

Motivation

Despite rapid progress in video generation, how data shapes motion quality remains **poorly understood**.

Key Goals

Focus on Motion

Separate motion from static appearance

Scale Efficiently

Modern, large-scale models & datasets

Guide Curation

Identify clips that improve motion quality

Our Solution: MOTIVE

MOTI_n on attribution for Video gEneration

Problem Formulation

Given a query video and finetuning dataset, assign each training clip a **motion-aware influence score** to quantify its contribution to target generation.

Method Components

1. Efficient Motion Gradient Computation

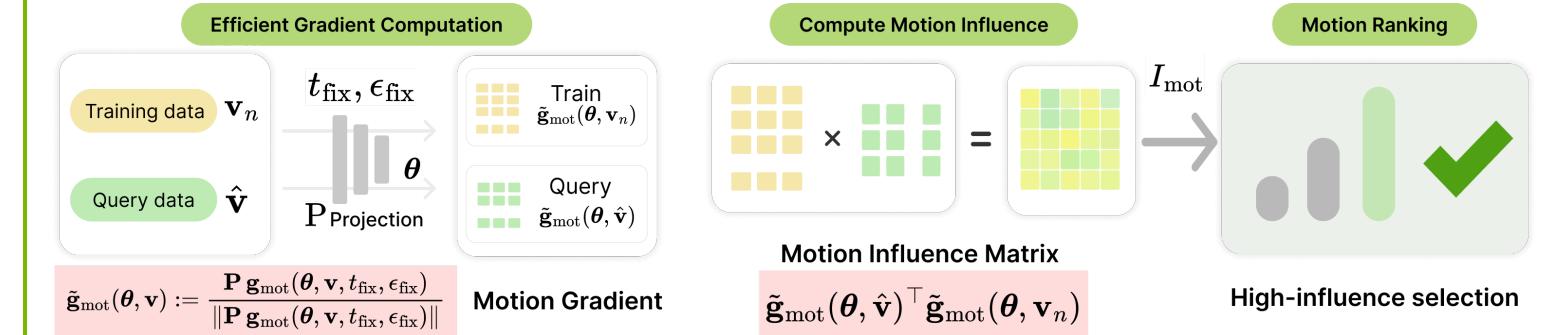
- Single-Sample Estimator
- Structured Projections (Fastfood)

2. Motion Attribution

- Detect motion between frames w. AllTracker
- Create motion magnitude patches highlighting dynamic areas
- Apply motion-weighted loss to focus on moving regions and compute motion-specific gradients

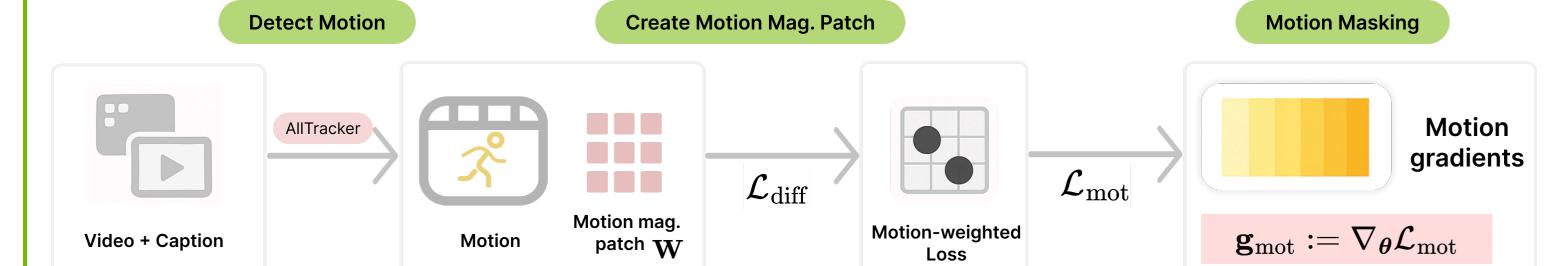
Which training clips drive the motion in a video generation sample?

Efficient Motion Gradient Computation



Our method is made scalable via a single-sample variant with common randomness and a projection, computed for each pair of training and query data, aggregated for a final ranking, and eventually used to select finetuning subsets.

