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Fig. 1. Our novel sparse convolution representation for Gaussian Process Implicit Surfaces (GPISes) enables, for the first time, the visualization of single
non-stationary realizations (split screen, middle right) alongside their ensemble-averaged light transport (right). The single realization allows examining the
underlying structures of the stochastic geometry that lead to the aggregate rough surface or volumetric appearance. Furthermore, our algorithm (middle
left) significantly boosts rendering efficiency for ensemble light transport compared to previous work by Seyb et al. [2024] (left) at equal time (40 min). The
rightmost column presents magnified insets comparing the two methods, with speedup quantified by the ratio of mean squared error (MSE). This improvement
stems from a combination of our efficient sparse convolution representation and the ability to perform next-event estimation even on specular micro-surfaces.

A fundamental challenge in rendering has been the dichotomy between
surface and volume models. Gaussian Process Implicit Surfaces (GPISes)
recently provided a unified approach for surfaces, volumes, and the spec-
trum in between. However, this representation remains impractical due
to its high computational cost and mathematical complexity. We address
these limitations by reformulating GPISes as procedural noise, eliminating
expensive linear system solves while maintaining control over spatial corre-
lations. Our method enables efficient sampling of stochastic realizations and
supports flexible conditioning of values and derivatives through pathwise
updates. To further enable practical rendering, we derive analytic distribu-
tions for surface normals, allowing for variance-reduced light transport via
next-event estimation and multiple importance sampling. Our framework
achieves efficient, high-quality rendering of stochastic surfaces and volumes
with significantly simplified implementations on both CPU and GPU, while
preserving the generality of the original GPIS representation.
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1 INTRODUCTION
Traditional light transport simulation categorizes scene components
as either solid surfaces or participating media, with each governed
by a distinct rendering equation. This binary distinction is inade-
quate for capturing the diverse appearances found in the real world,
particularly when considering level-of-detail techniques that might
require turning hard surfaces into volumetric effects with surface-
like correlation.

Seyb et al. [2024] demonstrated a unified framework using ensemble-
averaged light transport through stochastic geometry, covering sur-
faces, volumes, and the spectrum in between. A key contribution
was establishing a rigorous mathematical formalism for ensemble-
averaged transport. Despite its potential, this method remains im-
practical, with rendering speeds at least two orders of magnitude
slower than conventional path tracing. This performance gap arises
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because intersecting rays with the Gaussian Process Implicit Sur-
face (GPIS) requires solving large linear systems that exhibit cubic
growth in complexity with the ray length. The approach also places
unintuitive constraints for authoring spatial correlations, because
the linear systems become singular unless special care is taken to
ensure covariance remains a positive semi-definite function. More-
over, the mathematical machinery underlying GPISes is currently
less familiar to graphics practitioners, creating substantial barriers
to usability and adoption.

In this paper we make significant progress on alleviating each of
these concerns. We start by showing (Sec. 4) that Gaussian process
implicit surfaces can be equivalently represented by certain classes
of procedural noise. This allows us to view Gaussian processes from
a graphics-centric perspective and leverage decades of work on
efficient point evaluation of procedural noise. By linking Gaussian
processes explicitly to sparse convolution noise, we eliminate the
computational bottleneck of solving large linear systems, ensuring
constant-time evaluations and guaranteed covariance validity. This
improves performance and makes it more intuitive to author and
edit this new representation.

A key advantage of the prior formulation of GPISes, however, is its
inherent support for conditioning. This is crucial for efficiently com-
puting ensemble-averaged transport where recursive rays remain
consistent with observations along prior path segments. Procedural
noise representations, in contrast, typically lack direct support for
such conditioning. To overcome this limitation, we introduce (Sec. 5)
an efficient solution based on “pathwise conditioning,” which de-
couples the generation of procedural noise realizations from the
conditioning step. We extend this approach further by support-
ing joint conditioning of both values and derivatives along a ray,
significantly broadening the practical capabilities and appearance
modeling potential of procedural noise-based GPISes.
Another significant limitation of GPISes arises when rendering

stochastic geometry with highly specular materials. Without knowl-
edge of the conditional distribution of surface normals encountered
by rays intersecting the GPIS, techniques like NEE and multiple
importance sampling (MIS) [Veach and Guibas 1995] – which are
essential for reducing variance in scenes with high-frequency illu-
mination – cannot be applied. We address this limitation (Sec. 6)
by analytically deriving the required normal distributions, which
significantly reduces variance when rendering such scenes (Fig. 1).
This greatly extends the practical reach of GPISes and opens the
door to bidirectional light transport in the future.

The end result is a fast and efficient framework for non-stationary,
controllable stochastic surfaces. This has implications that extend
beyond rendering, and opens up the potential use of GPISes in
authoring pipelines and inverse rendering as a general, controllable
representation that spans the gamut from surfaces to volumes.

2 RELATED WORK

2.1 Stochastic Geometry and Media
Statistical models of appearance and transport are foundational
in computer graphics and vision. Canonical examples include mi-
crofacet models and participating media for efficiently rendering

complex surfaces and volumes without explicitly sampling microge-
ometry, or volumetric/neural [Mildenhall et al. 2020] scene represen-
tations for novel view synthesis. Both Seyb et al. [2024] and Miller
et al. [2024] recently showed that a stochastic geometry perspective
can unify such specialized models. Seyb et al.’s GPIS framework,
for instance, can express Beckmann [Beckmann and Spizzichino
1963] microfacet surfaces as well as volumes that exhibit exponential
or non-exponential scattering behavior. Crucially, GPISes support
longer-range memory and more general spatial correlations, allow-
ing them to capture transport effects beyond the assumptions made
by standard models. This allows lifting the independence assump-
tions of Smith theory for surfaces [Heitz et al. 2016], as well as going
beyond renewal [Bitterli et al. 2018; d’Eon 2018; Jarabo et al. 2018]
and Markovian [Pomraning 1991] approximations typically used to
make transport in random media tractable.
Depending on the scale at which stochastic microgeometry is

resolved in the image, it may be important to explicitly render in-
dividual realizations rather than average over them. Our approach
naturally supports this use case, enabling efficient rendering of de-
tailed non-stationary microstructure with minimal effort (Fig. 1).
This capability aligns with prior work on rendering granular me-
dia [Meng et al. 2015; Moon et al. 2007; Müller et al. 2016; Zhang and
Zhao 2020], and work on glints and glittery surfaces [Jakob et al.
2014; Yan et al. 2014], where high-frequency surface detail produces
visually salient, realization-dependent effects. Our ability to render
both individual realizations and ensemble averaged transport is an
important step towards level of detail between these extremes.

2.2 Gaussian Processes
The ability of GPISes to model long-range correlations in stochas-
tic geometry stems from the foundational properties of Gaussian
processes (GPs) – a flexible and widely used framework for model-
ing distributions over functions. GPs have found broad application
across machine learning [Rasmussen and Williams 2006], geostatis-
tics [Murakami et al. 2020], astrophysics [Hoffman and Ribak 1991],
control theory [Kocijan 2016], signal processing [Ricciardi and Sato
1986], and geometric modeling in computer graphics and robotics
[Martens et al. 2017; Sellán and Jacobson 2022, 2023].

GPs are typically interpreted in twoways [Rasmussen andWilliams
2006]. The function-space view directly defines a multivariate Gauss-
ian over a set of evaluation points, offering great flexibility in spec-
ifying correlations but at the cost of significant complexity. The
alternative weight-space view assumes each realization is a linear
combination of basis functions, providing a more constructive and
often more efficient perspective.
Seyb et al. [2024] adopted the function-space view to derive a

formalism for light transport through stochastic geometry. While
this enabled general covariance structures and path-dependent con-
ditioning, it introduced complexity in both computation and imple-
mentation. Global realizations were visualized using weight-space
methods with random Fourier features [Rahimi and Recht 2007],
but this approach was limited to stationary processes.
In contrast, we show that the weight-space view, when framed

as sparse convolution noise, naturally supports both stationary and
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non-stationary Gaussian processes. This perspective yields a practi-
cal and graphics-friendly path to GPIS realization, while preserving
the expressive power of the original model.

2.3 Procedural Noise
Procedural noise has long served as a cornerstone of texture syn-
thesis and natural phenomena modeling in graphics, from fractals
to terrain generation [Ebert et al. 2003; Lagae et al. 2010; Perlin
1985]. While rarely described in the same language, many proce-
dural noise functions approximate Gaussian processes. A sum of
multiple octaves of Perlin noise, for instance, approximates frac-
tional Brownian motion. Most traditional noise functions, however,
offer limited control over spatial correlations and lack a formal link
to the covariance structures central to Gaussian processes.
Sparse convolution noise (SC noise) stands out as an exception.

Introduced by Lewis [1986, 1989] and later extended by Lagae et al.
[2009], SC noise builds a random field by convolving white noise
impulses with compact kernels. We show that this naturally yields
a weight-space approximation of a Gaussian process, where the co-
variance function is directly controlled by the choice of convolution
kernel. Further extensions, including multi-scale [Lagae et al. 2011]
and filtered [Lagae and Drettakis 2011] variants, enable spatially
varying (non-stationary) covariance and efficient evaluation along
rays – features essential for rendering GPIS realizations efficiently
and intuitively.

In contrast to the function-space view used by Seyb et al. [2024],
which requires careful design to maintain positive semi-definiteness,
SC noise guarantees a valid Gaussian process under mild conditions
on the kernel [Higdon et al. 1999; Paciorek and Schervish 2006].
This vastly simplifies the task of authoring valid spatial correlations.

While traditional procedural noise does not support conditioning,
casting SC noise as a GP opens the door. Naively conditioning such
a representation remains expensive due to kernel overlap, but we
instead adopt pathwise conditioning – a technique originally devel-
oped in geostatistics [Journel and Huijbregts 1978] and reinvented
in astrophysics [Hoffman and Ribak 1991] before being rediscovered
for machine learning [Wilson et al. 2020, 2021]. Pathwise condition-
ing separates the sampling of the prior from the conditioning step.
This aligns naturally with SC noise, since both are defined by kernel
placement. We extend this approach to allow conditioning on not
just the value, but also the derivatives of the GP.

3 BACKGROUND
To ground our sparse-convolution formulation of GPISes, we begin
by reviewing key concepts and notation related to implicit surfaces
and Gaussian processes.

3.1 Implicit Surfaces
An implicit surface is defined as the level-set of a scalar function 𝑓 .
Without loss of generality, we will consider zero-level sets, i.e. the
points 𝒑 ∈ R3 for which 𝑓 (𝒑) = 0. Where 𝑓 is differentiable, the
normal of the implicit surface is given by the normalized gradient
n(𝒑) ≔ ∇𝑓 (𝒑)/∥∇𝑓 (𝒑) ∥.

For general 𝑓 , computing ray intersections with the implicit sur-
face requires numerical root finding. Although many root finding

methods are available, they are challenging to apply to the surfaces
we consider, and we will use ray marching for simplicity.

3.2 Gaussian Processes
A Gaussian process 𝑓 (𝒑) ∼ GP(𝜇 (𝒑), 𝜅 (𝒑,𝒑′)) is a distribution
over functions 𝑓 characterized by the mean 𝜇 (𝒑) = E𝑓 [𝑓 (𝒑)] and
the covariance function 𝜅 (𝒑,𝒑′) which encodes how 𝑓 (𝒑) and 𝑓 (𝒑′)
co-vary for any pair of locations 𝒑,𝒑′. We give a more in-depth
overview of Gaussian processes in Appendix A.
To be a valid covariance, the function 𝜅 must be positive semi-

definite. That is, for any set of points 𝒑1, . . . ,𝒑𝑛 , the covariance
matrix with entries 𝜿𝑖 𝑗 = 𝜅 (𝒑𝑖 ,𝒑 𝑗 ) must be positive semi-definite,
i.e. 𝒒⊺𝜿𝒒 ≥ 0 for any 𝒒 ∈ R3.

