adana et al.
2005]. Due to their importance, these applications have garnered
significant attention, and better solutions would be of real interest.
Only select works are cited.
Significant effort has been made in order to accelerate such ray

tracing approaches: e.g., by employing multi-resolution grids [Suk
et al. 2001] and spatial-subdivision data structures to accelerate ray-
facet intersections [Jin et al. 2006; Tao et al. 2008]; or, acceleration
on GPUs [Gao et al. 2015; Tao et al. 2010]. Unsurprisingly, this
line of research is similar to early computer graphics research that
aimed to accelerate ray tracing. Nevertheless, UTD-based methods,
and similar methods, are unable tomatch common computer graph-
ics techniques—like path tracing—in their computational efficiency.
This is because UTD requires mutually-interfering rays that carry
high-frequency phase, prohibiting the formulation of a linear (in
terms of intensity or radiance) rendering equation. Hence, scene
complexity remains a very limiting factor: all works listed above
apply UTD in a two-dimensional setting, or a very simple three-
dimensional scene with a single diffraction (no deep paths).

Other difficulties arise: (i) UTD cannot be formulated as an an-
gular scattering function (e.g., a BSDF), as UTD formulae depend
on propagation distance after interaction (frustrating importance
sampling); (ii) edges scatter a ray into a one-dimensional set of
directions—the Keller cone; and (iii) UTD requires dedicated for-
mulae for diffraction by different objects and topologies: wedges,
spheres, cylinders, corners, and so on.The abovemakes UTD-based
approaches difficult to apply with path tracing techniques. In con-
trast, our method is formulated as a BSDF, quantifies continuous
scattering over the hemisphere (enabling next-event estimation),
and is designed to operate on a typical triangular mesh.

Acoustics. UTD-based and Fraunhofer-based diffraction has also
been used for non-electromagnetic waves, specifically sound [Pisha
et al. 2020; Schissler et al. 2021; Tsingos et al. 2001]. Our formulation
of an edge-based Fraunhofer diffraction BSDF could be applied to
such acoustics simulations as well with minor modifications, how-
ever acoustics are beyond the scope of this paper, and are left for
future work.

Fraunhofer diffraction of polygonal apertures. Formulating Fraun-
hofer diffraction as a superposition of edge-based diffractions of a
polygonal aperture (usually via the divergence theorem), as we do
in this paper, has been done before [Huang et al. 2006; Komrska
1982]. However, existing work assumes an incident plane wave.
This presents a problem: an unmodulated planewave exists through-
out the entire space, but we would like to limit the diffracting aper-
ture to a small region around the intersection point of a ray with
geometry. The naïve approach—clamping the plane wave to a fi-
nite region—would not work: it produces sharp boundaries, i.e. fake
diffractive edges. The Fraunhofer diffraction (i.e., the Fourier trans-
form) of such discontinuities gives rise to hallucinated diffraction
lobes. We derive novel Fraunhofer edge-diffracted formulae where
the incident field falls off smoothly away from its mean.

Additional related work. Some methods point-sample an input
field and propagate a ray tube in order to approximate a diffrac-
tion integral [Andreas et al. 2015; Mout et al. 2018]. These methods
rely on mutually-interfering rays, hence suffer from similar defi-
ciencies to UTD. In computer graphics, phase-carrying mutually-
interfering rays have been used in limited settings: for the render-
ing of rainbows [Sadeghi et al. 2012], and for appearance modelling
of layered interference effects in various materials [Belcour and
Barla 2017; Huang et al. 2020; Steinberg 2019; Wu and Zheng 2016].

Steinberg et al. [2023, 2022] formalise wave-optical light trans-
port frameworks where light is decomposed into beams, and the
spatial extent of these beams—the region over which they are able
to coherently interfere—is quantified. These frameworks do not de-
velop the machinery to construct free-space diffraction BSDFs. The
presented paper is meant to fill that gap, and is designed to oper-
ate in tandem with these frameworks: we provide the machinery
to efficiently construct and importance sample free-space diffrac-
tions BSDFs, which diffract these light beams. The search region
for the diffracting geometry is the spatial extent of these beams.
However, to keep our implementation simple, we do not use such
frameworks, instead the region over which our method searches
for diffracting geometry is set ad hoc to a constant.
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Fig. 2. Fraunhofer diffraction. Light is incident upon a thin, conductive
screen. The screen admits one or more openings—an aperture—defined by
the set of two-dimensional points upon the screen plane denoted A⊥. The
complement of this set, denoted A ⊥, is the screen. Light passes through
the aperture and diffracts, thereby bending into regions that are potentially
shadowed by the screen, with three directions of diffraction illustratedwith
red lines. The normal of the screen plane is �̂�, the direction of incidence is
−�̂�, and the direction of light that passes through the aperture without
undergoing diffraction (the direct term) is �̂�. 𝑅 is the 𝑧 distance between
the screen and the observation points.

3 BACKGROUND

3.1 Fraunhofer Diffraction
Consider light that is incident upon a two-dimensional aperture
(a geometric opening in a conductive screen). In the Fraunhofer
region (the optical far-field region), diffraction can be formulated
as a Fourier transform [Born and Wolf 1999]:

𝜓
(
®𝝃
)
≜

𝑘

2π𝑅

∫
A⊥

d2®𝒒⊥ 𝜑
(
®𝒒⊥

)
e−i𝑘

®𝝃 · ®𝒒⊥ (1)

(we discard an irrelevant phase term), where𝑘 = 2π
𝜆 is thewavenum-

ber, with 𝜆 being the wavelength, 𝑅 is the distance between the
aperture and the plane of observation, A⊥ ⊂ R2 is the aperture
in the screen, 𝜑 is the complex amplitude field of the light incident
upon the screen,𝜓 is the complex amplitude of the diffracted field,
and 𝑅®𝝃 are points on the observation plane. See Fig. 2.
Regarding the notation: We use the projection symbol ⊥ to make

explicit the fact that the aperture, as well as the points ®𝒒⊥ ∈ A⊥
upon this aperture, are two-dimensional constructs. Later, we will
indeed project scene geometry upon a virtual, planar screen, giving
rise to a two-dimensional projected aperture.
The Fraunhofer (far-field) approximation implies that 𝑅 is large

compared to the characteristic length of the diffracting aperture
A⊥ ⊂ R2. This is the typical setting of interest: we are interested
in how diffracted energy continues to interact with the scene, and
rarely observe it very close to the diffracting aperture. Furthermore,
very large apertures do not produce observable diffraction patterns
(as they are much larger than light’s wavelength). Analytic bounds
on the accuracy of Fraunhofer and Fresnel diffraction were studied
by Mezouari and Harvey [2003]. We note that the distance 𝑅 will
drop out as we carry out our derivations, meaning that knowledge
of the distance to the point of observation is not needed in practice
(the reader may assume 𝑅 = 1 for the rest of the paper).

We denote the total power contained in the incident beam of
light 𝜑 that impinges upon the screen and upon the aperture as

Pin ≜
∫
R2

d2®𝒒⊥
��𝜑 (®𝒒⊥) ��2 , (2)

PA⊥ ≜
∫
A⊥

d2®𝒒⊥
��𝜑 (®𝒒⊥) ��2 , (3)

respectively. Clearly PA⊥ ≤ Pin. By energy conservation consider-
ations, the total diffracted power contained in the field must equal
the total power incident upon the aperture:

∫
R2 d2®𝝃 𝑅2 |𝜓 ( ®𝝃 ) |2 =

PA⊥ , which follows from Eqs. (1) and (3) and Parseval’s theorem.
The 𝑅2 term is due to integrating over the observation plane, see
Subsection S1.1 in our supplemental for more information.

