
Supplemental Material: Improved Stochastic Texture Filtering
Through Sample Reuse

BARTLOMIEJ WRONSKI, NVIDIA, USA
MATT PHARR, NVIDIA, USA
TOMAS AKENINE-MÖLLER, NVIDIA, Sweden

ACM Reference Format:
Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller. 2025. Supplemental Material: Improved Sto-
chastic Texture Filtering Through Sample Reuse. Proc. ACM Comput. Graph. Interact. Tech. 37, 4, Article 111
(August 2025), 6 pages. https://doi.org/XXXXXXX.XXXXXXX

This supplemental material includes further discussion of Monte Carlo estimates with stochastic
texture filtering (STF), a variance analysis of filtering after shading, further examples of texel sharing
footprints as well as a description of our optimization algorithm for generating sparse footprints,
an example implementation of the GetFilterPMF function used in the example implementation in
Section 4.5, and some results and discussion about the use of our sample sharing techniques with
volumetric ray marching.

S-1 STF and Monte Carlo Integral Estimates
Pharr et al.’s paper on stochastic texture filtering did not make a direct connection between
integral Monte Carlo estimators and the stochastic texture filtering algorithms introduced there but
rather derived STF algorithms by framing them as stochastic evaluation of sums of weighted texel
values [S3]. Because our weighted STF estimator, Equation 10, is an integral estimator, here we
make the straightforward connection between integral estimators and stochastic texture filtering
for completeness.
With traditional STF, we are applying Monte Carlo integration to the integral texture filtering

equation, 2:

𝑡r (𝑢, 𝑣) =
∫∫ (

𝑛∑︁
𝑖

𝛿 (𝑢′ − 𝑢𝑖 )𝛿 (𝑣 ′ − 𝑣𝑖 ) T𝑢𝑖 ,𝑣𝑖

)
𝑓r (𝑢 − 𝑢′, 𝑣 − 𝑣 ′) d𝑢′ d𝑣 ′ (S1)

=

∫∫ 𝑛∑︁
𝑖

𝛿 (𝑢′ − 𝑢𝑖 )𝛿 (𝑣 ′ − 𝑣𝑖 ) T𝑢𝑖 ,𝑣𝑖 𝑓r (𝑢𝑖 − 𝑢′, 𝑣𝑖 − 𝑣 ′) d𝑢′ d𝑣 ′ . (S2)

We will define the PDF

𝑝 (𝑢, 𝑣) =
𝑛∑︁
𝑖

𝛿 (𝑢 − 𝑢𝑖 )𝛿 (𝑣 − 𝑣𝑖 ) 𝑓r (𝑢𝑖 − 𝑢, 𝑣𝑖 − 𝑣). (S3)

Authors’ Contact Information: Bartlomiej Wronski, NVIDIA, Brooklyn, USA, bwronski@nvidia.com; Matt Pharr, NVIDIA,
San Francisco, USA, matt@pharr.org; Tomas Akenine-Möller, NVIDIA, Lund, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2577-6193/2025/8-ART111
https://doi.org/XXXXXXX.XXXXXXX

Proc. ACM Comput. Graph. Interact. Tech., Vol. 37, No. 4, Article 111. Publication date: August 2025.

HTTPS://ORCID.ORG/0009-0005-0806-2307
HTTPS://ORCID.ORG/0000-0002-0566-8291
HTTPS://ORCID.ORG/0000-0001-6226-3170
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0009-0005-0806-2307
https://orcid.org/0000-0002-0566-8291
https://orcid.org/0000-0001-6226-3170
https://doi.org/XXXXXXX.XXXXXXX


111:2 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

Under the assumption that the texture reconstruction filter 𝑓r is normalized, it is easy to see that
this is a valid PDF.

Samples from the PDF can be taken by selecting a term 𝑖 of the sum with probability proportional
to 𝑓r (𝑢𝑖 − 𝑢, 𝑣𝑖 − 𝑣). In turn, we have a sample point (𝑢𝑖 , 𝑣𝑖 ).

If we apply the importance sampling Monte Carlo estimator, we have

𝑡r (𝑢, 𝑣) ≈ ����
𝛿 (𝑢 − 𝑢𝑖 )����

𝛿 (𝑣 − 𝑣𝑖 ) T𝑢𝑖 ,𝑣𝑖 (((((((
𝑓r (𝑢𝑖 − 𝑢, 𝑣𝑖 − 𝑣)

����
𝛿 (𝑢 − 𝑢𝑖 )����

𝛿 (𝑣 − 𝑣𝑖 ) (((((((
𝑓r (𝑢𝑖 − 𝑢, 𝑣𝑖 − 𝑣)

= T𝑢𝑖 ,𝑣𝑖 , (S4)

giving the one-tap STF estimator.