3.3 Light Transport on Gaussian Process Implicit Surfaces
A Gaussian Process Implicit Surface (GPIS) is simply the zero level-
set of a Gaussian process. Because the Gaussian process is a distri-
bution over functions, the implicit surface is stochastic: We obtain
a different surface for each realization 𝑓 drawn from the Gauss-
ian process. We can equivalently view a realization 𝑓 as the sum
𝑓 (𝒑) = 𝜇 (𝒑) +𝜓 (𝒑) of a deterministic implicit function 𝜇 (𝒑) and
a stochastic function 𝜓 (𝒑) ∼ GP(0, 𝜅 (𝒑,𝒑′)) drawn from the GP
with the mean removed. To compute the surface normal, we require
the covariance function 𝜅 to be twice-differentiable.

Within each realization, the light transport is given by the classi-
cal rendering equation [Immel et al. 1986; Kajiya 1986]

𝐿𝑓 (𝒑,𝝎) =
∫
S2

𝜌 𝑓 (𝒑 𝑓𝑠 )𝐿𝑓 (𝒑 𝑓𝑠 ,𝝎𝑠 ) d𝝎𝑠 , (1)

where 𝐿𝑓 (𝒑,𝝎) is the radiance arriving at point 𝒑 from direction 𝝎,
given in terms of the radiance leaving the closest intersection 𝒑

𝑓
𝑠 ≔

𝒑 +𝑠𝝎 of the ray with the surface induced by 𝑓 . This is computed as
the spherical integral of light arriving at 𝒑 𝑓𝑠 and being reflected into
direction 𝝎, the latter being given by the cosine-weighted BRDF
𝜌 𝑓 (𝒑 𝑓𝑠 ) ≔ 𝜌 (𝒑 𝑓𝑠 ,𝝎,𝝎𝑠 , n𝑓𝑠 ) |n𝑓𝑠 · 𝝎𝑠 |. We use a superscript of 𝑓 to
denote quantities that depend on the realization. To simplify the
exposition, we omit the emitted radiance 𝐿𝑒 from all equations in
this paper; its inclusion is straightforward.

Ensemble-averaged transport. 𝐿𝑓 represents transport within a
specific realization 𝑓 . The total radiance received is then the ensem-
ble average over all possible realizations:〈

𝐿𝑓 (𝒑,𝝎)〉𝜁 =
∫
GP

𝐿𝑓 (𝒑,𝝎) d𝛾 (𝑓 | 𝜁 ). (2)

Here, ⟨·⟩𝜁 =
∫
GP · d𝛾 (𝑓 | 𝜁 ) represents an ensemble average re-

stricted to realizations satisfying the set of constraints 𝜁 (e.g. those
imposed by user-controlled editing), and 𝛾 (𝑓 | 𝜁 ) denotes the classic
Wiener measure – the probability density of sampling 𝑓 ∼ GP |𝜁 .

3.4 Memory Models
Although Eq. (2) can be readily approximated with a Monte Carlo
estimator that draws a random realization 𝑓 for each light path and
performs standard path sampling, doing so naively – by generating
a full realization up-front – is computationally infeasible using the
function-space sampling method from Seyb et al. [2024]. To make
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this practical, Seyb et al. leverage the fact that path tracing only
requires observing values along the ray’s traversal. Consequently,
Gaussian processes can be sampled on the fly by sequentially con-
ditioning values on all prior observations along the path segment,
and the result is equivalent to path tracing a full realization.
While this reduces the cost of rendering a GPIS from O(𝑛9) to
O(𝑚3) (𝑛 being the discretization resolution and𝑚 the number of
steps along the ray), the cubic cost with the number of conditioning
points remains potentially unbounded for long paths. To address
this, Seyb et al. introduce memory models to selectively discard
conditioning (i.e. “memory” of past observed 𝑓 values) between path
segments. Mathematically, this is accomplished first by decoupling
the ensemble averages of subsequent path segments:〈

𝐿𝑓 (𝒑,𝝎)〉𝜁 =

〈∫
S2

𝜌 𝑓 (𝒑 𝑓𝑠 )
〈
𝐿𝑓
′(𝒑 𝑓𝑠 ,𝝎𝑠 )

〉
𝜁 ′d𝝎𝑠

〉
𝜁
. (3)

Starting with only the prior constraints, radiance is obtained by av-
eraging Eq. (1) over realizations 𝑓 as before. However, the recursive
term 𝐿𝑓

′ in the above equation is computed with a nested average
over realizations 𝑓 ′. This nested average uses an augmented set of
conditions 𝜁 ′, which restricts the GP realizations 𝑓 ′ to those that
match the observations of 𝑓 along the ray segment [𝒑,𝒑𝑠 ].

This procedure is equivalent to the “on the fly” sampling approach
described earlier; both allow for sampling values from a consistent
realization by conditioning on previously observed path information.
Conceptually however, this formulation is quite different: instead
of selecting a realization 𝑓 up front and progressively sampling it,
this formulation is comparable to tracing a path through an implicit
surface with uncertainty, which is progressively “locked down” as
path segments observe more values from it.
Equation (3) corresponds to the global memory model of Seyb

et al., where all path history is retained, leading to an unbounded
growth in conditioning constraints with path length. Specifically,
the augmented set of conditions during a single bounce is 𝜁 ′ =
𝜁 ∧ 𝜁 (𝒑,𝒑𝑠 ) ∧ 𝜁𝛿 . This includes 𝜁 (𝒑,𝒑𝑠 ) , values observed along the
ray segment (𝒑,𝒑𝑠 ) in 𝑓 , and 𝜁𝛿 , the value and gradient at 𝒑𝑠 (i.e.
𝜁𝛿 = {𝑓 ′ (𝒑𝑡 ) = 0 ∧ ∇𝑓 ′ (𝒑𝑠 ) = ∇𝑓 (𝒑𝑠 )}).

To manage computational cost, Seyb et al. propose a Renewal+
memory model, which restricts the recursive average ⟨𝐿𝑓 ′⟩𝜁𝛿 to
realizations that have a surface at the intersection point 𝒑𝑠 with the
same normal (i.e. satisfy 𝜁𝛿 ), thereby excluding any prior conditions
𝜁 and values observed along the ray segment 𝜁 (𝒑,𝒑𝑠 ) . Seyb et al. show
that in practice this approximation leads to minor visual differences,
while keeping the computational cost bounded by only carrying
over a constant amount of conditioning between path segments.

4 GAUSSIAN PROCESSES VIA (SPARSE) CONVOLUTION
Despite the advances in prior work, rendering with a GPIS remains
expensive: The cost of evaluating a consistent realization 𝑓 increases
cubically in the number of prior evaluations of 𝑓 . Thememorymodel
approach of Seyb et al. “resets” this number for each path segment,
but within each segment, the evaluation cost still exhibits cubic
growth in the segment length.
In this section, we show how to evaluate a GPIS at constant cost,

regardless of the number of prior observed points.We begin (Sec. 4.1)
by showing that Gaussian processes can be written as white noise

convolved with a kernel. We then show (Sec. 4.2) that approximating
white noise with a finite number of impulses gives a consistent
approximation of the Gaussian process, which ultimately admits a
simple and efficient evaluation scheme (Sec. 4.2.2) in constant time
by summing a finite number of kernel evaluations.

4.1 Gaussian processes from convolved white noise
Let𝑊 be a realization of independent Gaussian white noise with
variance 𝜎2, i.e.𝑊 (𝒑) ∝ N (0, 𝜎2) for any 𝒑. We can write𝑊 as
belonging to a Gaussian process𝑊 ∼ GP(0, 𝜎2𝛿 (𝒑 − 𝒑′)) with a
Dirac delta 𝛿 covariance.

Consider now the convolution of𝑊 with a kernel ℎ (Fig. 2 top):

𝜓dense (𝒑) ≔
∫
R𝑑

ℎ(𝒔,𝒑)𝑊 (𝒔) d𝒔 . (4)

Because linear operations on a Gaussian process result in another
Gaussian process, and𝑊 belongs to a zero-mean process, we know
that the convolvedwhite noise is also a Gaussian process𝜓dense (𝒑) ∼
GP(0, 𝜅dense) with covariance

𝜅dense (𝒑,𝒑′) = E
[
𝜓dense (𝒑)𝜓dense (𝒑′)

]
=

∬
ℎ(𝒔,𝒑) ℎ(𝒖,𝒑′) E[𝑊 (𝒔)𝑊 (𝒖)] d𝒔 d𝒖

= E[𝑊 2]
𝜎2

∫
ℎ(𝒔,𝒑) ℎ(𝒔,𝒑′) d𝒔 . (5)

5.0 10.0 15.0

(a) White Noise Process, (? )

5.0 10.0 15.0

(c) Sparse Impulse Process,_ (? )
5.0 10.0 15.0

(b) Convolved White Noisekdense (? )

5.0 10.0 15.0

(d) Convolved Sparse Impulsesk_ (? )

-5.0 0.0 5.0

(e) Convolution Kernel ℎ (? − B )

-5.0 0.0 5.0

(f) Covariance ^ (?′ − ? )

Theoretical dense _ = 0.25 _ = 0.05 _ = 0.01

Fig. 2. We show (a) a white noise process𝑊 (𝒑) and (c) several sparse
impulse processes𝑊𝜆 (𝒑) of decreasing densities (orange, green, purple). In
(b) and (d) we show the outcome of convolving these processes with the
stationary kernel ℎ (𝒔, 𝒑) = ℎ (𝒑 − 𝒔 ) shown in (e). The convolved white
noise𝜓dense (𝒑) is a Gaussian process, and the sparse convolution noises
𝜓𝜆 (𝒑) with increasing density visually approach𝜓dense (𝒑) . (f) shows the
average covariance statistics with respect to distance. Though all processes
share identical covariance, this information alone does not fully characterize
them. See Fig. 3 for further analysis.
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This means that we can create Gaussian processes with non-trivial
covariance simply by convolving white noise with a kernel. De-
pending on the convolution kernel ℎ, the resulting covariance func-
tion1 𝜅 may be known analytically (see Table 1 for examples). More
importantly however, the covariance is guaranteed to be positive
semi-definite for nearly any ℎ.

Proof. Inserting Eq. (5) into the definition of positive semi-definiteness
(Sec. 3.2), we get [Paciorek and Schervish 2006]:

𝒒⊺𝜿𝒒 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑞𝑖 𝑞 𝑗 𝜅 (𝒑𝑖 ,𝒑 𝑗 ) (6)

= 𝜎2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑞𝑖 𝑞 𝑗

∫
ℎ(𝒔,𝒑𝑖 ) ℎ(𝒔,𝒑 𝑗 ) d𝒔

= 𝜎2
∫ ( 𝑛∑︁

𝑖=1
𝑞𝑖ℎ(𝒔,𝒑𝑖 )

) ( 𝑛∑︁
𝑗=1

𝑞 𝑗ℎ(𝒔,𝒑 𝑗 )
)
d𝒔

= 𝜎2
∫ ( 𝑛∑︁

𝑖=1
𝑞𝑖 ℎ(𝒔,𝒑𝑖 )

)2
d𝒔 ≥ 0. (7)

As long as ℎ is square-integrable, the covariance function of the
resulting Gaussian process is positive semi-definite. See Appendix B
for a second proof using a frequency-domain argument.
This gives us a lot of freedom in controlling the covariance of

Gaussian processes, without requiring careful analysis of whether
the process remains valid: We simply convolve white noise with
(nearly) any kernel of our choosing.

4.2 Sparse Convolution Noise as a GP Approximation
Although evaluating Eq. (4) directly is not practical, Lewis [1986,
1989] showed how a “dense” white noise process may be approxi-
mated by a “sparse” version formed by a random impulse process:

𝑊 (𝒔) ≈𝑊𝜆 (𝒔) ≔
∑︁
𝑖

𝑤𝑖 𝛿 (𝒔 − 𝒔𝑖 ) . (8)

The impulse locations {𝒔𝑖 } are uncorrelated and drawn from a Pois-
son point process with density 𝜆, and independent random weights
{𝑤𝑖 } with mean E[𝑊𝜆] ≔ 0 and variance E[𝑊 2

𝜆
] ≔ 𝜎2/𝜆.