3.2 Babinet’s Principle
Let the complement of the two-dimensional aperture A⊥ be de-
noted as A ⊥, such that:

A⊥ ∪ A ⊥ = R2 and A⊥ ∩ A ⊥ = ∅ , (4)

where ∅ is the empty set. We also denote the fields diffracted by
the complement aperture and the entire screen as

𝜓
(
®𝝃
)
≜

𝑘

2π𝑅

∫
A ⊥

d2®𝒒⊥ 𝜑
(
®𝒒⊥

)
e−i𝑘

®𝝃 · ®𝒒⊥ and (5)

𝜑
(
®𝝃
)
≜

𝑘

2π𝑅

∫
R2

d2®𝒒⊥ 𝜑
(
®𝒒⊥

)
e−i𝑘

®𝝃 · ®𝒒⊥ , (6)

respectively. 𝜑 is the field that is “diffracted” by the entire screen
R

2, i.e. no obstacles are present, hence the field has simply prop-
agated a distance of 𝑅 (the notation reflects the fact that the field
does not undergo diffraction). Energy conservation dictates that the
total power contained in 𝜑 must equal the total incident power, viz.∫
R2 𝑅

2 |𝜑 ( ®𝝃 ) |2 = Pin, and the total power contained in the field
diffracted by the complement of the aperture must be

PA ⊥ ≜
∫
R2

d2®𝝃 𝑅2
���𝜓 (
®𝝃
)���2 = Pin − PA⊥ . (7)

From Eq. (4), observe that ∫
R2
≡

∫
A⊥
+
∫
A ⊥

,

therefore 𝜑
(
®𝝃
)
=𝜓

(
®𝝃
)
+𝜓

(
®𝝃
)
. (8)

The left-hand side in relation Eq. (8) is the non-diffracted field 𝜑 ,
i.e. the energy that continues to propagate unrestricted. As that en-
ergy does not diffract,𝜑 must be zero when ®𝝃 lies outside the light’s
beam. In such cases, the terms on the right-hand-side above,𝜓 , and
𝜓 , must annihilate, i.e. they quantify diffraction lobes that perfectly
destructively interfere (have identical amplitude but a phase differ-
ence ofπ).This is known as Babinet’s principle, which states that the
diffraction by an aperture produces an identical diffraction pattern to
diffraction by its complement.

Babinet’s principle can be rigorously formulated under full elec-
trodynamics [Zangwill 2013], however the above is sufficient for
our purposes.
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4 FREE-SPACE DIFFRACTIONS
We are now ready to formulate our theory. An extensive supple-
mental document is provided, where we carry out the derivations
and analysis in detail. See Fig. 3 for an overview of our free-space
diffractions rendering method.
Our primary contributions are derived in this Section:

(1) In Subsection 4.1 we show that the diffracted field 𝜓 can
be written as a sum of a ray-optical direct term and a wave-
optical diffracted term. The diffracted term is induced by the
aperture’s complementA ⊥ (a consequence of Babinet’s prin-
ciple). The consequence of this contribution is that we may
continue to ray trace free-space propagation: rays that prop-
agate through an aperture quantify the (ray-optical) direct
term, which require no diffraction, while diffractions around
the obstacle only need to be computed when a ray is incident
upon the obstacle. To make both terms physical, we need to
slightly bias energy in our light transport simulation, as dis-
cussed in Subsection 4.1. The meaning of this approximation
is discussed further in Section S3 in our supplemental mate-
rial.

(2) In Subsection 4.2we derive a novel formulation of edge-based
diffractions, under the context of the Fraunhofer diffraction
theory. The incident light is modelled as an arbitrary spa-
tially smoothly-varying incident beam. This formulation en-
ables us to construct a free-space diffraction BSDF, see Algo-
rithm 1 for an overview. We will further discuss this BSDF,
including an importance sampling strategy in Section 5.

4.1 Direct and Diffracted Terms
For now, let𝜑 quantify a beam of light that is incident upon a screen
with apertureA⊥, as in Subsection 3.1. We will discuss 𝜑 in greater
detail later.
Consider Babinet’s principle (Subsection 3.2). By reordering the

terms and taking the complex magnitude squared of both sides in
Eq. (8), we write���𝜓 ���2 =���𝜑 −𝜓 ���2 = ���𝜑 ���2 + ���𝜓 ���2 − 2 Re𝜓𝜑★ , (9)

where★ denotes complex conjugation. Following the discussion in
Subsection 3.2, we note that the total power contained in the left-
hand side above is PA⊥ , while the total power contained in the
|𝜑 | 2 + |𝜓 | 2 term is Pin + PA ⊥ . Therefore, by integrating the power
contained in both sides in Eq. (9), we must conclude that the total
power contained in the Re𝜓𝜑★ lobe is

Re
∫
R2

d2®𝝃 𝑅2𝜓𝜑★ =
1
2

∫
R2

d2®𝝃 𝑅2
(���𝜑 ���2 + ���𝜓 ���2 − ���𝜓 ���2)

=
Pin + PA ⊥ − PA⊥

2
= PA ⊥ , (10)

where we used Eq. (7). The total power contained in the Re𝜓𝜑★

lobe is then the total power that is incident upon A ⊥, i.e. the com-
plement of the aperture, which is the obstacle that diffracts light.

We denote the following key terms (illustrated in Fig. 3a):

direct term: d ≜ |𝜑 |2 − Re𝜓𝜑★ , (11)

diffracted term: w ≜
���𝜓 ���2 − Re𝜓𝜑★ . (12)

Then, we may rewrite the diffracted intensity (Eq. (9)) as
|𝜓 |2 = d + w . (13)

|𝜓 | 2 is the intensity of the wave diffracted by the aperture. This
is precisely the term of interest that quantifies the intensity of the
free-space diffracted field, and the termwewish to render. In Eq. (13),
we have rewritten it exactly as an incoherent sum (i.e, a sum where
no interference arises) of two terms:

Direct term. The power contained in the direct term is∫
R2

d2®𝝃 𝑅2d
(
®𝝃
)
= PA⊥ (14)

(directly from Eqs. (10) and (11)), i.e. exactly the power that is in-
cident upon the opening A⊥. Also, we may immediately see from
the definition of the direct term that

d
(
®𝝃
)
≈ 0 when |𝜑 | ≈ 0 , (15)

i.e., the direct term vanishes when |𝜑 | vanishes. Recall that 𝜑 is the
unobstructed, free-space propagated incident light, that undergoes
no diffraction, and hence is non-vanishing only in a narrow range
of directions around ®𝝃 = 0. We define the central lobe to be that set
of directions: i.e., the directions ®𝝃 where |𝜑 ( ®𝝃 ) | is non-negligible.

For example, given an incident beamwith aGaussian profilewith
a spatial standard deviation of 25𝜆, the free-space propagated field
𝜑 (Eq. (6)) describes a beam where its full width at half maximum
subtends a cone with a tiny half-angle of about 0.3◦. This cone con-
stitutes the central lobe.

By construction, the direct term describes the unobstructed, free-
space propagated lobe, which contains PA⊥ total power, i.e. pre-
cisely the total power that is incident upon the opening A⊥. Intu-
itively, the direct term is simply the light that falls upon the open-
ing, and continues to propagate without diffracting.Then, this term
is described well via ray optics: rays that pass through the opening
continue to propagate unobstructed, and rendering the direct term
reduces to ray tracing the propagation of light in free space.