S-2 Variance and Bias with Filtering After Shading
For cases where filtering before shading is the desired result, it is useful to be able to characterize
the error from STF and filtering after shading in order to evaluate and design STF estimators. This
is challenging in general, as a wide variety of nonlinearities are present in shading functions. We
therefore propose a simple approach based on statistical analysis of nonlinear transformations of
random variables. For a more complete treatment of the statistical analysis of error resulting from
nonlinearities applied to random variables, we refer the reader to the statistical and control theory
literature and extended Kalman filters [S1, S4] as well as recent advances in unbiasing rendering
algorithms using telescoping Taylor series [S2].
Consider a shading function 𝑓 where the true filtered texture value is 𝜇: with filtering before

shading, we filter the texture using Equation 3 to compute 𝜇 and then return 𝑓 (𝜇). With filtering
after shading and one-tap STF [S3], the texture is represented by a random variable𝑋 corresponding
to a single texel that is sampled according to the texture filter, 𝑋 ∼ 𝑓r. The estimator is 𝑓 (𝑋 ). We
would like to understand how the expected value of filtering after shading, E [𝑓 (𝑋 )], relates to
𝑓 (𝜇).
To approximate this error, we can use the Taylor expansion of 𝑓 around 𝜇. For example, consider

the second-order expansion:1

E [𝑓 (𝑋 )] = E [𝑓 (𝜇 + (𝑋 − 𝜇))] (S5)

≈ E
[
𝑓 (𝜇) + 𝑓 ′ (𝜇) (𝑋 − 𝜇) + 1

2 𝑓
′′ (𝜇) (𝑋 − 𝜇)2

]
(S6)

= 𝑓 (𝜇) + 𝑓 ′ (𝜇) E [𝑋 − 𝜇] + 1
2 𝑓

′′ (𝜇) E
[
(𝑋 − 𝜇)2

]
. (S7)

Because one-tap STF gives an unbiased estimate of 𝜇,E [𝑋 − 𝜇] = 0 andE
[
(𝑋 − 𝜇)2

]
is𝑋 ’s variance,

which we will denote by 𝜎𝑋 . Dropping 𝑓 (𝜇), the result of filtering before shading, we are left with
𝑓 ′′ (𝜇)
2 𝜎2

𝑋 (S8)

as the error due to filtering after shading. In other words, the error depends on the second derivative
of the shading function and the squared variance of 𝑋 (and the higher-order terms we have
neglected); we see how the variance of 𝑋 directly contributes to the final error and the resulting
bias.
This analysis fits with our earlier error analysis in Section 3: when the variation in the filtered

texel values is small, STF yields a small error and filtering after shading gives results that are close

1In practice, many functions used in rendering, such as specular shading, are nonlinear and have slowly decaying higher-
order derivatives, so a second order expansion is insufficient. However, we can apply this expansion to multi-variate
functions and include higher-order derivatives and thus, higher-order statistical moments.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 37, No. 4, Article 111. Publication date: August 2025.



Supplemental Material: Improved Stochastic Texture Filtering Through Sample Reuse 111:3

Fig. S1. A set of possible 3 × 3 footprints (top) and 4 × 4 footprints (bottom). As in Figure 6, for each footprint,
yellow signifies the lane in the wave that the footprint is associated with and green signifies the other lanes
that it draws texel values from. The colored illustrations on the right shows which groups of lanes all end up
with the same texel values to filter after sharing.

to filtering before shading. With constant signals with zero variance, the error is zero and the two
approaches are equivalent.
Unlike one-tap STF, our method uses an estimator that has a small bias (Section 4.2). Thus,

E [𝑋 − 𝜇] ≠ 0 and E
[
(𝑋 − 𝜇)2

]
includes both bias and variance. The error is approximated as:

𝑓 ′ (𝜇) E [𝑋 − 𝜇] + 1
2 𝑓

′′ (𝜇) E
[
(𝑋 − 𝜇)2

]
. (S9)

The error includes terms that depend on both the first and second derivatives of the shading
function 𝑓 , though in practice the overall error is lower than with one-tap STF since 𝑋 is closer to
𝜇 with our approach.
From these results, we can see why the requirement of not introducing any variation in regions

of constant texture values is so important—even a small amount of error may introduce a large
error in the shaded result. Furthermore, estimators like standard importance sampling that may
have unbounded weights (recall Section 4.1) result in not only much higher variance, but also high
further statistical error moments.