Inserting𝑊𝜆 (𝒔) into (4) gives the sparse convolution noise𝜓𝜆 (𝒑)
(Fig. 2 (c) and (d)):

𝜓dense (𝒑) ≈ 𝜓𝜆 (𝒑) ≔
∑︁
𝑖

𝑤𝑖 ℎ(𝒔𝑖 ,𝒑) . (9)

Lagae et al. [2009] derive the variance of Eq. (9) and showed
that the (one-point) distribution of the noise is well approximated
by a normal distribution N(0, 𝜎2). Additionally, we can prove that
the covariance of 𝜓𝜆 matches that of its dense version 𝜓dense (see
Appendix C):

𝜅𝜆 (𝒑,𝒑′) = 𝜆E[𝑊 2
𝜆 ]

𝜎2

∫
ℎ(𝒔,𝒑) ℎ(𝒔,𝒑′) d𝒔 . (10)

1Some GP literature refers to the covariance function 𝜅 as the covariance kernel. We
call 𝜅 the covariance function to avoid confusion with the convolution kernel ℎ.

Table 1. Normalized versions of convolution kernel-covariance function
pairs [Matérn 1960]. We use s ≔ 𝒑 − 𝒑′ with 𝑠 ≔ |s | and 𝑑 the dimension
(𝑑 = 3 for rendering GPISes). The gamma function is Γ (𝑛) and Λ𝑣 (𝑠 ) ≔
𝑣!

( 2
𝑠

)𝑣
𝐽𝑣 (𝑠 ) where 𝐽𝑣 (𝑠 ) is the Bessel function of the first kind and 𝐾𝑣 (𝑠 )

is the modified Bessel function of the second kind. The parameters are as
follows: 𝑣, 𝑙 are scalars, and the normalization factors𝐶𝑖

ℎ,𝐶
𝑖
𝜅 for the convo-

lution kernel and the covariance function respectively are:𝐶1
ℎ = (√2𝜋𝑙 )−𝑑 ,

𝐶1
𝜅 = (2√𝜋𝑙 )−𝑑 ; 𝐶2

ℎ = 2𝑑𝜋−
1+𝑑
2 Γ ( 1+𝑑2 )𝑙−𝑑 , 𝐶2

𝜅 = 𝜋−
1+𝑑
2 Γ ( 1+𝑑2 )𝑙−𝑑 ;

𝐶3
ℎ
= (2√𝜋𝑙 )−𝑑 Γ ( 1+𝑣2 )Γ ( 1+𝑑+𝑣2 )−1,𝐶3

𝜅 = (2√𝜋𝑙 )−𝑑 Γ (𝑣)Γ ( 𝑑+2𝑣2 )
−1
;𝐶4

ℎ =

2𝜋−
𝑑
2 (2𝑙 )− 3𝑑+2𝑣

4 Γ ( 𝑑+2𝑣4 )
−1
,𝐶4

𝜅 = 2𝜋−
𝑑
2 (2𝑙 )−𝑑−𝑣Γ ( 𝑑+2𝑣2 )

−1
.

Name Convolution kernel ℎ Covariance function 𝜅

Squared exp. 𝐶1
ℎ exp(−𝑠2/2𝑙2 ) 𝐶1

𝜅 exp(−𝑠2/4𝑙2 )
Cauchy 𝐶2

ℎ (1 + 4𝑠2/𝑙2 )− 𝑑+1
2 𝐶2

𝜅 (1 + 𝑠2/𝑙2 )− 𝑑+1
2

Bessel 𝐶3
ℎ
Λ 𝑑+𝑣−1

2
(𝑠/𝑙 ) 𝐶3

𝜅Λ 𝑑+2𝑣−2
2
(𝑠/𝑙 )

Matérn 𝐶4
ℎ𝑠

2𝑣−𝑑
4 𝐾 2𝑣−𝑑

4
(𝑠/𝑙 ) 𝐶4

𝜅𝑠
𝑣𝐾𝑣 (𝑠/𝑙 )
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Fig. 3. 1-point amplitude distribution (top row) and 2-point joint distribution
for a specific distance (bottom row) for the four processes from Fig. 2 (b) and
(d). Fig. 2 (f) only shows the mean of these distributions. With low impulse
density 𝜆, the distributions of the sparse convolution noise𝜓𝜆 are clearly
different from those of the convolved white noise 𝜓dense. As the density
increases, the statistics of𝜓𝜆 approaches𝜓dense, i.e. a Gaussian process.

While sparse convolution noise is not a Gaussian process, it does
converges in distribution to the Gaussian Process:

𝜓𝜆 (𝒑)
𝑑−→ GP(0, 𝜅dense (𝒑,𝒑′)) as 𝜆 →∞, (11)

as a consequence of the central limit theorem of random mea-
sures [Kallenberg and Kallenberg 1997]. This implies that 𝜓𝜆 is
a consistent approximation of a Gaussian process that becomes
increasingly accurate as the impulse density 𝜆 increases. Figure 3
visualizes the statistical properties of𝜓𝜆 across increasing densities,
confirming its convergence towards a Gaussian process.

4.2.1 Interpretation asWeight-Space Evaluation with Local Bases. In-
terestingly, sparse convolution noise can be interpreted as a weight-
space approximation (30) of a Gaussian process with an infinite
number of basis functions 𝜙𝑖 (𝒑) = ℎ(𝒔𝑖 ,𝒑), and weights𝑤𝑖 . In con-
trast to random Fourier features [Rahimi and Recht 2007], if the
convolution kernel has compact support, only finitely many points
lie within the support ofℎ around any 𝒑, and the expansion becomes
sparse.

ACM Trans. Graph., Vol. 44, No. 6, Article 188. Publication date: December 2025.



188:6 • Kehan Xu, Benedikt Bitterli, Eugene d’Eon, and Wojciech Jarosz

Random Fourier Features

10
10
0

10
00

(Stationary)
Sparse Convolution Noise

(Stationary) (Non-stationary)

Fig. 4. In the left two columns we approximate the same 2D stationary GP
via random Fourier features and sparse convolution noise, with an increasing
number of basis functions (sinusoids or overlapping kernel splats) from top
to bottom. Sparse convolution noise visually converges more rapidly toward
the ground-truth GP and can synthesize non-stationary GPs (right column).

The first two columns of Fig. 4 compare 2D GP realizations us-
ing sparse convolution noise (with increasing impulse density) and
random Fourier features (with increasing feature count), at equal
computational cost. For sparse convolution noise, cost depends on
the number of kernels overlapping each query point. With 100 fea-
tures (middle row), sparse convolution noise closely approximates
the true GP, while random Fourier features still exhibits repetitive
artifacts and require more features for comparable accuracy. More-
over, sparse convolution noise can synthesize non-stationary GP
realizations (right column), while random Fourier features cannot.

4.2.2 Efficient Evaluation. A major benefit of working in the sparse
convolution view is that it allows dramatically more efficient eval-
uations of Gaussian processes. If ℎ has compact support (e.g. a
truncated Gaussian), then only O(1) impulses lie near any query
location 𝒑, yielding O(1) cost per evaluation. This can be computed
efficiently on-the-fly [Lagae et al. 2009] (see Algorithm 1): we form
a grid with cell width equal to the support radius of ℎ and generate
a set of random impulse positions 𝒔𝑖 within each cell, where the
number of impulses is drawn from a Poisson distribution with den-
sity 𝜆. Due to the compact support of the kernels, the only impulses
that contribute to Eq. (9) for an evaluation point 𝒑 lie in the cell
containing 𝒑 and its immediate neighboring cells, for a total of 3𝑑
cells (where 𝑑 is the dimension). The impulses can be generated
on-the-fly using a random number generator seeded by the cell
index, leading to constant-time evaluation of the Gaussian process
anywhere and without precomputation. Sampling distinct realiza-
tions of the process is also trivial by globally permuting the per-cell
seeds.

Unlike classical weight-space approximations, sparse convolution
noise also supports non-stationary processes using spatially varying
convolution kernels (Fig. 4 right). Any distribution of kernels may
be chosen (such as Gabor convolution noise [Charpenay et al. 2014;
Lagae et al. 2009]), although extreme variability in the kernel support
makes evaluation less efficient since the cell size is based on the
worst-case kernel support, which in turn influences the impulse

Algorithm 1 Evaluate sparse convolution noise
1: function SCNoise(𝒑, seed)
2: 𝑓 ← 0
3: 𝜆 ← numKernelsPerCell/cellRadius3
4: cellIndex← ⌊𝒑/cellRadius⌋
5: for xyz ∈ {−1, 0, 1}3 do
6: rng← RNG(hash(seed, cellIndex + xyz))
7: cellPosition← cellIndex ∗ cellRadius
8: for 𝑖 = 1 to numKernelsPerCell do
9: 𝒔𝑖 ← cellPosition + rng.nextFloat3()
10: 𝑙𝑖 , 𝜎𝑖 ←qeryKernelParameters(𝒔𝑖 )
11: 𝑤𝑖 ← 𝜎𝑖√

𝜆
sampleStandardNormal(rng)

12: 𝑓 ← 𝑓 +𝑤𝑖ℎ(𝒑, 𝒔𝑖 , 𝑙𝑖 )
13: return 𝑓

Algorithm 2 Render global GPIS realizations
1: function 𝐿(𝒑,𝝎, seed)
2: for each ray marching step 𝑠 do
3: 𝒑

𝑓
𝑠 ← 𝒑 + 𝑠𝝎

4: 𝑓 ← 𝜇 (𝒑 𝑓𝑠 ) + SCNoise(𝒑 𝑓𝑠 , seed)
5: if 𝑓 ≤ 0 then
6: n𝑓𝑠 ← normalize(∇𝑓 )
7: 𝝎𝑠 , 𝑝𝝎𝑠 ← sampleScatteredDirection(n𝑓𝑠 ,𝝎)
8: 𝜌 ← evalBSDFCosine(𝒑 𝑓𝑠 ,𝝎,𝝎𝑠 , n𝑓𝑠 )
9: return 𝐿𝑒 (𝒑 𝑓𝑠 ) + 𝜌

𝑝𝝎𝑠
𝐿(𝒑 𝑓𝑠 ,𝝎𝑠 , seed)

10: return 0

density needed for a close GP approximation. We use multi-scale
sparse convolution noise [Lagae et al. 2011] – which can efficiently
blend independent realizations of noise of different length scales. We
could similarly benefit from many other improvements on sparse
convolution noise [Lagae and Drettakis 2011; Tavernier et al. 2019].

4.3 Rendering global GPIS realizations
We can efficiently generate and render global GPIS realizations
𝑓 (𝒑) = 𝜇 (𝒑) + 𝜓 (𝒑) by simply modeling the stochastic portion
𝜓 via sparse convolution noise 𝜓𝜆 (see Algorithm 2). The left and
middle rows of Fig. 7 compare using random Fourier features vs.
sparse convolution noise to render stationary GPISes. Similar to the
2D case (Fig. 4), sparse convolution noise is also a more efficient
representation in 3D, closely approximating the ground truth GP at a
low feature number (Fig. 7 middle top). Utilizing sparse convolution
noise, we can render single realizations of non-stationary Gaussian
processes for the first time (right bottom), allowing variation in
length scale and anisotropy.We can compute the ensemble-averaged
light transport (Fig. 7 right top) by simply changing the random
seed in Algorithm 2 for each traced path.

5 CONDITIONING WITH PATHWISE UPDATES
Now that we can efficiently sample GP realizations, we turn our
attention to conditioning. There are two forms of conditioning
that we want to support: 1) modeling-time conditioning to shape
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Fig. 5. Visualization of the pathwise value conditioning procedure. We sample a prior realization via sparse convolution noise (left) and combine it with
(middle) a “pathwise update”, constructed as a weighted sum of covariance functions centered at each conditioning point. The weights are computed by
solving a linear system—with size equal to the number of conditioning points—ensuring that the sum of the prior and the update exactly interpolates the
constraints (right). Each prior realization (faded curves, left) yields a distinct set of kernel weights, producing posterior realizations that strictly satisfy the
value constraints (faded curves, right).