Motion Attribution



Motion-gradient computation has three steps: (1) detect motion with AllTracker; (2) compute motion-magnitude patches; (3) apply loss-space motion masks to focus gradients on dynamic regions.

MOTIVE: A scalable, gradient-based, motion-centric data attribution framework for video generation models

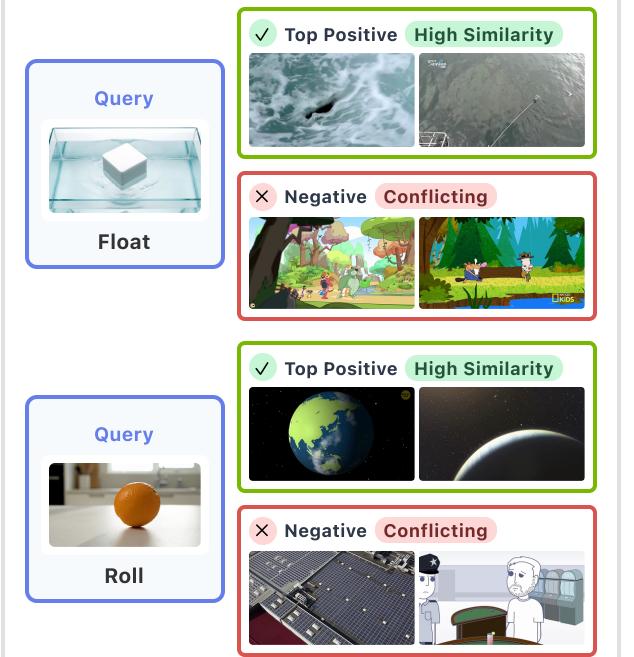
Three Key Components

① **Scalable Gradients**
Single-sample estimator + projection

② **Motion Attribution**
Motion-weighted loss

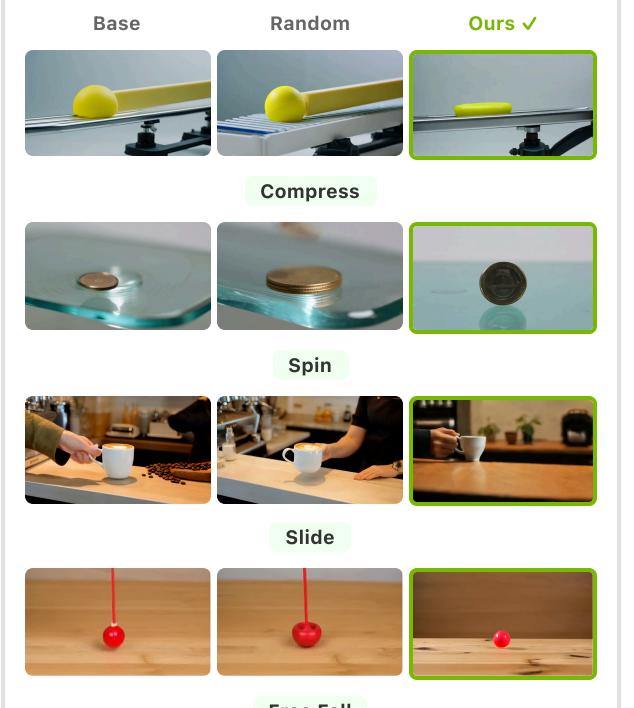
③ **Data Curation**
Top-K Majority voting

Motion Attribution Samples



Qualitative Results

Generated Videos



Quantitative Results

VBench Evaluation

Method	Motion Smooth.	Dynamic Deg.
Base	96.3	39.6
Full FT	96.3	42.0
Random 10%	96.3	41.3
Ours w/o mask	96.3	43.8
MOTIVE	96.3	47.6

✓ Maintains smoothness, improves dynamics with only 10% data

Why Motion Masking? Dynamic Degree

Without: 43.8% With: 47.6% (+3.8%)

Human Evaluation

vs. Base: 74.1% win
vs. Random: 58.9% win
vs. Full FT: 53.1% win

Ablation Findings

Single Timestep: $t=500$ achieves 68% agreement.
Projection: $D=512$ reaches 74.7% Spearman p.

Conclusion

First motion-centric attribution framework for video generation
Scalable via projection & majority voting
74.1% human preference vs. baseline with 10% data; Motion masking: +3.8% Dynamic Degree