While Taylor expansion formally does not apply to every function used in rendering (for example,
a step comparison operator used in shadowmapping is not differentiable), this analysis still provides
an insight and intuition for evaluating different estimators: that the better the variance reduction
of an estimator (or, generalizing to higher-order moments, smaller amounts of noise and tighter
distributions), the closer the result is to filtering before shading.

S-3 Illustration of Larger Footprints
Figure S1 illustrates the footprint for deterministic 3 × 3 and 4 × 4 square footprints in a 32-lane
wave. Note that as the footprints become larger, more lanes in the wave all filter the same set of
texel values; these texel sharing sets are illustrated in the lower right. However, since the filters are
larger, we find that the error is also lower in general, as discussed in Section 5.2.

S-4 Wave Intrinsics in Other Shader Stages
While the specific wave mapping for other shading stages, such as ray tracing shaders, is undefined,
we have successfully tested our method with general wave intrinsics in those stages. We have
verified that our method works with shadow rays that sample alpha masks from textures and is

Proc. ACM Comput. Graph. Interact. Tech., Vol. 37, No. 4, Article 111. Publication date: August 2025.



111:4 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

Sigma 0.4: Per pixel selections

0 15 31

2

4

6

8

10

12

14

16
Histogram std dev 2.99

Sigma 1.0: Per pixel selections

0 15 31

2

4

6

8

10

12

14

16
Histogram std dev 0.50

Sigma 1.9: Per pixel selections

0 15 31

2

4

6

8

10

12

14

16
Histogram std dev 0.35

Fig. S2. Three sets of sample sharing footprints, with increasing values of the 𝜎 parameter. Top: with a small
𝜎 , most of the patterns are the same as the deterministic 3 × 3 footprint; as shown by the histogram on the
right, some lanes (the ones in the center of the wave) are used for sharing much more than others (the ones
along the edges and the corners.) Middle: increasing the 𝜎 gives more irregular patterns and a more uniform
histogram. Bottom: a further increase of 𝜎 gives a histogram with slightly lower standard deviation but with
irregular patterns that may sample far-away lanes. In general, the farther away the lanes used for sharing are,
the less effective reuse will be, since shared texels may be outside of the current lane’s texture filter footprint.

able to achieve some visual quality improvements over the original STF technique. However, we
note that lanes can map to arbitrary and distant rays and thus the resulting filtering quality is
not guaranteed. We also advise additional caution and checking whether other lanes are active, as
behavior of WaveReadLaneAt(value, laneId) is undefined for inactive lanes.

S-5 Pseudorandom Sparse Footprint Generation Algorithm
To generate the sparse wave sharing footprints introduced in Section 4.3.2, we use a simple three-
stage global optimization algorithm.
In the first stage, for each lane in a wave, we generate a set of 16–32 candidate configurations.

Candidate elements to share are generated by sampling from a normal distribution with a fixed
standard deviation 𝜎 . Close to the wave borders and corners, we relax the 𝜎 to allow considering
farther-away candidates. We continue taking samples, discarding repeated lanes, until the number
of candidates equals the desired wave sharing element count. Increasing values of 𝜎 reduce the
footprints’ locality but make it easier to have each lane be used for sharing the same number of

Proc. ACM Comput. Graph. Interact. Tech., Vol. 37, No. 4, Article 111. Publication date: August 2025.



Supplemental Material: Improved Stochastic Texture Filtering Through Sample Reuse 111:5

times and have irregular shapes that do not lead to visible structure in images (Figure 7). Figure S2
shows results for three different 𝜎 values; the bottom part of Figure 8 was generated with a 𝜎 of 1.4.

Having generated candidates for each pixel, we proceed to the second stage of the algorithm. We
randomly select a candidate for each pixel, count how many times each wave lane has been selected
for sharing, and then find the standard deviation of these counts. We use the standard deviation as
a score, where lower standard deviations are better, corresponding to greater uniformity in how
often each lane is used. We repeat this process 10,000 times and select the configuration with the
best score.
In the third stage, we proceed with a variation of the coordinate descent algorithm, where we

attempt to improve the configuration selected after the second stage. We exhaustively iterate
through all the lanes and check if using any of the other candidates from the first stage for the lane
would improve the configuration’s overall score. We continue this process until no better candidate
is found for any of the lanes.

Finally, because this approach does not guarantee convergence to a global minimum, we repeat
it from scratch 30 times and retain the pattern with the best score.

Although our optimization algorithm is brute-force, the search space of waves of 32–64 elements
is relatively small and our algorithm still runs quickly. Our naive Python implementation running
on a single CPU core can generate a complete set of sharing footprints in less than 40 seconds of
CPU time. This has allowed for quick iterations and experiments as well as generating different
patterns for different frames to break up temporal artifacts. For the results in the paper, we run ten
times as many iterations of the first two stages, with a corresponding increase in pattern generation
time by a factor of ∼10. We find this time to be acceptable for a preprocess; if higher performance
was necessary, the iterations of the first two stages could run in parallel and a higher-performance
language like C++ could be used for the implementation. We include our implementation in the
supplementary material.