Value Conditioning Value + Gradient

Function space mean
Pathwise update mean

Function space realizations
Pathwise update realizations

Fig. 6. Given identical prior distributions and constraints, function space
conditioning (orange) and pathwise updates (blue) yield equivalent poste-
rior distributions. We evaluate this equivalence in value conditioning (left)
and a mixture of both value and gradient conditioning (right). For each case,
we plot the prior and posterior means (dotted lines) alongside two sampled
realizations (solid lines). Value constraints are indicated by black dots, while
gradient constraints are represented by black arrows. Critically, both meth-
ods satisfy all specified constraints and produce identical posterior means
in every scenario.
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27
27
0
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Ensemble

Single
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Fig. 7. Both random Fourier features (RFF) and our sparse convolution noise
approach can render single realizations of stationary GPISes. Compared to
RFF, our method more closely resembles the ground truth GP under a low
number of features (left top vs. middle top). Our approach also supports
rendering GPISes with general non-stationarity (right bottom), including
spatially varying length scale and anisotropy. The ensemble light transport
(right top) is readily achieved by averaging distinct realizations per sample.

the properties of the GPIS before rendering, and 2) render-time
conditioning as a way to e.g. enable Seyb et al.’s memory models
between consecutive path segment.We can afford larger upfront cost

for modeling-time conditioning, but want render-time conditioning
to be as lightweight as possible.

Unfortunately, traditional conditioning approaches are inefficient
in our context and do not easily allow distinguishing between the
performance needs of these two stages. Instead, we show how to use
“pathwise updates” [Wilson et al. 2020, 2021] to efficiently condition
on value, before deriving an extension of this approach for joint
conditioning of value and gradient.

5.1 Value Conditioning
Given a collection (𝐶, 𝒗) of |𝐶 | location-value pairs, we want to
sample realizations that pass through these observations. Instead of
conditioning before sampling a realization, we first sample a prior
GP realization𝜓 (·) ∼ GP(0, 𝜅) (via sparse convolution noise), and
then add a “pathwise” update:

𝜓 |𝐶 (·) = 𝜓 (·)

prior

+
|𝐶 |∑︁
𝑖=1

𝜅 (·, 𝒄𝑖 )𝑢𝑖

update=𝜿 ( ·,𝐶 )𝒖

. (12)

This takes a prior realization (Fig. 5, left) and adds |𝐶 | weighted
covariance functions 𝜅 (·, 𝒄𝑖 )𝑢𝑖 centered at the conditioning points
(Fig. 5, middle). To enforce that 𝜓 |𝐶 (·) passes through the condi-
tioned values, the weights𝑢𝑖 must satisfy the |𝐶 | × |𝐶 | linear system:

𝜿 (𝐶,𝐶)𝒖 = 𝒗 −𝜓 (𝐶), i.e. 𝒖 = 𝜿 (𝐶,𝐶)−1 (𝒗 −𝜓 (𝐶)), (13)

which is sparse (due to the compact support of 𝜅). Equation (13)
can be seen as solving an RBF scattered interpolation [Anjyo et al.
2014] problem (with covariance functions acting as RBF kernels)
to “correct” the prior realization 𝜓 (·) to match the conditioning
constraints (Fig. 5, right).
Prior work [Wilson et al. 2020, 2021] has already proven that

GP realizations computed via Eqs. (12) and (13) are drawn from
the correct posterior distribution. Figure 6 (left) demonstrates this
empirically by comparing realizations drawn from the posterior GP
distribution using both function-space and pathwise conditioning.

5.2 Gradient Conditioning
We also want to support conditioning the derivatives of the GPIS (for
instance to influence the local surface orientation during modeling,
or to leverage the Renewal+ memory model during rendering).
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To generalize the pathwise update framework to enforce de-
rivative conditioning, we exploit the fact that the derivative of
any Gaussian process 𝜓 ∼ GP(0, 𝜅) is another Gaussian process
∇𝜓 ∼ GP(0,∇1∇⊺2 𝜅) where ∇1 and ∇2 denote the gradient operators
with respect to all elements of the first or second parameters of a
function, and ∇1∇⊺2 (with entries 𝜕2

𝜕𝑝𝑖 𝜕𝑞 𝑗
) is the mixed derivative

operator with respect to all elements of both parameters.
We can perform pathwise gradient updates analogously to Eq. (12),

but using a weighted sum of first derivative kernels centered at each
of the conditioning points:

𝜓 |𝐶′ (·) = 𝜓 (·) +
|𝐶′ |∑︁
𝑖=1
∇⊺2 𝜅 (·, 𝒄′𝑖 ) 𝒖′𝑖 . (14)

To see that this produces the correct gradient-conditioned realiza-
tion, we take its derivative

∇𝜓 |𝐶′ (·) = ∇𝜓 (·) +
|𝐶′ |∑︁
𝑖=1
∇1∇⊺2 𝜅 (·, 𝒄′𝑖 ) 𝒖′𝑖 , (15)

which is precisely the value pathwise update formula (12) but using
the prior and covariance of the gradient process. From Eqs. (13)
and (15), we see that the weights must satisfy:

∇1∇⊺2 𝜿 (𝐶′,𝐶′)𝒖′ = 𝒗′ − ∇𝜓 (𝐶′), (16)

i.e. 𝒖′ = [∇1∇⊺2 𝜿 (𝐶′,𝐶′)]−1 (𝒗′ − ∇𝜓 (𝐶′)), where ∇1∇
⊺
2 𝜿 (𝐶′,𝐶′) is

a (3|𝐶′ |) × (3|𝐶′ |) matrix, and 𝒖′ and 𝒗′ are (3|𝐶′ |)-vectors (with 3
elements per conditioning point) of weights and target gradients.

5.3 Value-Gradient Conditioning
Combining Eqs. (12) and (14) allows us to condition both values and
gradients

𝜓 |𝐶,𝐶′ (·) = 𝜓 (·) +
|𝐶 |∑︁
𝑖=1

𝜅 (·, 𝒄𝑖 )𝑢𝑖 +
|𝐶′ |∑︁
𝑖=1
∇⊺2 𝜅 (·, 𝒄′𝑗 ) 𝒖′𝑖 , (17)

where the weights 𝒖 and 𝒖′ satisfy the coupled ( |𝐶 | + 3|𝐶′ |) × (|𝐶 | +
3|𝐶′ |) system:[

𝜿 (𝐶,𝐶) ∇⊺2 𝜿 (𝐶,𝐶′)
∇1𝜿 (𝐶′,𝐶) ∇1∇⊺2 𝜿 (𝐶′,𝐶′)

] [
𝒖
𝒖′

]
=

[
𝒗 −𝜓 (𝐶)
𝒗′ −𝜓 (𝐶′)

]
. (18)

Figure 6 (right) illustrates this scenario in 1D.

5.4 Unidirectional rendering of conditioned GPISes
Pathwise conditioning allows us to efficiently incorporate model-
time conditioning and Seyb et al.’s memory models when rendering
ensemble-averaged light transport.

Model-time conditioning. When rendering a single realization, we
can efficiently precompute any modeling-time conditioning weights
by solving Eq. (18) once, and then render the conditioned realization
via Monte Carlo estimation of Eq. (1). Pathwise conditioning (17)
essentially splats a spatially varying (realization-dependent) additive
term to the GPIS being rendered, and evaluating it is linear in the
number of conditioning constraints. Figure 8 illustrates the idea of
using pathwise updates to condition a single 3D GPIS realization,
providing control over the local height and orientation of the surface.

InitialInitial Value Cond.Value Cond. Gradient Cond.Gradient Cond.

Fig. 8. Value and gradient pathwise updates allow intuitively conditioning a
GPIS realization created with sparse convolution noise (left) to pass through
some location (middle) or take on a certain orientation (right).

Algorithm 3 Renewal+ ensemble-average, unidirectional
1: function 𝐿(𝒑,𝝎, 𝒗′, 𝑑, seed)
2: 𝑓 ← 𝜇 (𝒑) + SCNoise(𝒑, seed)
3: 𝑙0, _←qeryKernelParameters(𝒑)
4: if 𝑑 = 0 then ⊲ depth = 0, camera ray
5: 𝑢, 𝒖′ ← 0, 0
6: else
7: 𝑢, 𝒖′ ← getWeights(𝒑, 𝑓 , 0

Values

,𝝎, 𝑙0, ∇𝑓 , 𝒗′
Gradients

) ⊲ Eq. (18)

8: for each ray marching step 𝑠 do
9: 𝒑

𝑓
𝑠 ← 𝒑 + 𝑠𝝎

10: 𝑓 ← 𝜇 (𝒑 𝑓𝑠 ) + SCNoise(𝒑 𝑓𝑠 , seed)
Unconditioned GP

+𝜅 (𝒑 𝑓𝑠 ,𝒑, 𝑙0)𝑢 + ∇⊺2 𝜿 (𝒑
𝑓
𝑠 ,𝒑, 𝑙0)𝒖′

Pathwise update
11: ⊲ Lines 5–8 of Algorithm 2 ⊳

12: return 𝐿𝑒 (𝒑 𝑓𝑠 ) + 𝜌
𝑝𝝎𝑠

𝐿(𝒑 𝑓𝑠 ,𝝎𝑠 ,∇𝑓 , 𝑑 + 1, seed)
13: return 0

Since the pathwise update is realization dependent, we can’t pre-
compute the weights before simulating ensemble-averaged trans-
port. We can however precompute the LU decomposition of the
system matrix in Eq. (18) before rendering, which would make eval-
uation quadratic. Additionally, we can solve for the weights once
per pixel sample and then reuse the same conditioned realization
when estimating Eq. (2) across all pixels.

Rendering with memory models. If we adopt Seyb et al.’s Renewal+
model, we obtain the particularly simple and efficient Algorithm 3.
In this case, render-time conditioning requires constraining the
value and gradient only at the origin of scattered rays. Hence, |𝐶 | =
|𝐶′ | = 1 and Eq. (17) adds one weighted value-conditioning splat,
and a weighted derivative-conditioning splat for each of the three
dimensions. This makes Eq. (18) a small 4 × 4 system, which must
be solved only once per path vertex during path tracing. Evaluating
Eq. (17) is then constant time.

6 NEXT-EVENT ESTIMATION
Section 4 introduced an efficient method to render global realiza-
tions of Gaussian Process Implicit Surfaces (GPIS).While this enables
faithful visualization of single realizations, it fully "locks down" the
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geometry along each light path. Consequently, the normals become
deterministic once a realization is fixed, eliminating essential de-
grees of freedom that variance reduction techniques rely on. This is
particularly problematic when the GPIS surface BRDF 𝜌 is specu-
lar. The scattered direction 𝝎𝑠 is then uniquely determined by the
incoming ray direction 𝝎 and normal n𝑠 , collapsing the integral
in Eq. (1), and rendering conventional next-event estimation (NEE)
impossible. This is in stark contrast to classical microfacet mod-
els, where the micro-surface normal is not sampled until after an
intersection is found. There, the rendering algorithm maintains a
distribution over microfacet normals at the shading point, allowing
importance sampling strategies like NEE to guide rays toward light
sources effectively.
Although a specific realization is required to locate an intersec-

tion on a GPIS, the data we gather along a path forms only a one-
dimensional slice of the stochastic geometry. In fact, when integrat-
ing Eq. (2) there exist infinitely many realizations consistent with
these partial observations – all sharing the same intersection loca-
tion and consistent values along the path segments. We can hence
express the outgoing radiance 𝐿𝑜 in direction 𝝎𝑜 = −𝝎 at a shading
location 𝒑

𝑓
𝑠 as the integral:〈

𝐿
𝑓
𝑜 (𝒑 𝑓𝑠 ,𝝎𝑜 )

〉
𝜁 =

∫
S2

𝜌 (𝒑 𝑓𝑠 )
〈
𝐿𝑓
′(𝒑 𝑓𝑠 ,𝝎𝑠 )

〉
𝜁 ′ 𝑝𝑛 (n𝑠 | 𝜁 ) dn𝑠 , (19)

where we use the shorthand 𝜌 (𝒑 𝑓𝑠 ) ≔ 𝜌 (𝒑 𝑓𝑠 ,𝝎𝑜 ,𝝎𝑠 ) for the BRDF
and 𝑝𝑛 (n | 𝜁 ) is the conditional distribution of normals across these
compatible realizations at 𝒑 𝑓𝑠 , where 𝜁 encapsulates all observations
about the GPIS so far. Conceptually, this distribution of normals
means that a GPIS with a fully specular BRDF may still appear non-
specular since 𝑝𝑛 will generally induce a distribution of outgoing
directions.
We have a way to sample from 𝑝𝑛 (n | 𝜁 ) using Sec. 5, i.e. by

adding conditioning splats at all prior ray marching steps. However,
this is a) expensive and b) doesn’t give us a way to evaluate the PDF
of n. This is the missing piece to combine our rendering method
with improved sampling techniques like NEE.