Diffracted term. The diffracted term is the energy that diffracts
through the aperture (or around the obstacle), and gives rise to en-
ergy that propagates into directions outside the central lobe. The
diffracted term cannot be described ray-optically. In our rendering
algorithm,we consider the diffracted termwhen rays impinge upon
the obstacle, i.e. the aperture complement A ⊥. This is a manifesta-
tion of Babinet’s principle: In directions that lie outside the central
lobe, i.e. where |𝜑 | ≈ 0, |𝜓 | 2 and |𝜓 | 2 both describe an identical
diffraction pattern.

However, as currently defined, the diffraction term w is not phys-
ical: clearly, the total power contained in this lobe is 0:∫

R2
d2®𝝃 𝑅2w

(
®𝝃
)
= PA ⊥ − PA ⊥ = 0 (16)

(using Eqs. (10) and (12)). Therefore, either w ≡ 0 and no diffrac-
tion happens, or in some directions within the central lobe, where
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diffracted term
w

diffracted term
w

𝑂

direct term
d

�̂�

virtual screen

to lightsource

(a) Direct and diffracted terms

virtual screen

®𝒆 𝑗
�̂� 𝑗®𝒗 𝑗

A ⊥

A⊥

𝛿A ⊥

𝑂

�̂�

(b) Diffracting aperture

Fig. 3. Overview of our method. Consider a geometric mesh (triangles in gray). We continue to path trace as usual. (a) Light rays that pass through
without intersecting the mesh (rays in blue) give rise to the direct term: energy that does not undergo diffraction. When rays intersect the mesh (rays in red,
intersection point 𝑂 , propagation direction �̂�), we project all the front-facing triangles, that we find inside a search radius (dashed orange line) around 𝑂 ,
upon the virtual screen (in green, defined as the plane that passes through the intersection point 𝑂 with normal −�̂�, i.e. is orthogonal to the incident ray).
(b) The projected geometry in the vicinity of𝑂 upon the virtual screen gives rise to the two-dimensional diffracting obstacle A ⊥. Its complement A⊥ is the
opening in the screen (referred to as the aperture), and its boundary is 𝛿A ⊥. The boundary is composed of the edges (in violet) that belong to exactly one
front-facing triangle. Edges are parameterized by their middle point ®𝒗 𝑗 , edge vector ®𝒆 𝑗 , and outward-facing (into the aperture A⊥) normal �̂� 𝑗 . This set of
edges gives rise to the free-space diffraction BSDF : quantifying the angular distribution of the diffracted term, i.e. rays that interact with the mesh and diffract
through the aperture. Note, we do not ignore the depth of the aperture (before projection) by accounting for the 𝑧 distance light travels over it.

𝜑 is non-negligible, the diffracted term must take aphysical nega-
tive values, viz. w ( ®𝝃 ) < 0 for some ®𝝃 . To understand the reason,
note that the energy for the diffracted lobes should be taken out of
energy that impinges both upon the opening as well as the diffract-
ing obstacle. However, our direct term is defined as the ray-optical
term, where energy propagates through the aperture unobstructed.
Our approach is as follows: we clamp the diffracted term w to

0, thereby avoiding aphysical negative intensities. This clamped
diffracted field clearly has positive total power. In order to conserve
energy, we need to “lend” that power from elsewhere, and we take
that power from the energy that is incident upon the obstacle A ⊥.
That is, we take energy from the back-scattered or absorbed energy,
and redirect it into the diffracted lobes. We are only required to do
so where free-space diffractions occur: in the immediate regions of
the geometric edges of objects. How we do so in practice will be
discussed later in Section 6.

Implications of clamping the diffracted term. The relations Eqs. (9)
and (11) to (13) are analytically exact. The only approximation that
we made in this Subsection is biasing energy from back-scattering
or absorption towards the direct term. The diffracted lobes remain
accurate (because outside the central lobe, where 𝜑 vanishes, w re-
mains unchanged). Because this only applies where both A ⊥,A⊥
are non-negligible (i.e. only around the edges of geometry, where
both an obstacle and an opening are present), in effect the bias intro-
duced into our rendering algorithm can be understood as making
all geometry very slightly (several wavelengths) smaller. The pow-
erful benefit of this decomposition into a direct and diffracted term
is that free-space propagation is fully described by ray tracing.

4.2 Edge-Diffracted Waves
In this Subsection we will devise a closed-form expression for the
Fraunhofer-diffracted field𝜓 , for any polygonal aperture and under
a piecewise-linear approximation of the incident beam’s field, as

we will discuss. This closed-form solution is expressed via a few
simple analytic functions, and will be instrumental in formulating
our free-space diffraction BSDF.

Assume that the scene geometry is composed of non-degenerate,
non self-intersecting triangular meshes. Let a ray be incident upon
geometry. Let the triangular mesh around the interaction point
between the ray and geometry be composed of the set of trian-
gles {𝑇𝑡 }. We denote the plane that passes through the intersection
point of the ray with the geometry as the virtual screen (see Fig. 3),
and project that triangular mesh in the vicinity of the intersection
point upon that screen, giving rise to the projected polyhedron:

A ⊥ ≜
∑

𝑡
𝑇 ⊥𝑡 , (17)

where𝑇 ⊥𝑡 denotes the projection of the triangle𝑇𝑡 upon the screen.
Thereby, we have defined the aperture complementA ⊥ as the pro-
jected triangular mesh from the vicinity of the intersection of a ray
with geometry. “Vicinity” formally means the region over which
light is able to reproduce diffraction effects. Modern wave-optical
light transport frameworks are able to rigorously quantify that re-
gion (roughly multiple dozens of wavelengths), and we will discuss
that in more detail later. The aperture A⊥ is then the complement
ofA ⊥, and is the regions on the virtual screen where no projected
geometry exists. The aperture construction steps, as detailed above,
are summarised in lines 5-8 in Algorithm 1.

For now, we assume that the triangles are front facing (we cull
back-facing triangles) and that the projected, two-dimensional tri-
angles do not overlap, viz. ∀𝑗 ≠ 𝑙,𝑇 ⊥𝑡 ∩𝑇 ⊥𝑙 = ∅. For each projected
triangle, let its vertices be ®𝒖𝑡,1, ®𝒖𝑡,2, ®𝒖𝑡,3 ∈ R2, and we denote its
edge vectors (connecting the edge’s vertices) and outward-facing
edge normals as

®𝒆𝑡, 𝑗 ≜ ®𝒖𝑡, 𝑗−1 − ®𝒖𝑡, 𝑗+1 and �̂�𝑡, 𝑗 ≜ ±
®𝒆𝑡, 𝑗 × �̂�

|®𝒆𝑡, 𝑗 × �̂� | (18)
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Algorithm 1: Free-space diffraction BSDF construction.

1 Function ConstructBSDF(ray, intersection point):
2 screen← frame(ray) ; /* Construct orthogonal frame around ray */
3 edges← {} ; /* Array will hold all diffracting edges */

4 P (PL)
A ⊥

, P̃ (PL)central ← 0 ; /* Total powers in diffracted field */
/* Query all triangles around the intersection point */

5 foreach𝑇𝑡 within search radius do
6 if 𝑇𝑡 is back facing then
7 continue
8 𝑇 ⊥𝑡 ← screen.project(𝑇𝑡 )
9 foreach edge

(®𝒗 𝑗 , ®𝒆 𝑗
)
in𝑇 ⊥𝑡 do /* Find diffracting edges */

10 if edge belongs to another front-facing triangle then
11 continue
12

{
�̂� 𝑗 , 𝑎 𝑗 , 𝑏 𝑗

}
← Eqs. (18) and (24)

13 edges← edges ∪
{(®𝒗 𝑗 , ®𝒆 𝑗 , �̂� 𝑗 , 𝑎 𝑗 , 𝑏 𝑗

)}
/* Accumulate total power in diffracted field and central lobe */

14 P (PL)
A ⊥
+= P (PL)

𝑇 ⊥𝑡
; /* Eq. (31) */

15 P̃ (PL)central ← compute power in central lobe using Eqs. (34)
and (35)

16 return
(
edges, screen, P (PL)

A ⊥
, P̃ (PL)central

)
; /* The tuple defines the

BSDF */

respectively, where the vertex indices should be understood in the
modulo sense, i.e., ®𝒖𝑡,4 ≡ ®𝒖𝑡,1 and so on. −�̂� is the projected trian-
gle’s normal (i.e., �̂� is the ray’s direction of propagation).The sign of
�̂� depends on the triangle winding: positive for counterclockwise
winding, and negative otherwise. The cross product above should
be understood in the sense where ®𝒆𝑡, 𝑗 are three-dimensional vec-
tors on the virtual screen. We write the edge lengths as 𝑒𝑡, 𝑗 = |®𝒆𝑡, 𝑗 | .

