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Motivation

Despite rapid progress in video

generation, how data shapes motion

quality remains poorly understood.

Key Goals
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Our Solution: MOTIVE

MOTIon attribution for Video gEneration

Problem Formulation

Given a query video and finetuning dataset, assign
each training clip a motion-aware influence
score to quantify its contribution to target
generation.

Method Components

1. Efficient Motion Gradient Computation

Single-Sample Estimator

Structured Projections (Fastfood)

2. Motion Attribution

Detect motion between frames w. AllTracker

Create motion magnitude patches highlighting

dynamic areas

Apply motion-weighted loss to focus on

moving regions and compute motion-specific

gradients

Which training clips drive the motion in a video
generation sample?

Efficient Motion Gradient Computation

Our method is made scalable via a single-sample variant with common randomness and a projection, computed for each pair of training

and query data, aggregated for a final ranking, and eventually used to select finetuning subsets.

Motion Attribution

Motion-gradient computation has three steps: (1) detect motion with AllTracker; (2) compute motion-magnitude patches; (3) apply loss-

space motion masks to focus gradients on dynamic regions.

MOTIVE: A scalable, gradient-based, motion-centric data attribution framework for video generation models

Three Key Components

①
Scalable Gradients

Single-sample estimator + projection

②
Motion Attribution
Motion-weighted loss

③
Data Curation

Top-K Majority voting

Motion Attribution Samples

Query

Float

✓ Top Positive High Similarity

✗ Negative Conflicting

Query
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✓ Top Positive High Similarity

✗ Negative Conflicting

Qualitative Results

Generated Videos

Base Random Ours ✓

Compress

Spin

Slide

Free Fall

Quantitative Results

VBench Evaluation

Method Motion Smooth. Dynamic Deg.

Base 96.3 39.6

Full FT 96.3 42.0

Random 10% 96.3 41.3

Ours w/o mask 96.3 43.8

MOTIVE 96.3 47.6

✓ Maintains smoothness, improves dynamics with only
10% data

Why Motion Masking? Dynamic Degree

Without:
43.8%

With:
47.6% (+3.8%)

Human Evaluation

vs. Base: 74.1% win

vs. Random: 58.9% win

vs. Full FT: 53.1% win

Ablation Findings

Single Timestep: t=500 achieves 68% agreement.

Projection: D'=512 reaches 74.7% Spearman ρ.

Conclusion

First motion-centric attribution framework for

video generation

Scalable via projection & majority voting

74.1% human preference vs. baseline with

10% data; Motion masking: +3.8% Dynamic

Degree