6.1 From Normals to Gradients
Since n is the normalized gradient ∇𝑓 , the two distributions are
connected by a change of variables involving the magnitude (length)
of ∇𝑓 . Specifically, the normal distribution 𝑝𝑛 is the marginal of the
gradient distribution 𝑝∇ over all gradient magnitudes 𝑡 = ∥∇𝑓 ∥:

𝑝𝑛 (n | 𝜁 ) =
∫ ∞

0
𝑝∇(𝑡n | 𝜁 ) 𝑡2 d𝑡, (20)

where the Jacobian factor 𝑡2 accounts for volume change in spherical
coordinates.
With this connection, Eq. (19) can be reformulated in terms of

the distribution of gradients:〈
𝐿
𝑓
𝑜 (𝒑 𝑓𝑠 ,𝝎𝑜 )

〉
𝜁 =

∫
S2

∫ ∞

0
𝜌 (𝒑 𝑓𝑠 )

〈
𝐿𝑓
′(𝒑 𝑓𝑠 ,𝝎𝑠 )

〉
𝜁 ′ 𝑝∇(𝑡n𝑠 | 𝜁 ) 𝑡2 d𝑡dn𝑠

=
∫
R3
𝜌 (𝒑 𝑓𝑠 )

〈
𝐿𝑓
′(𝒑 𝑓𝑠 ,𝝎𝑠 )

〉
𝜁 ′ 𝑝∇(∇𝑓 | 𝜁 ) d(∇𝑓 )

=
∫
R3
𝜌 (𝒑 𝑓𝑠 )

〈
𝐿𝑓
′(𝒑 𝑓𝑠 ,𝝎𝑠 )

〉
𝜁 ′ 𝑝 (g | 𝜁 ) dg, (21)

where in the last step we use the shorthand g ≔ ∇𝜓 (𝒑 𝑓𝑠 ), with
𝑝 (g | 𝜁 ) ≔ 𝑝∇(∇𝜇 + g | 𝜁 ) for the gradient of the zero-mean sparse
convolution noise.
Since the gradient of the Gaussian process 𝜓 is itself a Gauss-

ian process, we know that the conditional distribution 𝑝 (g | 𝜁 ) =
N(m,K) is exactly a multivariate Gaussian in R3 with some mean
m and covariance K dependent on the conditioning 𝜁 . If we could
find this mean and covariance, we could trivially evaluate 𝑝 (g | 𝜁 )
and estimate Eq. (21) using Monte Carlo integration with an arbi-
trary sampling PDF. Unfortunately, we have no efficient way of
doing this: Conditioning on all observations on the ray, either with
function-space conditioning (28) or pathwise updates (Sec. 5), is too
computationally expensive. We show how to overcome this problem
in the next subsections.

6.2 The Conditional Gradient Distribution
Without loss of generality we work in a coordinate system where
the local 𝑧 axis is aligned with the ray direction and denote the
components of the gradient in this space as g ≔ (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧).
We first consider the distribution of g(𝒑 𝑓𝑠 ) for a camera ray hit

point 𝒑 𝑓𝑠 . When marching from the camera, we observe𝜓 (𝒑) at 𝑠
evenly spaced locations 𝒑𝑖 = (0, 0, 𝑧𝑖 ), with 𝒑

𝑓
𝑠 being the first zero

crossing (𝑓 (𝒑 𝑓𝑠 ) = 𝜇 (𝒑 𝑓𝑠 ) +𝜓 (𝒑 𝑓𝑠 ) = 0). This gives us the length-𝑠
observation vector 𝜻 ≔ (𝜓 (𝒑1), . . . ,𝜓 (𝒑 𝑓𝑠 ))⊺ .

The joint distribution of 𝜻 and g is the multivariate Gaussian:[
𝜻
g

]
∼ N

(
0,

[
K𝜻𝜻 K𝜻g
Kg𝜻 Kgg

] )
, with blocks (22)

• [K𝜻𝜻 ]𝑖 𝑗 = Cov(𝜓 (𝒑𝑖 ),𝜓 (𝒑 𝑗 )): the 𝑠 × 𝑠 covariance between all
entries in 𝜻 ,
• [Kgg]𝑎𝑏 = Cov(𝜕𝑎𝜓 (𝒑 𝑓𝑠 ), 𝜕𝑏𝜓 (𝒑 𝑓𝑠 )): the 3× 3 covariance between
gradient components of g(𝒑 𝑓𝑠 ), and
• [Kg𝜻 = K⊺

𝜻g]𝑎𝑖 = Cov(𝜕𝑎𝜓 (𝒑 𝑓𝑠 ), 𝜓 (𝒑𝑖 )): the 3×𝑠 cross-covariance
matrix between the gradient components and observed values.
The conditional distribution of g given 𝜻 is therefore:

𝑝 (g | 𝜻 ) = N(m,K), m = Kg𝜻K−1𝜻𝜻 𝜻 , K = Kgg−Kg𝜻K−1𝜻𝜻K𝜻g . (23)

6.2.1 Stationary Isotropic Case. Wenow assume a stationary isotropic
covariance, 𝜅 (𝒑𝑖 ,𝒑 𝑗 ) ≔ 𝑘 (𝑟 = |𝒑 𝑗 − 𝒑𝑖 |), and discuss how to lift
this assumption in Sec. 6.4. In this case, Kgg = 𝑘′′(0) I3. Further-
more, with all observations 𝒑𝑖 along the 𝑧-axis, Kg𝜻 also simplifies
considerably: Generally [Kg𝜻 ]𝑧𝑖 ≠ 0, but since the differences in the
𝑥 and 𝑦 coordinates of 𝒑 𝑓𝑠 and 𝒑𝑖 are zero, [Kg𝜻 ]𝑥𝑖 = [Kg𝜻 ]𝑦𝑖 = 0
(the only special consideration is 𝑖 = 𝑠 because then 𝑟 = 0, but this
simplification will still hold as long as 𝑘′ (0) = 0). This means Kg𝜻
contains zeros in the first two rows (for 𝑔𝑥 and 𝑔𝑦 ) and possibly
non-zero elements only in the last row (for 𝑔𝑧 ). Consequently, the
mean and covariance of g𝑥𝑦 ≔ (𝑔𝑥 , 𝑔𝑦)⊺ become independent of 𝜻 ,
allowing us to factorize the gradient distribution as:

𝑝 (g | 𝜁 ) = 𝑝 (𝑔𝑧 | 𝜁 )𝑝 (g𝑥𝑦) where 𝑝 (g𝑥𝑦) = N
(
0, 𝑘′′(0) I2

)
. (24)
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Fig. 9. We visualize the gradient distribution g of an isotropic stationary
GP unconditioned (c, red) and conditioned on the directional derivative
𝑔𝑧 along the ray (c, green). For clarity, we display only the 2D distribution
g𝑥𝑧 , with 𝑔𝑦 coming out of the page. The unconditioned g𝑥𝑧 distribution
is a 2D isotropic Gaussian. When a ray intersects a GPIS realization 𝑓
at 𝒑𝑠 (a), 𝑔𝑧 can be computed from the value observations along the ray
(b). This conditioning reduces g𝑥𝑧 to follow a 1D Gaussian distribution.
For rays intersecting the GPIS from outside, 𝑔𝑧 will be negative. The GPIS
normal distribution 𝑝 (n | 𝜁 ) is the hemispherical projection of the gradient
distribution (Eq. (20)); with 𝑔𝑧 fixed, the GPIS normal distribution is a
generalization of a Beckmann NDF, which itself can be expressed as a 2D
Gaussian distribution in slope space.

(a) Unconditioned(a) Unconditioned (b) 𝑔𝑧 = 1(b) 𝑔𝑧 = 1 (c) 𝑔𝑧 = 4(c) 𝑔𝑧 = 4

(d) 𝑔𝑧 = 1, Anisotropic(d) 𝑔𝑧 = 1, Anisotropic (e) 𝑔𝑧 = 1, Length scale ÷3(e) 𝑔𝑧 = 1, Length scale ÷3 (f) Different Viewing Angle(f) Different Viewing Angle

Fig. 10. We visualize the hemispherical distribution of normals from a
top-down view to validate that our derived analytic distribution (Eq. (24),
top half) matches the gradients sampled from sparse convolution noise
realizations (bottom half). (a), (b), (c) show unconditioned and conditioned
distributions, corresponding to the gradient distribution depicted in Fig. 9 (c).
Larger absolute values of 𝑔𝑧 lead to more concentrated normal distributions
(c vs. b), whereas smaller covariance length scales (e vs. b) lead to broader
distributions. Interestingly, both variables can be interpreted as adjusting the
Beckmann surface roughness. Our interactive system also allows us to verify
the correctness of anisotropic covariance kernels (d) and allows observing
the distribution from arbitrary viewing directions (f). A demonstration video
is provided in the supplemental materials.

Figure 9 illustrates the distribution of g either unconditioned or
conditioned on a sampled 𝑔𝑧 . Figure 10 validates and analyzes the
probability distribution derived in Eq. (24).

This lets us rewrite Eq. (21) as a nested integral over 𝑔𝑧 and g𝑥𝑦 :〈
𝐿𝑜 (𝒑 𝑓𝑠 ,𝝎𝑜 )

〉
𝜁 = (25)∫

R
𝑝 (𝑔𝑧 | 𝜁 )

(∫
R2

𝜌 (𝒑 𝑓𝑠 )
〈
𝐿𝑓
′(𝒑 𝑓𝑠 ,𝝎𝑠 )

〉
𝜁 ′ 𝑝 (g𝑥𝑦) dg𝑥𝑦

)
d𝑔𝑧 .

All preceding formulas exclusively address the gradient of the
zero-mean component g = ∇𝜓 . To obtain ∇𝑓 , we must simply offset
the derived gradient by the mean gradient ∇𝜇.

6.3 Monte Carlo Estimation
We now have a path forward to perform MC estimation with NEE.
While we cannot easily evaluate 𝑝 (𝑔𝑧 | 𝜁 ), we can sample from it
by generating a random realization 𝑓 (via sparse convolution noise),
and finding the intersection to obtain 𝒑

𝑓
𝑠 . The directional derivative

𝑔𝑧 (𝒑 𝑓𝑠 ) is distributed exactly according to 𝑝 (𝑔𝑧 | 𝜁 ). Estimating the
outer integral with this sampling PDF cancels out this factor, leaving
us with a 2D integral containing our now closed-form 𝑝 (g𝑥𝑦). We
can hence form the Monte Carlo estimator:

𝐿̂𝑜 (𝒑 𝑓𝑠 ,𝝎𝑜 ) =
✘✘✘✘𝑝 (𝑔𝑧 | 𝜁 ) 𝜌 (𝒑 𝑓𝑠 ,𝝎𝑜 ,𝝎𝑠 )

〈
𝐿𝑓
′(𝒑 𝑓𝑠 ,𝝎𝑠 )

〉
𝜁 ′ 𝑝 (g𝑥𝑦)

✘✘✘✘𝑝 (𝑔𝑧 | 𝜁 ) 𝑝mc (g𝑥𝑦) , (26)

where we use an MC sampling PDF 𝑝mc (g𝑥𝑦) of our choosing.
Choosing to sample g𝑥𝑦 by looking up the directional deriva-

tives 𝑔𝑥 (𝒑 𝑓𝑠 ) and 𝑔𝑦 (𝒑 𝑓𝑠 ) at the hit point 𝒑 𝑓𝑠 would set 𝑝mc (g𝑥𝑦) =
𝑝 (g𝑥𝑦), reverting to the purely unidirectional strategywe had before.
To perform next-event estimation, we can instead design 𝑝mc (g𝑥𝑦)
so that the reflected direction 𝝎𝑠 points towards a light source. We
can also combine the two strategies using MIS as outlined in Algo-
rithm 4. This requires (a) computing g𝑥𝑦 from 𝝎𝑠 and 𝑔𝑧 , as illus-
trated in Fig. 11, (b) converting the light sampling PDF 𝑝𝜔 (𝝎𝑠 ) from
the solid angle measure to gradient measure 𝑝 (g𝑥𝑦). We demon-
strate the effectiveness of our MIS strategy in Fig. 12 on a repro-
duction of Veach’s classic MIS scene with metal plates of different
roughnesses modeled via stationary isotropic GPISes.