The incident beam. While we use rays for propagation, free-space
diffraction is a wave-optical phenomenon, and we still understand
light as waves. Our method is designed to operate within the con-
text of aweakly-localwave-optical light transport framework (most
notably Steinberg et al. [2023, 2022]), which provide the machinery
to understand light as a collection of electromagnetic beams. Then,
ray tracing is understood as tracing the centre of a beam 𝜑 . Such
light transport frameworks quantify rigorously the beam profile 𝜑 ,
and the region around its centre where it is non-negligible.
Despite the above, the contributions in this paper require no un-

derstanding of wave-optical light transport frameworks.The reader
may understand 𝜑 as a beam with a Gaussian profile and a known
spatial variance, and that is the beam profile that is used in all of our
results (indeed, Steinberg et al. [2023] formally understands light
as a collection of such Gaussian beams). However, for this paper
the incident field 𝜑 may be an arbitrary smooth 𝐶2 function that
decays to 0 away from its centre. The region in which 𝜑 is non-
negligible is the vicinity in which scene geometry may diffract the
beam. When a ray is incident upon geometry, we look for all trian-
gles 𝑇𝑡 within that region, and construct the aperture complement
A ⊥ as in Eq. (17).

Piecewise-linear approximation. Given an incident beam 𝜑 and a
diffracting obstacleA ⊥, composed of the projected scene triangles,
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𝜃

Fig. 4. Comparison with UTD and diffraction integrals. Square root
of light intensity diffracted by a single-slit (top) and double-slit (bottom)
apertures, as functions of scattering direction 𝜃 . We compare our formula-
tion of edge-diffracted waves 𝜓 (blue), the Fraunhofer diffraction integral
(dashed red), UTD-based ray diffraction (green), and the exact Rayleigh-
Sommerfeld diffraction integral [Born and Wolf 1999] (dotted black). All
methods agree on the lower-order fringes. Minor deviations in the high-
order fringes arise due to the short distance 𝑅 from the aperture.

we piecewise-linearly approximate (PLA) 𝜑 over the projected tri-
angular mesh:

𝜑
PL

(
®𝒒⊥

)
≜

{∑
𝑗 𝛾𝑡, 𝑗𝜑𝑡, 𝑗 given ∃𝑡 s.t. ®𝒒⊥ ∈ 𝑇 ⊥𝑡

0 otherwise
(19)

with 𝜑𝑡, 𝑗 ≜ 𝜑
(
®𝒖𝑡, 𝑗

)
e−i𝑘𝑧( ®𝒖𝑡,𝑗 ) , (20)

where, 𝑡 is the index of the (unique) triangle that contains ®𝒒⊥ if
any, 𝛾𝑡, 𝑗 are the barycentric coordinates of the point ®𝒒⊥ on the tri-
angle (see Subsection S1.2 in our supplemental material), and 𝜑𝑡, 𝑗
are shorthands denoting the values 𝜑 takes on the vertices of the
triangle. For any point ®𝒖⊥ ∈ 𝑇 ⊥𝑡 that belongs to a triangle on the
virtual screen, 𝑧 (®𝒖⊥) is defined to be the 𝑧 coordinate of that point
on𝑇𝑡 before projection, such that 𝑧 = 0 on the virtual screen, 𝑧 > 0
for points that lie behind the screen. As we assume no overlapping
triangles, this function is well defined.

Our results remain accurate as long as the piecewise-linear ap-
proximation above is a good approximation, i.e. 𝜑

PL
≈ 𝜑 . In Fig. 3

in our supplemental material, we show that for a Gaussian beam
this approximation produces essentially exact results as long as the
edge lengths of the triangles do not exceed the spatial variance of
the incident beam profile. In our implementation we tessellate on-
the-fly the triangles, as needed, as we build A ⊥.

Note that we correctly account for the depth light travels across
the diffracting obstacle via the complex phasor in Eq. (20).

Fraunhofer edge diffraction. We now present a closed-form solu-
tion to the problem of Fraunhofer diffraction (Eq. (1)) of the PLA ap-
proximant of the incident beam over a polygonal aperture. This is a
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primary contribution. Our starting point is the Fraunhofer diffrac-
tion integral of 𝜑

PL
over the diffracting obstacle A ⊥, viz.

𝜓
(
®𝝃
)
≜

𝑘

2π𝑅

∫
A ⊥

d2®𝒒⊥ 𝜑
PL

(
®𝒒⊥

)
e−i𝑘

®𝝃 · ®𝒒⊥ . (21)

In our supplemental material, Section S2, we detail the deriva-
tions that follow. First, we rewrite the above as a line integral over
the boundary of the aperture complement, denoted 𝛿A ⊥, via an
application of the divergence theorem:

𝜓
(
®𝝃
)
≈ i

2π𝑅𝜉2

∮
𝛿A ⊥

d𝑠
(
�̂� · ®𝝃

)
𝜑
PL

(
®𝒒⊥

)
e−i𝑘

®𝝃 · ®𝒒⊥ , (22)

where 𝜉 = | ®𝝃 | and �̂� is the outwards-pointing normal of the bound-
ary. This boundary may be self intersecting or disjoint, meaning
there exists more than one obstacle or opening.
A triangle edge ®𝒆𝑡, 𝑗 is part of the boundary𝛿A⊥ if and only if that

triangle edge does not belong to any other (front-facing) triangle.
In our implementation, we assume that all the scene geometry is
composed of triangle strips, meaning an edge can belong to at most
a couple of adjacent triangles. As we look for triangles around the
intersection point of a raywith geometry, we identify the edges that
compose the boundary 𝛿A ⊥. We denote the edges of the boundary
as ®𝒆 𝑗 , their outward-facing normals as �̂� 𝑗 , and the edge middle
points as ®𝒗 𝑗 . An edge’s vertices are then ®𝒗 ± 1

2 ®𝒆 𝑗 , and the edge’s
length is 𝑒 𝑗 = |®𝒆 𝑗 | . See Fig. 3b.

Clearly, the line integral in Eq. (22) is a piecewise sum over the
line integrals of the edges ®𝒆 𝑗 that compose the obstacle boundary.
We term the line integral over a single edge ®𝒆 𝑗 as the edge-diffracted
wave, and produce a closed-form solution:

𝜓 𝑗

(
®𝝃
)
≜ e−i𝑘

®𝝃 · ®𝒗 𝑗
𝑘𝑅 |ΞΞΞ𝑗 |

[ (
𝑎 𝑗 − 𝑏 𝑗

)
𝛼1

(
ΞΞΞ−
⊺

𝑗
®𝝃
)
+ i𝑎 𝑗+𝑏 𝑗

2 𝛼2
(
ΞΞΞ−
⊺

𝑗
®𝝃
)]

. (23)

Then, the total diffracted field (Eq. (22)) is simply 𝜓 =
∑

𝑗 𝜓 𝑗 . The
linear transform ΞΞΞ defines the edge’s geometry, and 𝑎 𝑗 , 𝑏 𝑗 are the
values the incident light, 𝜑

PL
, takes on the edge’s vertices, viz.