S-6 Filter PMF Implementation
Each time through the loop in the code listing in Section 4.5, we consider a texel sampled by one of
the lanes in the sharing footprint for the current lane. To evaluate its contribution to the weighted
importance sampling estimator, Equation 10, we need to compute the probability that the current
lane would have sampled that texel; this is handled by the call to GetFilterPMF.
Below is an example implementation of this function for a bilinear filter. Because the filter is

normalized, the PMF for a given texel is simply its bilinear filter weight, which is easily computed
in a few lines of code. We note that depending on the rendering technique used, this function might
need to aditionally verify if other lanes sample from the same texture set and return a zero PMF on
any mismatch.

1 float GetFilterPMF(float2 texelFloatCoords , int2 texelIntCoords)
2 {
3 float2 texelDistance = texelFloatCoords - texelIntCoords;
4 float2 filterPdf = clamp(1 - abs(texelDistance), 0, 1);
5 return filterPdf.x * filterPdf.y;
6 }

S-7 Tricubic Reconstruction for Volumetric Rendering
We have also investigated the effect of sample sharing for STF with ray marched volumetric
rendering; our results are summarized in Figure S3. As shown in the plot, texel sharing significantly
reduces the numeric error compared to one-tap STF for a given number of texel lookups. We also
note that one-tap STF has significantly lower error than full tricubic filtering given an equal number

Proc. ACM Comput. Graph. Interact. Tech., Vol. 37, No. 4, Article 111. Publication date: August 2025.



111:6 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

107 108 109 1010

Texels Read

10−5

10−4

10−3

10−2

M
S

E

Tricubic

One-Tap STF

Shared 3x3 STF

Fig. S3. Sample reuse for volumetric ray marching of a cloud data set. Left: Plot comparing mean squared
error for full tricubic filtering, one-tap STF, and STF with 3 × 3 sparse sharing footprints. Sharing significantly
reduces MSE, roughly in proportion to the number of successfully shared texel lookups. Middle: with 64 ray
marching steps and one-tap STF, error manifests as high-frequency noise. Right: with 64 steps with texel
sharing, numeric error is much lower and noise is reduced, but block artifacts appear.

of samples; we attribute this to the benefit of importance sampling—full tricubic filtering accesses
all the 64 texels under the filter, many of which make a relatively small contribution to the final
result.

However, as shown by the images, texel sharing leads to block-structured artifacts in the image
with sharing and 64 ray marching steps. We believe that the high-frequency noise from one-tap STF
is likely to be preferable in this case as it would be easier to remove with post-rendering filtering
like TAA or DLSS. (These artifacts do disappear at higher sampling rates, i.e., more steps along
each ray.) We attribute these artifacts to the extent of the tricubic filter: with 3 × 3 sharing in a
wave, even if all neighboring pixels provide unique useful texels, less than 15% of the texels under
the filter will be available. Further, nearby pixels will generally filter similar incomplete sets of
texels, leading to correlation between pixels in each wave.

References
[S1] Brian D. O. Anderson and John B. Moore. 1979. Optimal Filtering. Prentice-Hall.
[S2] Zackary Misso, Benedikt Bitterli, Iliyan Georgiev, and Wojciech Jarosz. 2022. Unbiased and Consistent Rendering using

Biased Estimators. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 41, 4 (July 2022). https://doi.org/10/gqjn66
[S3] Matt Pharr, Bartlomiej Wronski, Marco Salvi, and Marcos Fajardo. 2024. Filtering After Shading with Stochastic

Texture Filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 7, 1 (2024), 14:1–20.
[S4] Gerald L Smith, Stanley F Schmidt, and Leonard A McGee. 1962. Application of Statistical Filter Theory to the

Optimal Estimation of Position and Velocity on Board a Circumlunar Vehicle. Vol. 135. National Aeronautics and
Space Administration.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Proc. ACM Comput. Graph. Interact. Tech., Vol. 37, No. 4, Article 111. Publication date: August 2025.

https://doi.org/10/gqjn66

	S-1 STF and Monte Carlo Integral Estimates
	S-2 Variance and Bias with Filtering After Shading
	S-3 Illustration of Larger Footprints
	S-4 Wave Intrinsics in Other Shader Stages
	S-5 Pseudorandom Sparse Footprint Generation Algorithm
	S-6 Filter PMF Implementation
	S-7 Tricubic Reconstruction for Volumetric Rendering
	References