X

Y

Z
gz

∇μ

X

Y

Z

(a) Plane of g = (gx, gy, gz) (b) Plane of ∇f = ∇μ + g

X

Y

Z

(c) Compute gx, gy from n

gx

gy n

Fig. 11. Once 𝑔𝑧 is sampled, the set of possible 3D gradients g spans (a) an
infinite plane centered at (0, 0, 𝑔𝑧 ) parallel to the 𝑋,𝑌 axes. The shading
indicates the 2D probability density 𝑝 (g𝑥𝑦 ) . The GPIS gradient distribution
∇𝑓 is this planar Gaussian distribution translated by the mean gradient
∇𝜇 (b). Emitter sampling requires computing the gradient which, when
normalized, equals a given n = 𝝎𝑜+𝝎𝑠

∥𝝎𝑜+𝝎𝑠 ∥ . This gradient is at the intersection
of the ray along n with the plane of ∇𝑓 .
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(a) UNI (b) NEE (c) MIS

Fig. 12. We show the Veach MIS scene composed of GPIS-represented planes with perfectly specular micro-surfaces and varying covariance function
length scales. Smaller length scales produce rougher aggregated appearances. Our equal-time (1 min) rendering comparison evaluates three approaches: (a)
unidirectional sampling (UNI), (b) our next-event estimation (NEE) strategy, and (c) multiple importance sampling (MIS) combining both strategies.

Algorithm 4 Renewal+ ensemble-average, delta BSDF, MIS
1: function 𝐿(𝒑,𝝎, 𝒗′, 𝑑, seed)
2: ⊲ Lines 2–10 of Algorithm 3 ⊳
3: if 𝑓 ≤ 0 then
4: 𝒑

𝑓
𝑠 ← 𝒑 + 𝑠𝝎

5: 𝐿𝑜 ← 𝐿𝑒 (𝒑 𝑓𝑠 )
6: ggp ← ∇SCNoise(𝒑 𝑓𝑠 , seed)
7: 𝑔𝑧 ← ggp𝑧 ⊲ Shared by UNI and NEE
8: ⊲ Next-event estimation ⊳
9: 𝝎nee

𝑠 , 𝑝nee𝜔 , 𝐿nee𝑒 ← sampleLightDir(𝒑 𝑓𝑠 )
10: gnee𝑥𝑦 ← toGxy(𝒑 𝑓𝑠 ,𝝎nee

𝑠 , 𝑔𝑧) ⊲ Fig. 11
11: gnee ← (gnee𝑥𝑦 , 𝑔𝑧)
12: 𝑝nee𝑥𝑦 ← toGxyMeasure(𝑝nee𝜔 ,𝝎nee

𝑠 , gnee)
13: 𝑝

gp
𝑥𝑦 ← evalGxyPDF(𝒑 𝑓𝑠 , gnee𝑥𝑦 )

14: nnee𝑠 ← normalize(∇𝜇 (𝒑 𝑓𝑠 ) + gnee)
15: 𝜌nee ← evalBSDFCosine(𝒑 𝑓𝑠 ,𝝎,𝝎nee

𝑠 , nnee𝑠 )
16: 𝐿𝑜 ← 𝐿𝑜 + 𝑝nee𝑥𝑦

𝑝nee𝑥𝑦 +𝑝gp𝑥𝑦
𝜌nee𝐿nee𝑒

17: ⊲ Unidirectional sampling ⊳

18: ngp𝑠 ← normalize(∇𝜇 (𝒑 𝑓𝑠 ) + ggp)
19: 𝝎

gp
𝑠 , _← sampleScatteredDirection(ngp𝑠 ,𝝎)

20: 𝑝nee𝜔 ← evalLightDirPDF(𝝎gp
𝑠 )

21: 𝑝nee𝑥𝑦 ← toGxyMeasure(𝑝nee𝜔 ,𝝎
gp
𝑠 , ggp)

22: 𝑝
gp
𝑥𝑦 ← evalGxyPDF(𝒑 𝑓𝑠 , ggp𝑥𝑦)

23: 𝜌gp ← evalBSDFCosine(𝒑 𝑓𝑠 ,𝝎,𝝎gp
𝑠 , ngp𝑠 )

𝐿𝑜 ← 𝐿𝑜 + 𝑝
gp
𝑥𝑦

𝑝nee𝑥𝑦 +𝑝gp𝑥𝑦
𝜌gpL(𝒑 𝑓𝑠 ,𝝎uni

𝑠 ,∇𝑓 (𝒑 𝑓𝑠 ), 𝑑 + 1, seed)
24: return 𝐿𝑜
25: function toGxyMeasure(𝑝𝜔 (𝜔𝑠 ), 𝜔𝑠 , g)
26: n𝑠 ← normalize(g)
27: 𝑝n (n𝑠 ) ← 4(n𝑠 · 𝜔𝑠 )𝑝𝜔 (𝜔𝑠 )
28: return 𝑝n (n𝑠 ) |n𝑠 .𝑧 |/length(g)2

6.4 Generalizations and Optimizations
So far, Eq. (26) is only valid for camera rays and stationary isotropic
covariance functions, but we can extend this to the Renewal and
Renewal+ models, and more general forms of covariance.

Memory models. In Eq. (26), 𝜁 ′ defines the conditioning that is
passed to the recursive ray tracing call via a memory model. The
Renewal model (remembering only the value 𝑓 (𝒑 𝑓𝑠 ) = 0 but not the
gradient ∇𝑓 (𝒑 𝑓𝑠 )) conditions the value𝜓 (𝒑1) at the start of the next
ray. Since Eq. (24) already conditions g on all value observations
along the ray, it is also valid for secondary rays under the Renewal
model. Sampling 𝑔𝑧 ∼ 𝑝 (𝑔𝑧 |𝜁 ) simply requires generating a random
realization with a single pathwise conditioning splat placed at 𝒑1.
The Renewal+ memory model additionally conditions on the

gradient (call this g′) at the start of the ray. Since g′ varies in all
three dimensions, it will turn our previous 3D Gaussian distribution
for g (which was isotropic and zero-mean in 𝑥 − 𝑦) into a more
general anisotropic 3D Gaussian. Nevertheless, it is still possible
to factor the distribution as 𝑝 (g) = 𝑝 (𝑔𝑧 | 𝜁 , g′)𝑝 (g𝑥𝑦 | 𝑔𝑧 , 𝜁 , g′)
and sample a 𝑔𝑧 ∼ 𝑝 (𝑔𝑧 | 𝜁 , g′) for Eq. (26): we simply need to
intersect the ray with a realization that additionally places a single
gradient conditioning splat to constrain g′ at 𝒑1. This leaves 𝑝 (g𝑥𝑦 |
𝑔𝑧 , 𝜁 , g′) in the numerator of Eq. (26). This will now be a more
general anisotropic 2D normal distribution, but since it only depends
on one additional gradient observation, we can still compute the
mean and covariance of this distribution in closed form efficiently.
In practice, we found that sampling g𝑥𝑦 from the 2D isotropic

Gaussian, i.e. 𝑝 (g𝑥𝑦 | 𝑔𝑧 , 𝜁 ) instead of 𝑝 (g𝑥𝑦 | 𝑔𝑧 , 𝜁 , g′), can benefit
more from our NEE and MIS strategy. Ignoring the correlation
between g𝑥𝑦 and g′ defines a new memory model, which we call
Renewal Half+. The top two rows of Fig. 13 demonstrate that the
renderings of Renewal Half+ (right) and Renewal+ (left) are visually
similar. The last row shows that, while both memory models render
to similar noise levels under unidirectional sampling, Renewal+
benefits significantly less from NEE and consequently MIS. This is
because conditioning on g′ shrinks the distribution of g𝑥𝑦 , making
the light sampling strategy less effective. In Sec. 7.3, we use Renewal
Half+ for all ensemble-averaged light transport results.

Non-stationarity and anisotropy. If the GP is stationary but glob-
ally anisotropic, then its stochastic component can bewritten𝜓ani (𝒑)
= 𝜓iso (M𝒑) for some 3 × 3 matrixM. We can hence transform the
ray by M to move into an isotropic space, and then transform 𝒑

𝑓
𝑠

and g back via M−1 and M𝑇 respectively when evaluating Eq. (26).
We use multi-resolution sparse convolution noise [Lagae et al.

2011] to efficiently evaluate GPs with non-stationary length scale.
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Difference (×1) Difference (×10)
Renewal+Renewal+ Renewal Half+Renewal Half+

UNI NEE MIS

Fig. 13. The middle row shows the converged renderings for the Renewal+
(left) and Renewal Half+ (right) memory models. They are visually identical,
as confirmed by the near-black difference image (top row, left). For clarity,
we also show the difference magnified by 10× (top row, right). The third row
compares the performance of the two memory models under UNI (left), NEE
(middle) and MIS (right). While UNI produces a comparable noise level for
both models, our NEE strategy (and consequently, our MIS) is significantly
more efficient under Renewal Half+. This gain in efficiency is due to the
forward sampling g𝑥𝑦 distribution being broader and better aligned with
the gradient distribution derived from light sampling.

UNI (Ours)UNI (Ours)

[Seyb et al.][Seyb et al.] MIS (Ours)MIS (Ours)

Fig. 14. We render the Dragon scene featuring a GPIS with non-stationary
length scales. We compare three methods under the Renewal+ memory
model: (1) function space sampling from Seyb et al. [2024], (2) our sparse
convolution noise method with unidirectional path sampling, and (3) our
approach incorporating multiple importance sampling (MIS). All three meth-
ods, despite their respective approximations, yield renderings that are visu-
ally similar. This demonstrates that the approximation errors introduced by
both the sparse convolution noise formulation and next-event estimation
are minor. All three renderings use 4096 samples per pixel.

Thismakes𝜓 (𝒑) a linear combination of two independent stationary
realizations of noise of different scales,𝜓multi (𝒑) = 𝑤1 (𝒑)𝜓1 (𝒑) +
𝑤2 (𝒑)𝜓2 (𝒑), blended via spatially varying weight functions𝑤1,𝑤2.
The gradient covariance and value-gradient cross-variance blocks of
Eq. (23) can still be written exactly in terms of the isotropic station-
ary case by a simple application of the chain rule. The distribution
𝑝 (g | 𝜻 ) in this case becomes a combination of two 3D normal
distributions.
In the case of general non-stationary anisotropy, the gradient

covariance and value-gradient cross-variance blocks of Eq. (23) will
not simplify exactly to Eq. (24). However, if the anisotropy changes
slowly then Eq. (24) should remain a good approximation. More
precisely, if the anisotropy remains approximately constant on the
order of the length-scale from an intersection point 𝒑 𝑓𝑠 , then (much
like the globally anisotropic case above) we can transform into a
local isotropic space at 𝒑 𝑓𝑠 where the assumptions of Eq. (24) will
remain approximately true.

From 3D to 1D noise. We can enable a key optimization for Eq. (26)
under the Renewal, Renewal Half+, or Renewal+ memory models:
since sampling along a ray only requires evaluating noise in one
dimension, we can replace the 3D sparse convolution noise with
a 1D equivalent. This reduces the cost of noise evaluation, which
scales with 3𝑑 for dimension 𝑑 . We demonstrate this and evaluate
its impact on performance in the results section.

7 IMPLEMENTATION AND RESULTS

7.1 Implementation
We implemented2 our sparse convolution GPIS approach in the
Tungsten renderer [Bitterli 2018] for comparison against the im-
plementation provided by Seyb et al. [2024]. We ran all equal-time
experiments on Intel Xeon Platinum 8488C CPUs, with 48 cores
and 96 threads. Furthermore, we developed3 a simplified GPU im-
plementation in Shadertoy. The supplementary materials include
all renderings presented in the paper’s figures and several videos
demonstrating our GPU implementation.
We use mean squared error (MSE), and since this scales linearly

with render time, we estimate speedup by taking the ratio of MSE
values between methods. All assessed methods – ours and Seyb et al.
[2024]’s – introduce bias due to their respective approximations, fur-
ther detailed in Sec. 7.3. Nevertheless, Fig. 14 renders these methods
at high SPP counts, empirically showing their visual similarity. For
computing error metrics, we rendered ground truth images using
our MIS approach, as other techniques require considerably more
samples to converge on the designed scenes. The errors calculated
using this reference provide a fair comparison across all methods, in
particular for Seyb et al. [2024]’s approach, as the errors primarily
stem from Monte Carlo sampling variance rather than fundamental
image differences.