𝑎 𝑗 , 𝑏 𝑗 ≜𝜑
(
®𝒗 𝑗 ∓ 1

2 ®𝒆 𝑗
)
e
−i𝑘𝑧

(
®𝒗 𝑗∓ 12 ®𝒆 𝑗

)
, (24)

and ΞΞΞ−1𝑗 ≜𝑘

| |
®𝒆 𝑗 𝑒 𝑗 �̂� 𝑗

| |

 . (25)

The following important auxiliary functions are also defined:

𝛼1
(
®𝜻
)
≜

𝜁𝑦
2π𝜁 2𝜁𝑥

(
cos 𝜁𝑥

2 − sinc
𝜁𝑥
2

)
(26)

and 𝛼2
(
®𝜻
)
≜

𝜁𝑦
2π𝜁 2 sinc

𝜁𝑥
2 , (27)

where 𝜁𝑥,𝑦 are the Cartesian components of the argument ®𝜻 ∈ R2,
and 𝜁 2 = ®𝜻 · ®𝜻 is the squared length, as before. When 𝜁𝑥 = 0, 𝛼1,2
are understood in the limit 𝜁𝑥 → 0. See Section S2 in our supple-
mental material for more information and additional analysis of the
functions 𝛼1,2.
Eq. (23), with the definitions Eqs. (24) to (27), is the primary

result in this Subsection. We conclude that we may express the
Fraunhofer-diffracted field 𝜓 , of any polygonal aperture and with
any PLA-approximated incident field𝜑

PL
, via a closed-form solution

and using just a pair of simple functions, 𝛼1,2, linearly transformed

and superimposed. The functions 𝛼1,2 do not depend on the aper-
ture geometry or light’s wavelength—a fact we will use to be able
to importance sample the diffracted term w . A numeric comparison
(Fig. 4) of our edge-diffracted waves 𝜓 (Eq. (23)) with Fraunhofer
diffraction (Eq. (1)) shows that our derivations are very accurate.

Observe that the edge-diffracted fields of a pair of opposing edges
(i.e., ®𝒆𝑙 = −®𝒆 𝑗 , �̂�𝑙 = −�̂� 𝑗 , 𝑎𝑙 = 𝑏 𝑗 , 𝑏𝑙 = 𝑎 𝑗 ) exactly annihilate each
other, viz. 𝜓 𝑗 = −𝜓 𝑙 (where we use the fact that 𝛼1 is odd in both
𝑥 and 𝑦, and 𝛼2 is even in 𝑥 and odd in 𝑦). This is the formal justi-
fication to us going from an integral over a collection of triangles
(Eq. (21)) to a line integral over the aperture boundary (Eq. (22)),
and means that edges that belong to a pair of front-facing triangles
are discarded. Lines 9-13 in Algorithm 1 summarise the detection
of the diffracting edges of the boundary.

The clamped diffracted term. Having derived an expression for
the field𝜓 diffracted by the complement apertureA ⊥, we turn our
attention back to the diffracted term w (Eq. (12)). As discussed, in
directions of the central lobe, w will mostly take negative values.
Negative intensities are not physical. Our solution is to extract the
central lobe out of𝜓 , giving rise to the clamped diffracted term.

In Subsection S2.1 in our supplemental material we detail how
we extract from each edge-diffracted wave the energy contained in
the tightest central lobe that can be physically resolved, yielding
the edge-diffracted wave with its central lobe removed, denoted

𝜓 𝑗

(
®𝝃
)
≜

√
1 − 𝜒

(
ΞΞΞ−⊺𝑗
®𝝃
)
𝜓 𝑗

(
®𝝃
)
, (28)

where we use the transform defined in Eq. (25). 𝜒 is the modulating
Gaussian function:

𝜒
(
®𝜻
)
≜ exp

(
− 1
2𝜎2

𝜁

𝜁 2
)
, with 𝜎𝜁 =

√
3 . (29)

Wemay nowdefine the clamped diffracted term as the total diffracted
field, with the central lobe removed:

ŵ ≜

������∑𝑗 𝜓 𝑗

������
2

. (30)

Indeed, ŵ ( ®𝝃 ) ≈ 0 when ®𝝃 ≈ 0, i.e. around the central lobe, as de-
sired. In contrast to the diffracted term w , defined in Eq. (12), the
clamped diffracted term ŵ is always non-negative and physical.
Clearly ŵ ( ®𝝃 ) = w ( ®𝝃 ) for ®𝝃 outside the central lobe.

Total powers contained in the fields. In order to normalize and
formulate the clamped diffracted term in Eq. (30) as a BSDF, as well
as to be able to importance sample said BSDF, we need to compute
the total power contained in the discussed fields. In Subsection S2.2
in our supplemental material we derive the relations that follow.

The total power in the diffracted field 𝜓 , under the PLA approx-
imation, is (by energy conservation) the total power that impinges
upon the diffracting obstacle, i.e. the aperture complement A ⊥:

P (PL)
A ⊥ ≜

∑
𝑡

P (PL)
𝑇 ⊥𝑡

, with P (PL)
𝑇 ⊥𝑡

= 1
6 |𝑆𝑡 | Re

∑
1≤ 𝑗≤𝑙≤3

𝜑𝑡, 𝑗𝜑
★
𝑡,𝑙 , (31)

where 𝑆𝑡 is the signed area (Eq. (S1.9) in our supplemental mate-
rial) of the projected triangle 𝑇 ⊥𝑡 , and recall the definition of 𝜑𝑡, 𝑗

ACM Trans. Graph., Vol. 43, No. 4, Article 113. Publication date: July 2024. 2024-04-26 11:31. Page 8 of 1–11.



A Free-Space Diffraction BSDF • 113:9

ours UTD
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Fig. 5. UTD-based ray tracing: interfering rays induce heavy noise. Double-slit diffraction patterns produced by our method and UTD. UTD-based
ray tracing employs rays that oscillate rapidly at light’s frequency and interfere with each other. This gives rise to numeric issues and significant noise: at
insufficient sample counts, UTD is unable to reconstruct the pattern and induces heavy, high-frequency and high-intensity noise. Despite the simple aperture,
hundreds of samples are required for the dark fringes to emerge. (a) Observe the 8spp UTD pattern: rays scatter energy over the entire pattern. In contrast,
our method captures the entire aperture geometry with a single sample, and the diffraction pattern with its fringes materializes even at few spp, making our
method much more suitable for a path tracing simulation. (b) Once converged both methods predict similar diffraction lobes. The rendered patterns show
the right wall of a Cornell box, which is illuminated by light passing through a screen with a pair of slits (similar to Fig. 8). We render the scene with a
simplified form of path tracing to compare our method to UTD: for every given point on the right wall, (ours) each sample selects a random point around the
aperture on the screen, and connects the given wall point to the light source through the aperture by evaluating our free-space diffraction BSDF; or, (UTD)
each sample chooses a random edge, then, if there exists a valid UTD path between that edge and the given wall point, UTD makes the connection. The
insets on the right show close-ups of the regions highlighted in (b), for various spp. Runtime per 1spp: (UTD) 16ms; (ours) 62ms. (c) We also compare our
method against the numerically-integrated solution of the Rayleigh-Sommerfeld (RS) diffraction integral, which serves as a ground truth.

(Eq. (20)). Eq. (31) is a sum over the power that impinges upon each
projected triangle. We compute this quantity as we identify the tri-
angles in the vicinity of a ray and build the aperture complement.
The total power contained in a single edge-diffracted wave with

its central lobe removed (Eq. (28)) is

P̂ (PL)𝑗 ≜ 𝑒2𝑗

[��𝑎 𝑗 − 𝑏 𝑗 ��2ℑ1 +
���𝑎 𝑗+𝑏 𝑗

2

���2ℑ2

]
, (32)

with ℑ1 ≜ 0.0045255085 and ℑ2 ≜ 0.11487543 . (33)

The quantities ℑ1,2 are numerically-integrated total powers in 𝛼1,2,
after removal of their central lobes. We make a slight approxima-
tion in Eq. (32) and neglect a cross-term, for simplicity. This is neg-
ligible: the relative error is less than 10−7. The exact expression is
given in Eq. (S2.33) in our supplemental material.

To compute the total power contained in the clamped diffracted
termwill need to approximate the total power contained in the cen-
tral lobe, denoted P̃ (PL)central. First, we compute the value the diffracted
field 𝜓 takes at ®𝝃 = 0 in closed-form directly from the diffraction
integral Eq. (21):

𝜓 (0) = 𝑘

2π𝑅

∫
A ⊥

d2®𝒒⊥ 𝜑
PL

(
®𝒒⊥

)
=

𝑘

6π𝑅

∑
𝑡

|𝑆𝑡 |
∑
𝑗

𝜑𝑡, 𝑗 . (34)

See Eq. (B.2) in our supplemental material for derivation. We as-
sume that around ®𝝃 = 0, the Gaussian 𝜒 (Eq. (29)) dominates the

falloff of the central lobe. Then,

P̃ (PL)central ≈ 2π

(
3

√
2𝑘𝑒max

)2���𝜓 (0)���2 , (35)

where 𝑒max is the length of the longest edge that participates in
diffraction. Eq. (35) should be understood as the power in aGaussian-
like lobe with peak |𝜓 (0) | 2. We discuss this approximation fur-
ther in Section 6. Then, the total power contained in the clamped
diffracted term is

P̂ (PL)
A ⊥ ≜P

(PL)
A ⊥ − P̃

(PL)
central . (36)

Lines 14-15 in Algorithm 1 use the expressions above in order
to compute the total powers contained in the diffracted field and
central lobe.

5 THE BSDF
In this sectionwe formulate the diffracted term ŵ (Eq. (30)) as a bidi-
rectional scattering distribution function (BSDF), and devise a simple
importance sampling strategy. A BSDF quantifies the scattered ra-
diance to incident irradiance ratio. Using the relation between a
differential surface area d𝐴 and the differential solid angle dΩ sub-
tended by that surface, viz. 𝑅2 dΩ = d𝐴, where 𝑅 is the distance, we
may write (see Steinberg and Yan [2021, Eq. 18]):

radiance =𝑅2 𝜕intensity
𝜕𝐴𝑠 cos𝜃

, (37)
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Algorithm 2: Evaluating the BSDF.

1 Function EvalBSDF(bsdf ,�̂�𝑜):
2

[
sin𝜃𝑥 , sin𝜃𝑦

]⊺
← bsdf.screen.project(�̂�𝑜 ) ; /* Project the

scattering direction upon the screen, yielding the directional sines */
3 ®𝝃 ←

[
tan𝜃𝑥 , tan𝜃𝑦

]⊺
4 𝜓 ← 0

5 foreach edge in bsdf .edges do /* Loop over all BSDF edges */

6 𝜓 += 𝜓 𝑗

(
®𝝃
)���
𝑅=1

; /* Edge-diffracted wave. Eq. (28) with 𝑅 = 1. */

7 return 1

bsdf.P (PL)
A⊥

cos𝜃

���𝜓 ���2

Algorithm 3: Importance sampling the BSDF.

1 Function ImportanceSampleBSDF(bsdf):
/* We use precomputed iCDF tables to sample from the following */

2 ®𝜻 1, ®𝜻 2 ← importance sample from (1 − 𝜒 ) |𝛼1 |2, (1 − 𝜒 ) |𝛼2 |2
3 𝑗 ← select edge index from bsdf .edges, with selection

probabilities proportional to edge powers P̂ (PL)𝑗 ; /* Eq. (32). */

4 ®𝜻 ← select from
{
®𝜻 1, ®𝜻 2

}
with probabilities proportional to{��𝑎 𝑗 − 𝑏 𝑗

��2, ���𝑎 𝑗 +𝑏 𝑗
2

���2}.
5 ®𝝃 ← ΞΞΞ

⊺
𝑗
®𝜻 ; /*ΞΞΞ𝑗 as defined in Eq. (25). */

6 pdf ← Eq. (40) with 𝑅 = 1

7 return
(
®𝝃 , pdf

)
; /* ®𝝃 in local (screen) frame. */

with 𝐴𝑠 being the sourcing area (i.e. aperture area) and 𝜃 the incli-
nation angle.
Using the above, we define the free-space diffraction BSDF, for

scattering direction �̂�𝑜 as

𝑓 (�̂�𝑜 ) ≜
𝑅2

P (PL)
A ⊥ cos𝜃

ŵ
(
®𝝃
)
, (38)

where ®𝝃 =
[
tan𝜃𝑥 , tan𝜃𝑦

]⊺
, where 𝜃𝑥,𝑦 are the local (with respect

to the virtual screen) axis-aligned scattering directions defined by
�̂�𝑜 , and 𝜃 = �̂�𝑜 · �̂� is the inclination angle, with −�̂� being the di-
rection of incidence, as before. The total power contained in the
diffracted field, P (PL)

A ⊥
, defined in Eq. (31), acts as the normalization

factor as well as the (integrated) sourcing area. Algorithm 2 sum-
marises the evaluation of the BSDF. Simple dimensional analysis
shows that 𝑓 has units of sr−1.

Note that the direction of incidence is not a parameter to the
BSDF, instead it is implicitly captured by ŵ during construction of
the aperture complementA ⊥: we project scene geometry upon the
virtual screen that is orthogonal to the incident ray. The scattering
direction �̂�𝑜 = �̂� (where 𝜃𝑥 = 𝜃𝑦 = 0 and ®𝝃 = 0) is the direction
of the central lobe and direct term. Also note that the propagation
distance term 𝑅 that appears above cancels out with the 𝑅 term in
Eq. (23), and knowledge of propagation distance after diffraction
is not required. The BSDF is not reciprocal in general (due to the
construction process and projection of the aperture complement).
It conserves energy, by construction, and is always non-negative.

aperture

125𝜆

aperture

25𝜆

aperture

15𝜆

0. 0.5 1.0 0. 0.5 1.0 0. 0.5 1.0

ours Fraunhofer

diff

ours Fraunhofer

diff

ours Fraunhofer

diff(a) (b) (c)

Fig. 6. Validation against numerically-integrated Fraunhofer diffrac-
tion patterns. Similar experiment to Fig. 5, with the upper half of the
right wall displayed. Light is incident at an angle of 30◦ to the screen. The
diffracting aperture is illustrated at the bottom right of each pattern: (a)
a single slit; (b) a ring, where our method discretizes each circle into 128
edges; and, (c) a triangle. The Fraunhofer patterns are numerically inte-
grated (of Eq. (1)). With the exception of the centres of the patterns, i.e. the
direct term, both methods produce identical results. Contrast and gamma
adjusted for visualization purposes.