All the GPISes in our experiments use a squared exponential con-
volution kernel. To render GPISes with non-stationary covariance
functions, we employ multi-resolution sparse convolution noise [La-
gae et al. 2011] to eliminate the need for high impulse densities in

2Code available at https://github.com/dartmouth-vcl/sparse-conv-gpis-tungsten.
3Code available at https://github.com/dartmouth-vcl/sparse-conv-gpis-shadertoy.
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Fig. 15. We evaluate the function space method from Seyb et al. [2024] and our sparse convolution approach at equal time (20 min), on multiple scenes
composed of non-stationary GPISes with perfectly specular micro-surface materials. We present several variants of our method (middle three columns of
insets), including the 3D noise implementation, 1D noise with unidirectional sampling, and 1D noise with MIS. The techniques are added progressively to
demonstrate the improvement brought by each. Additionally, in the rightmost column, we visualize a single realization of the GPIS, offering insight into the
underlying structure that composes the aggregate appearance. The SPP and the speedup over the whole image are shown in the bottom and top inset centers.
The speedup for each image patch is shown in the corner.

regions with large variations in kernel scale. Following Tavernier
et al. [2019], we splat a fixed number of kernels per cell (10) rather
than sampling this number from a Poisson distribution. We provide
an analysis on this number in Sec. 7.3. For all ensemble-averaged
light transport results, we use the Renewal Half+ memory model.

7.2 Scene Representation and Memory Usage
Evaluating a GPIS at a point requires being able to (1) query the
mean and covariance fields, and (2) synthesize the zero-mean sto-
chastic component using sparse convolution noise. The stochastic
component is generated procedurally on the fly and does not require
stored samples.

Persistent memory usage is therefore determined by how the
mean and covariance fields are represented. This could be proce-
dural (no storage) or tabulated (as e.g. a voxel grid or octree). For
instance, we could express a mean function derived from a mesh
procedurally by directly computing the nearest distance of the query
point to the mesh triangles – in O(log𝑁 ) time for 𝑁 triangles via a
BVH. Alternatively, we can achieve O(1) lookup complexity at the
expense of increased memory usage by precomputing the nearest
distance over a voxel grid. We use the latter approach in our results
and store the fields in OpenVDB grids. Covariance parameters can
likewise be procedural or stored in an OpenVDB grid. These storage
requirements are identical to that of Seyb et al. [2024].
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7.3 Results
Sparse Convolution Noise vs. Random Fourier Features. We com-

pared the two weight-space approaches for 2D noise generation
in Fig. 4 and for rendering 3D stationary GPISes in Fig. 7 (left and
middle). Both techniques can efficiently sample global realizations,
thoughrandom Fourier features (RFF) are fundamentally limited to
stationary covariance functions. Furthermore, both figures illustrate
that sparse convolution noise more closely approximates the ground
truth Gaussian process than RFF under equal computational cost.

Sparse Convolution Noise vs. Function Space Sampling. Seyb et al.
[2024] primarily proposed rendering GPISes with the function-space
approach. We compare our sparse convolution approach with theirs
on rendering ensemble light transport under the Renewal+ memory
model, as their method is impractical for sampling single realizations
(whereas our method can, shown in Fig. 15 rightmost column).

As illustrated in Fig. 14 (left and middle), both function space sam-
pling and our approach yield visually comparable renderings. While
both methods introduce approximations for practicality (Seyb et al.
evaluates the GPIS in batches of ray march locations and propagates
correlations only to neighboring batches, and our method utilizes
a multi-resolution grid), we did not find these approximations to
result in significant visual differences in practice.

In Fig. 15, we present an equal-time comparison of our method’s
variants against Seyb et al.’s approach. Each subsequent variant of
our method progressively incorporates additional techniques, illus-
trating their individual contributions to performance improvement.
For all scenes, we evaluated the function space method with a batch
size of 8 ray marching points.
Notably, by simply replacing function-space sampling (Fig. 15,

first column of insets) with 3D sparse convolution noise sampling
(second column of insets), our method outperforms Seyb et al.’s by
an average speedup of 2.4×.

From 3D to 1D Noise. Under Renewal, Renewal Half+, or Renewal+
memory models, when sampling a hit point 𝒑 𝑓𝑠 and 𝑔𝑧 ∼ 𝑝 (𝑔𝑧 | 𝜁 )
via ray marching we only ever need to look up values (and the
directional derivative) along the ray. This means we can get away
with synthesizing 1D instead of 3D noise, allowing a 9× reduction
in noise evaluation cost. The two remaining gradient components,
g𝑥𝑦 , can then be explicitly sampled from the normal distribution
𝑝 (g𝑥𝑦) in Eq. (24).

The third column of insets in Fig. 15 illustrates the performance
improvement of transitioning from a 3D to a 1D sparse convolu-
tion noise. After accounting for other overheads (e.g., VDB queries,
emitter sampling), this yields an average render speedup of 2.3×.

Next-event Estimation. The technique we derived in Sec. 6 allows
us to apply NEE even in the case where the micro-surface uses a
perfectly specular BRDF. Figure 12 compares the effectiveness of
unidirectional sampling, our NEE, and their MIS combination in the
classic Veach scene where each plane is represented as a GPIS.
Our method with and without MIS will converge to the same

result even for non-stationary GPISes (as long as only the scale, and
not the anisotropy, of the covariance varies spatially). We confirm
this visually in the non-stationary Dragon scene (Fig. 14 middle
and right).

(a) Single Realization (b) Ensemble Average (c) Microfacet Surface

Fig. 16. Our sparse convolution GPIS framework unlocks the ability to visu-
alize and interactively explore (a) individual realizations of micro-geometry,
which, when ensemble averaged (b), reproduce Beckmann microfacet ap-
pearance (c). This would be infeasible with the expensive linear system
solves of prior function-space methods, but is now possible to do interac-
tively even in a simple GPU-based Shadertoy implementation.

Figure 15 contains two other more complex scenes, all featuring
GPISes with spatially varying length scales, specular micro-surface
GPISes and finite-area light sources. The ability to perform NEE
significantly enhances rendering efficiency (fourth column of insets),
with speedups varying considerably across different scene settings.

GPU-Accelerated Prototype. The implementation of GPIS is signif-
icantly simplified through sparse convolution noise, enabling broad
compatibility across different platforms. As a proof of concept, we
demonstrate real-time GPU rendering of GPISes with simplified
light transport in Shadertoy. This is possible because we avoid the
expensive linear system solves needed by function space sampling.
Figure 16 presents a screenshot of our GPU-accelerated prototype.
A demonstration video is available in the supplementary materials.

Spatial vs. Ensemble Average. Here, we explore the connection
between spatial and ensemble averages of GPISes. When the covari-
ance scale is on a small scale, a spatial average over realizations
within a single pixel closely resembles an ensemble average over
realizations across samples. This resemblance is the fundamental
rationale behind Seyb et al.’s initial exploration of ensemble light
transport; however, they lacked a direct validation, partly because
their function-space approach did not support rendering individual
GPIS realizations.
In Fig. 17, we validate this theory using a coffee cup and smoke,

both represented by a single GPIS with a non-stationary covariance
function. The spatial and ensemble-averaged results in (b) and (c)
demonstrate strong visual similarity. Furthermore, zooming into the
spatial averages allows us to visualize in (a) the micro-structures
simulated by GPIS, which give rise to the macro-scale appearances
of both the surface and the volume. The volume consists of small par-
ticles, while the surface exhibits bumpy structures, both consistent
with classic appearance models.

While spatial averaging yields an appearance similar to ensemble
averaging and uniquely enables the visualization ofmicro-structures,
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VolumeVolume

SurfaceSurface
(a) Micro-struct. (b) Zoom-in

SpatialSpatial

EnsembleEnsemble
(c) Full-size Rendering

36.2×36.2×

21.8×21.8×
(d) UNI MIS

Fig. 17. We validate the connection between spatial and ensemble aver-
ages using a coffee cup and smoke, modeled with a single non-stationary
GPIS. With sub-pixel covariance scales, the spatial average yields simi-
lar macro-scale appearances as the ensemble average in (b) and (c). Our
sparse convolution noise approach allows us to visualize the intricate surface
and volumetric micro-structures (a) by zooming into the spatial average.
Conversely, the flexibility of ensemble light transport allows us to employ
next-event estimation for improved importance sampling. (d) illustrates
this improvement both qualitatively and quantitatively, comparing unidi-
rectional path tracing and MIS at equal time (20 min).

its nature as a single realization prevents applying importance sam-
pling techniques when the micro-surface is a delta BSDF. On the
other hand, the geometric randomness in the ensemble average
provides the flexibility to perform next-event estimation. Figure 17
(d) demonstrates the performance gain of using MIS compared to
unidirectional path tracing at equal time.

Number of Kernels per Cell. The number of kernels per cell in
sparse convolution noise critically influences its accuracy in approx-
imating a Gaussian process. Insufficient density could result in bias
in the effective transmittance, NDF and final rendering. Luckily, we
found that stationary GPISes, even anisotropic ones, can achieve
accurate results with very few kernels. As shown in Fig. 7 (mid-
dle top), even a single kernel per cell (27 overlapping kernels or
“features”) produces realizations resembling higher-density counter-
parts. Similarly, non-stationary isotropic scaling, when implemented
with multi-resolution noise, does not increase the required kernel
density.
Because the procedural grid cell size is based on a conserva-

tive maximum kernel radius, kernels fill space more sparsely when
anisotropy can vary rapidly across space. In these situations, we
found that higher impulse densities are required for visually unbi-
ased results. Figure 18 shows a non-stationary anisotropic GPIS with
varying kernel densities, demonstrating how the bias diminishes as
the number of kernels per cell increases.

8 LIMITATION AND FUTURE WORK
Convolution Kernel-Covariance Function Pairs. No universalmethod

exists to derive analytic convolution kernels for arbitrary positive
semi-definite covariance functions, nor vice versa. For instance, we
were unable to derive a corresponding convolution kernel for the

Ensemble

Single

1 3 9

Fig. 18. As the number of kernels per cell increases from left to right, the
sparse convolution noise more closely approximates a Gaussian process
(split screen, left), and the ensemble light transport converges toward the
ground truth (split screen, right). Insets highlight the artifacts at low kernel
densities and visualize the diminishing bias (scale by 10× for better visibility).

rational quadratic covariance function. Nevertheless, we empha-
size that sparse convolution GPISes only require knowledge of the
convolution kernel itself. This affords significant flexibility, as we
may select any once-differentiable kernel that provides the desired
spatial correlation properties.

Efficient Directional Non-stationarity. While multi-scale sparse
convolution noise effectively handles length scale variations, rep-
resenting extreme directional non-stationarity remains challeng-
ing. Our current method achieves close approximations only by
inefficiently increasing the impulse density, necessitating global
oversampling for localized variations. Future work could focus on
adaptive strategies for efficiently handling complex, spatially vary-
ing anisotropy without this uniform oversampling.

Ray Marching Acceleration. Despite our advancements, GPIS ren-
dering speed remains constrained by ray intersection cost, which
scales with ray length due to our use of brute-force ray marching.
Recent work on sublinear ray marching or implicit surface acceler-
ation structures [Moinet and Neyret 2025; Tokuyoshi and Harada
2019] may provide substantial further improvement.