5.1 Importance Sampling
Consider the clamped diffracted term, that appears in the BSDF
(Eq. (38)) above. From Eq. (30) we note

ŵ
(
®𝝃
)
=

�����∑
𝑗

𝜓 𝑗

�����2 = ∑
𝑗

���𝜓 𝑗

���2
edge-diffracted

lobes

+ 2
∑
𝑙> 𝑗

Re𝜓 𝑗𝜓
★
𝑙

interference
factors

. (39)

The non-negative intensities of the edge-diffracted waves |𝜓 𝑗 |2 ≥ 0,
termed the edge-diffracted lobes, redistribute energy across the scat-
tering directions, while the oscillating terms Re𝜓 𝑗𝜓

★
𝑙
, the interfer-

ence factors, shape the diffraction pattern and its fringes.
Observe that if |𝜓 𝑗 | = 0, then 𝜓 𝑗𝜓𝑙 = 0 for all 𝑙 , i.e. the edge-

diffracted lobes may act as proposal distributions for the interfer-
ence factors. Our importance sampling strategy is then to sample
from the (incoherent) superposition of the edge-diffracted lobes, ig-
noring the interference factors. The PDF of the proposal distribu-
tion is then

𝑝
(
®𝝃
)
≜

𝑅2

cos𝜃
1∑

𝑗 P̂
(PL)
𝑗

∑
𝑗

���𝜓 𝑗

���2 , (40)

which makes the likelihood ratio

𝑓

𝑝
=

∑
𝑗 P̂
(PL)
𝑗

P (PL)A⊥

ŵ
(
®𝝃
)

∑
𝑗

���𝜓 𝑗

���2 . (41)
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Sampling from an edge-diffracted lobe. An edge-diffracted lobe
can be written as���𝜓 𝑗

(
®𝝃
)���2 = (

1 − 𝜒
(
®𝜻
)) |ΞΞΞ𝑗 |−2

𝑘2𝑅2

[��𝑎 𝑗 − 𝑏 𝑗

��2𝛼1

(
®𝜻
)2
+
���𝑎 𝑗 +𝑏 𝑗

2

���2𝛼2

(
®𝜻
)2

+ 2
(
𝑏 𝑗 Im𝑎 𝑗 − 𝑎 𝑗 Im𝑏 𝑗

)
𝛼1

(
®𝜻
)
𝛼2

(
®𝜻
)]

, (42)

where 𝜁 = ΞΞΞ−⊺𝑗 ®𝝃 .The above is an (incoherent) superposition of (1−
𝜒)𝛼21 and (1 − 𝜒)𝛼22 lobes, as well as a cross term. As the cross
term carries negligible power, we select one of the first two terms,
with probabilities proportional to |𝑎 𝑗 − 𝑏 𝑗 | 2 and 1

4 |𝑎 𝑗 + 𝑏 𝑗 |
2, re-

spectively, and draw samples from the (1 − 𝜒)𝛼21,2 lobes.
Analytically devising a sampling approach for (1− 𝜒)𝛼21,2 is diffi-

cult, however, these functions are generic—do not depend on edge
geometry or on light’s properties—furthermore, these functions are
“well-behaved”, with no high-frequency details. Therefore, we pre-
compute lookup tables for the inverse CDFs. Noting that these func-
tions are also either even or odd in 𝑥 and𝑦, we only need to consider
the quadrant {𝑥,𝑦 ≥ 0}. Two-dimensional tables, 4 megabytes in
size each, are sufficient for accurate sampling. Importance sampling
of the BSDF is summarised in Algorithm 3.

6 DISCUSSION
Our method reformulates the Fraunhofer theory of diffraction over
polygonal apertures as a superposition of edge-diffracted waves,
under illumination by an incident beam with a smoothly-varying
intensity profile. To achieve closed-form formulae, we make the
piecewise-linear approximation (PLA), where the incident beam’s
peak amplitude is linearly interpolated over the aperture mesh.The
finer the mesh, the more accurate the approximation. Assuming
a Gaussian incident beam, we show in our supplemental material
(Fig. 3), that if the edges of the aperture mesh are at most one stan-
dard deviation (of the incident beam’s Gaussian profile), then the
PLA approximant is essentially exact. In practice, we tessellate on-
the-fly the triangles that compose the aperture (this optional stage
is done before line 8 in Algorithm 1) such that all edge lengths are
sufficiently small.
Our formulations yield a BSDF—quantifying the angular distri-

bution of diffracted energy—which, in contrast to other methods,
requires no knowledge of the propagation distance after diffraction,
requires no mutually-interfering rays nor propagating the high-
frequency phase of light. In other words, unlike any other method,
our formulation of free-space diffractions fits neatly into a typical,
linear path tracing framework.The search radius (within which we
look for triangles and build the diffracting aperture, viz. line 5 in
Algorithm 1) is expected to be provided by a wave-optical light
transport framework. These frameworks quantify for every beam
the region over which wave-interference effects may arise (i.e., the
region over which light remains optically coherent).

To keep our implementation simple, we do not use such frame-
works. We implemented our method in Mitsuba 0.6 [Jakob 2010],
and rendering was done with the BDPT (bi-directional path tracer)
integrator. Our free-space diffractions BSDF is implemented as a
BSDF plugin. Light beams are modelled as Gaussian beams, with
a fixed (spatial) standard deviation 𝜎 = 25𝜆. The search radius of
the free-space diffraction BSDF is set to 3𝜎 = 75𝜆. This is a rough
upper bound on the expected optical coherence of light, given the

applications and scenes we discuss and render. Our implementa-
tion is a proof-of-concept implementation: not meant to produce a
ground truth, but demonstrate our method’s ability to practically
reproduce free-space diffractions, in complex scenes.

Results. Figs. 1, 7 and 8 were rendered using the implementation
detailed above. Rendering resolution, sample-per-pixel (spp) count,
and rendering runtimes are listed in the figures. All rendering was
done on an AMD Ryzen™Threadripper™ PRO 5975WX 32-Cores.

In Fig. 1a we render a small Cornell box illuminated by a colli-
mated beam of visible-spectrum frequencies. The box is filled with
a participating medium, which makes the incident beam of light
markedly visible. A screen with an aperture cut in its centre is
placed inside the box, giving rise to free-space diffractions. Notice
the shift between the fringes that arise from the different spectral
components of light, giving rise to a colourful pattern. A high sam-
ple count is required to integrate the volumetric scattering effects.

In Fig. 8 we render the Cornell box with various apertures cut in
the screen. We use a spot light source, positioned at the center of
the left wall. The spot light radiates into a wide cone, much wider
than Fig. 1a, therefore convergence is slow as very few samples find
the screen centre and the aperture.

Figs. 1b and 7 render a more complex, real-world scene: an ur-
ban environment with a variety of buildings, illuminated by radia-
tion with 10 cm (cellular) wavelength. The scene was not optimized
for long-wavelength rendering: meshes contain wavelength-scale
edges and details. This scene serves to demonstrate the ability of
our method to handle complex scenes, path traced at high reso-
lution and with deep paths. We stress that this would be wholly
hopelesswith existingmethods: for example, no existingUTDwork
simulates anything of such degree of complexity (due to the rea-
sons outlined in Fig. 5). Choi et al. [2023, Fig. 6] (done with UTD)
predicts a roughly similar difference between geometric optics and
free-space diffractions, but in a far simpler scene.

Note that Figs. 1b, 7 and 8 are non-imaging renderings: the pixel
values are the irradiance that impinges upon a visible surface, with-
out propagation to the (virtual) observer.

Practical considerations. At every interaction point where free-
space diffraction occurs (i.e., where the constructed aperture and
its complement are non empty), we continue to path trace in the
direction of the sampled diffraction direction (®𝝃 in Algorithm 3).
To avoid the exitant ray re-intersecting the diffracting mesh, we
change the interaction point to a point inside the apertureA⊥ (done
via rejection sampling).This is the only change required of the path
tracing internals.

We presented an importance sampling strategy for our BSDF,
summarised in Algorithm 3. In Section S3 in our supplemental ma-
terial, we derive a formal quality metric for this importance sam-
pling strategy (Eq. (S3.2)), and show that this strategy works best
when the edge lengths 𝑒 𝑗 (of the diffracting edges that compose
the boundary 𝛿A⊥) are all of similar lengths. The on-the-fly tessel-
lation of the aperture mesh also serves to avoid very long edges.
Very short edges could either be discarded (as they carry negligible
energy: observe from Eq. (32) that the power contained in an edge-
diffracted wave grows quadratically with edge length), or merged
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(a) Simulation of signal coverage in a city (b) Top-down aerial view of occluded area

Fig. 7. Path tracing simulation of signal coverage. (a)We simulate the propagation of cellular radiation (𝜆 = 10 cm) in an urban scene, consisting of various
buildings. The light source is placed on top of the highlighted antenna. (b) Also shown is a top-down view upon the region shadowed by the large buildings.
Visualized is the colour-coded irradiance impinging upon the visible surfaces. The scene consists of 181 000 triangles, and the meshes were not optimized for
long-wavelength rendering: they admit many small details and wavelength-scale edges, making the computations of free-space diffractions expensive. For
comparison, displayed are the ray optics-only renderings. Observe the difference (compared with ray optics) insets: the long-wavelength radiation diffracts
around the building edge’s into the shadow regions, yielding a signal distribution that deviates sharply from the ray optics-only simulation. Also notice the
multiple interactions (reflections and diffractions) of radiation with the scene—effects which are very difficult to simulate with existing methods.

into another edge, if possible. For simplicity, our implementation
performs no special handling of short edges. This does not affect
correctness, only performance.
Looking for triangles is expensive: rendering the city scene (Fig. 7)

is roughly 50 times more expensive compared with the ray optics-
only rendering. The penalty in other scenes is more modest. A sig-
nificant amount of wasted cost lies in constructing our BSDF in sit-
uations where no diffractions occur (where the aperture is empty,
e.g., a ray impinging upon a wall away from edges). A mechanism
for giving up early on BSDF construction is left for future work.

Direct and diffracted terms. A unique aspect of our method is the
formal decomposition of the diffracted field into the direct d and
diffracted ŵ terms (Fig. 3), enabling light transport via ray trac-
ing only. This decomposition is approximative: we effectively bias
some of the energy that falls uponA ⊥, i.e. around the edges of ge-
ometry (for example, around the edges of the buildings in Fig. 7),
into the diffracted lobes. In practice, once a ray has intersected with
geometry and we have constructed the diffracting aperture, we se-
lect an interaction: (i) free-space diffraction; or (ii) interacting with
the mesh’s material (BRDF). In our implementation, we select the
former with constant probability of 0.9 (chosen ad hoc): free-space
diffractions admit multiple lobes and typically require many sam-
ples to integrate. To conserve energy, the mesh material’s albedo

must be at most the ratio 𝑃 (PL)0 /P (PL)
A ⊥

: P (PL)
A ⊥

is the total power con-
tained in the diffracted term (Eq. (31)), and 𝑃 (PL)0 is the total power
we remove from it (Eq. (36)). In our test scenes, thematerial’s albedo
is low enough that sufficient energy is absorbed naturally.

Time and space complexity. The time complexity of the BSDF con-
struction (Algorithm 1) is linear in the number of triangles found
within the search region around the interaction point. The time
complexity of the evaluation (Algorithm 2) and importance sam-
pling (Algorithm 3) of the BSDF are linear in the number of detected
diffracting edges. As this number of edges is often a fraction of the
number of triangles, sampling and evaluation are fast and the main
cost is in the BSDF construction.

Only storage of the aperture’s boundary edges is required, hence
storage complexity is linear in the number of diffracting edges.

Accuracy. Figs. 4 and 6 serve as our primary validation: these
figures show that our method produces essentially exact diffraction
patterns compared with numerically-integrated Fraunhofer diffrac-
tion results. The only difference lies in the central lobe—the energy
that propagates through the aperture without diffracting. We also
validate against numerically-integrated Rayleigh-Sommerfeld (RS)
diffraction integrals in Figs. 4 and 5c, as well as in Fig. 5 in our
supplemental material. We also compare with a boundary element
method (BEM) solver in Fig. 6 in our supplemental material.
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Fig. 8. Diffraction by different apertures in a path tracing simulation. A Cornell box (side length of 2 × 104𝜆) with a light source placed at the centre
of the left wall. A screen, with various apertures cut in its centre, is placed between the light and the right wall, producing different diffraction patterns.

In Fig. 5 we compare the diffraction pattern produced by our
method with UTD-based ray tracing. The primary purpose of Fig. 5
is to demonstrate the poor behaviour of UTD at insufficient sample
counts: a single ray interacting with an edge carries energy into the
entire Keller cone around that edge (the UTD diffraction directions).
In path tracing simulation, such rays produce high-frequency, high-
intensity noise—a consequence of a non-linear rendering equation.
Very many rays are required to sample the aperture, and shape
the diffraction pattern via constructive/destructive-interference be-
tween these rays. Observe the 8spp patterns in Fig. 5: UTDproduces
noisy output over the entire pattern. Even for the simple double-slit
aperture, UTD requires thousands of samples for converged results.
Difficulties with UTD are further discussed in Subsection S4.1 in
our supplemental material. Also see Fig. 5 in our supplemental ma-
terial for comparison with UTD and an UTD failure case.
Finally, we also analyse the behaviour of a highly non-planar

aperture: in Fig. 9 we plot the diffraction pattern produced by a
modified double-slit aperture, where one slit is slanted and shifted
out-of-plane compared with the other slit. Our method reproduces
the small angular shift of the pattern, as also predicted by UTD, and
matches UTD well for the first cluster of fringes.

Limitations. Applications of our methods need to be mindful of
the following limitations:

(1) Overlapping geometry: Front-facing triangles that overlap
on the virtual screen may lead to the detection of incorrect
diffracting edges, producing hallucinated diffraction lobes.
Detection of overlapping triangles can be expensive, and we
do not do so in our implementation. For the vast majority of
the geometry in our results this is not a concern, but should
be addressed in future work.

(2) Power in the central lobe: The total powers contained in
the edges P̂ (PL)𝑗 (Eq. (32)), used for importance sampling, and
the total power contained in the diffracted field P (PL)

A ⊥
(Eq. (31)),

used to normalize the BSDF (Eq. (38)), are exact terms. On the
other hand, the total power in the central lobe 𝑃 (PL)0 (Eq. (35))

is an approximation.This term is used to compute howmuch
energy we need to “lend” from the materials around the ge-
ometrical edges, in order to conserve energy, as discussed
above. We analyze the error in this term in Fig. 10. We also
present a more accurate, though more involved, approxima-
tion in Appendix B in our supplemental material.

(3) Dielectric apertures: The method is formulated under the
assumption that the diffracting obstacle is a conductor, and
fully absorbs radiation. Formulation of dielectric apertures
is possible, and left for future work. It should be noted that
any theory of diffraction (including UTD) requires special
handling for dielectrics.

7 CONCLUSION
We presented a practical method for simulating free-space diffrac-
tions under the setting of path tracing. Our method requires no
mutually-interfering rays, can be importance sampled, requires lit-
tle modifications to a typical modern path tracer’s internals, and
is able to accurately reproduce diffraction fringes (compared with
Fraunhofer diffraction). No preprocessing of the scene geometry is
needed. Comparedwith the state-of-the-art, the presentedmethod’s
ability to work with linear path tracers enables a significant in-
crease in the efficiency of the simulation, and allows us to handle
complex, real-world scenes.
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