Improving Next-event Estimation. Our current next-event esti-
mation strategy is formulated for 3D GPISes. For a 2D GPIS (e.g. a
heightfield), the gradient distribution at an intersection, conditioned
on ray observations, has only one degree of freedom instead of two.
Consequently, possible outgoing directions form a 1D distribution,
so randomly sampling a 2D area light source has zero chance of pro-
viding a contribution. Specialized sampling techniques are therefore
required for this scenario.
Our NEE derivation for perfectly reflective materials easily ex-

tends to refractive ones. While our current strategy yields no im-
provement for non-delta BSDFs (the last row of Fig. 15), the analytic
gradient distribution presents a further opportunity to enhance their
importance sampling techniques. For instance, if the micro-BSDF
(i.e. the BSDF on the GPIS surface) follows a Gaussian distribution, it
can be convolved with the gradient distribution (another Gaussian)
to produce an analytic macro-BSDF. Otherwise, the terms in the
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integrand can be individually importance sampled, with different
strategies combined via MIS.

GPIS Editing Tools. As a novel geometry representation, GPISes
offer intuitive editing capabilities, as we illustrated conceptually
in Fig. 8. Developing artistic tools for GPIS, encompassing both
modeling and texturing, is a desirable future direction. This pro-
cess presents not only engineering challenges but also intriguing
research problems, such as establishing mappings between GPIS pa-
rameters and traditional appearance models, exploring mechanisms
for uncertainty manipulation, and adapting established 3D noise
texturing techniques to GPIS.

Reciprocity. To enable bidirectional rendering algorithms, such
as bidirectional path tracing or photon mapping, we must rigor-
ously prove the reciprocity of the ensemble light transport integral.
Assuming deterministic camera and light sources (where only inter-
mediate path vertices reside on GPISes), we foresee no fundamental
obstacles to the ensemble light transport being reciprocal. However,
a more challenging scenario would involve stochastic light sources,
i.e. emissive GPISes.

9 CONCLUSION
We present significant advances in the practical application of Gauss-
ian Process Implicit Surfaces. Our core contribution is a novel sparse
convolution noise formulation, which offers a more intuitive repre-
sentation than prior function-space methods. This new representa-
tion enables practical sampling of global non-stationary GPIS realiza-
tions and improves rendering efficiency for ensemble light transport.
We further introduce pathwise update for flexible value and gradi-
ents conditioning during both modeling and rendering. Crucially,
we enable next-event estimation for specular micro-surfaces by de-
riving the analytic normal distributions as Gaussian distributions.
This further boosts rendering efficiency and bridges the gap between
GPIS rendering and importance sampling of traditional appearance
models. The resulting noise-based approach is easy to implement
on either a CPU or GPU platform.
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A GAUSSIAN PROCESSES
A Gaussian process 𝑓 (𝒑) ∼ GP(𝜇 (𝒑), 𝜅 (𝒑,𝒑′)) is a random func-
tion over a 𝑑-dimensional input space, such that its evaluations
at any finite number of 𝑛 locations, 𝑃 ≔ {𝒑1, . . . ,𝒑𝑛}, follow an

𝑛-dimensional Gaussian distribution:
𝑓 (𝒑1)

...
𝑓 (𝒑𝑛)

︸    ︷︷    ︸
𝑓 (𝑃 ) ∈R𝑛

∼ N
( 

𝜇 (𝒑1)
...

𝜇 (𝒑𝑛)

︸   ︷︷   ︸
𝝁 (𝑃 ) ∈R𝑛

,


𝜅 (𝒑1,𝒑1) · · · 𝜅 (𝒑1,𝒑𝑛)

...
. . .

...
𝜅 (𝒑𝑛,𝒑1) · · · 𝜅 (𝒑𝑛,𝒑𝑛)

︸                                  ︷︷                                  ︸
𝜿 (𝑃,𝑃 ) ∈R𝑛×𝑛

)
, (27)

where 𝜇 (𝒑) ≔ E[𝑓 (𝒑)] is the deterministic mean function and
𝜅 (𝒑,𝒑′) ≔ E[(𝑓 (𝒑) − 𝜇 (𝒑)) (𝑓 (𝒑′) − 𝜇 (𝒑′))] is the covariance
function (kernel). A Gaussian process is stationary iff 𝜅 (𝒑,𝒑′) =
𝜅 (𝒑 − 𝒑′), and isotropic iff the covariance depends only on distance
𝜅 (𝒑,𝒑′) = 𝜅 (∥𝒑 − 𝒑′∥). We use ∥𝒑∥ to denote the 𝐿2 norm of a
𝑑-dimensional vector, and |𝑃 | to denote the cardinality of a set. We
are concerned mostly with Gaussian processes with input dimen-
sions 𝑑 = 1, 2, 3. Common covariance functions in machine learning
include the squared exponential, rational quadratic, and Matern
kernels.

Due to the linearity of the derivative operator, the gradient ∇𝑓 (𝒑)
of a Gaussian process 𝑓 is again a Gaussian process, which is jointly
Gaussian distributed with the value process:[

𝑓 (𝒑)
∇𝑓 (𝒑)

]
∼ N

( [
𝜇 (𝒑)
∇𝜇 (𝒑)

]
,

[
𝜅 (𝒑, 𝒒) ∇⊺𝒒𝜅 (𝒑, 𝒒)
∇𝒑𝜅 (𝒑, 𝒒) ∇𝒑∇⊺𝒒𝜅 (𝒑, 𝒒)

] )
, (28)

where ∇𝒑 ≔
[
𝜕/𝜕𝒑𝑥 , 𝜕/𝜕𝒑𝑦, 𝜕/𝜕𝒑𝑧

]⊺ denotes the gradient operator
with respect to 𝒑. The covariance of the gradient process is hence
defined by the second derivative of the covariance.

A.1 Sampling GP priors
We can create GP realizations (“sample GP priors”) in either the
“function space” or “weight space” views.

Function-space. Given a set of 𝑛 desired evaluation locations, we
can sample their values from the joint distribution (27) as

𝑓 (𝑃) = 𝝁 (𝑃) + 𝜿 1
2 (𝑃, 𝑃)𝝃 , with 𝝃 ∼ N(0, I) . (29)

This requires a matrix “square root” 𝜿
1
2 , like the Cholesky decom-

position, making it O(|𝑃 |3).
Weight-space. Weight-space approximations first assume that a

realization 𝑓 can be expressed as a linear combination of 𝑏 basis
functions Φ(𝒑) ≔ (𝜙1 (𝒑) . . . 𝜙𝑏 (𝒑))⊺:

𝑓 (·) = 𝜇 (·) +
𝑏∑︁
𝑖=1

𝜙𝑖 (·)𝑤𝑖 = 𝜇 (·) + Φ(·)⊺w, (30)

where w is a weight vector. Sampling a random weight vector w ∼
N(0, I) results in a realization that can be evaluated at any point,
and evaluation is now O(𝑏 |𝑃 |) – linear in the number of evaluation
points |𝑃 |.
The covariance of realizations sampled via Eq. (30) is 𝜿 (𝑃, 𝑃) =

𝚽(𝑃) 𝚽⊺(𝑃) where 𝚽(𝑃) is the |𝑃 | × 𝑏 matrix with rows Φ⊺(𝒑) for
each 𝒑 ∈ 𝑃 . The basis functions are typically chosen to obtain a de-
sired covariance. A common choice for stationary kernels is random
Fourier features [Rahimi and Recht 2007]. Seyb et al. [2024] dis-
missed weight-space methods as being largely limited to stationary
processes. We show that this is not true, and that some procedural
noise techniques from graphics can be cast as weight-space GPs.
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A.2 Conditioning
A powerful feature of Gaussian processes is that they can be condi-
tioned on a set of observations (𝑪, 𝒗), where 𝑪 is a set of points on
the input domain and 𝒗 are the observed values at those locations,
each with Gaussian uncertainty parameter 𝜎 to quantify the uncer-
tainty in model predictions. In the applications of Gaussian process
implicit surface, no prediction task is involved, so 𝜎 is commonly
set to 0.

Function-space. After observing (𝑪, 𝒗), the “posterior” distribu-
tion at a set of evaluation points 𝑃 is also Gaussian, with mean and
covariance:

𝜇 |𝑪 (𝑃) = 𝜇 (𝑃) + 𝜅 (𝑃, 𝑪) [𝜅 (𝑪, 𝑪) + 𝜎2I]−1 (𝒗 − 𝜇 (𝑪)),
𝜅 |𝑪 (𝑃, 𝑃) = 𝜅 (𝑃, 𝑃) − 𝜅 (𝑃, 𝑪)𝜅 (𝑪, 𝑪)−1𝜅 (𝑪, 𝑃).

(31)

Forming this posterior mean and covariance takes O(|𝑪 |3 + |𝑪 | |𝑃 | +
|𝑃 |2) and then sampling – by inserting into Eq. (29) – takes O(|𝑃 |3).

Weight-space. In weight-space, we can condition by modifying
the distribution of the weights in Eq. (30) to w |𝑪 ∼ N(m |𝑪 , 𝚺 |𝑪 )
with

m |𝑪 = (Φ⊺(𝑪)Φ(𝑪) + 𝜎2I)−1Φ⊺(𝑪)𝒗
𝚺 |𝑪 = (Φ⊺(𝑪)Φ(𝑪) + 𝜎2I)−1𝜎2 .

(32)

This is O(𝑏3 + 𝑏 |𝑪 |).

B FREQUENCY DOMAIN PROOF OF POSITIVE
SEMI-DEFINITENESS

If we assume, for simplicity, that the kernel ℎ(𝒔,𝒑) = ℎ(𝒑 − 𝒔) is
shift-invariant/stationary,

𝜓dense (𝒑) ≔
∫
R𝑑

ℎ(𝒑 − 𝒔)𝑊 (𝒔) d𝒔, and (33)

𝜅 (𝒑,𝒑′) = 𝜎2
∫
ℎ(𝒑 − 𝒔) ℎ(𝒑′ − 𝒔) d𝒔, (34)

then we can easily show, via the Fourier transform, that Eq. (34) is
a valid covariance. According to Bochner’s theorem, a function 𝑘 is
positive semi-definite iff its Fourier transform F {𝑘} is a nonnegative
function. We recognize Eq. (34) as (up to the scale factor 𝜎2) the
autocorrelation of ℎ: (ℎ ★ℎ) (𝒑 − 𝒑′). By the convolution – product
theorem, we have

F {𝜅} = 𝜎2 F {ℎ ★ℎ} = 𝜎2 F {ℎ} F {ℎ} = 𝜎2 |F {ℎ}|2 ≥ 0, (35)

where F is the complex conjugate. Equation (35) states that the
power spectrum of ℎ, which must be non-negative, gives the Fourier
transform of the covariance 𝜅, which therefore must be positive
semi-definite. Figure 19 provides a visualization of the discussed
quantities for a 2D Gabor kernel. It is possible to extend this proof
to the non-stationary version (4) by using locally centered Fourier
transforms.
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Fig. 19. We visualize the spatial and frequency domain quantities discussed
in Appendix B of the 2DGabor kernel [Gabor 1946] as the convolution kernel
ℎ. Red and blue indicate positive and negative values, respectively. Notably,
while the kernel’s Fourier transform F{ℎ} may exhibit both positive and
negative components, its power spectrum F{𝜅 } = 𝜎2 | F{ℎ} |2 is inherently
non-negative, ensuring the positive semi-definiteness of the covariance
function 𝜅 .

C COVARIANCE OF SPARSE CONVOLUTION NOISE
Inserting Eq. (9) into the definition of covariance and expanding
yields

𝜅𝜆 (𝒑,𝒑′) = E
[
𝜓𝜆 (𝒑)𝜓𝜆 (𝒑′)

]
(36a)

= E

[( 𝑁∑︁
𝑖=1

𝑤𝑖 ℎ(𝒔𝑖 ,𝒑)
) ( 𝑁∑︁
𝑖=1

𝑤𝑖 ℎ(𝒔𝑖 ,𝒑′)
)]

(36b)

= E[𝑁 ]E[𝑊 2
𝜆 ]E[ℎ(𝒔,𝒑)ℎ(𝒔,𝒑′)] (36c)

= 𝜆E[𝑊 2
𝜆 ]

𝜎2

∫
ℎ(𝒔,𝒑) ℎ(𝒔,𝒑′) d𝒔 . (36d)

Going from Eq. (36b) to Eq. (36c) the cross-terms vanish in expecta-
tion by Campbell’s theorem, and we obtain Eq. (36d) by assuming,
without loss of generality, a domain volume of 1.
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