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Figure 1. We extend 3D Gaussian Splatting (3DGS) to support nonlinear camera projections and secondary rays for simulating phenomena
such as reflections and refractions. By replacing EWA splatting rasterization with the Unscented Transform, our approach retains real-time
efficiency while accommodating complex camera effects like rolling shutter. (Left) A comparison of our model trained on undistorted
views vs. the original distorted fisheye views, showing that training on the full set of pixels improves visual quality. (Right) Two synthetic
objects, a reflective sphere and a refractive statue, inserted into a scene reconstructed with our model.

Abstract

3D Gaussian Splatting (3DGS) enables efficient reconstruc-
tion and high-fidelity real-time rendering of complex scenes
on consumer hardware. However, due to its rasterization-
based formulation, 3DGS is constrained to ideal pinhole
cameras and lacks support for secondary lighting effects.
Recent methods address these limitations by tracing the
particles instead, but, this comes at the cost of significantly
slower rendering. In this work, we propose 3D Gaussian
Unscented Transform (3DGUT), replacing the EWA splat-
ting formulation with the Unscented Transform that approx-
imates the particles through sigma points, which can be pro-
jected exactly under any nonlinear projection function. This
modification enables trivial support of distorted cameras
with time dependent effects such as rolling shutter, while
retaining the efficiency of rasterization. Additionally, we
align our rendering formulation with that of tracing-based
methods, enabling secondary ray tracing required to rep-
resent phenomena such as reflections and refraction within
the same 3D representation. The source code is available
at: https://github.com/nv-tlabs/3dgrut.

∗ denotes equal contribution.

1. Introduction
Multiview 3D reconstruction and novel view synthesis is
a classical problem in computer vision, for which several
scene representations have been proposed in recent years,
including points [22, 40], surfaces [5, 39, 53], and volumet-
ric fields [33, 35, 50, 52]. Most recently, driven by 3D Gaus-
sian Splatting [18] (3DGS), volumetric particle-based rep-
resentations have gained significant popularity due to their
high visual fidelity and fast rendering speeds. The core idea
of 3DGS is to model scenes as an unstructured collection
of fuzzy 3D Gaussian particles, each defined by its loca-
tion, scale, rotation, opacity, and appearance. These parti-
cles can be rendered differentiably in real time via rasteri-
zation, allowing their parameters to be optimized through a
re-rendering loss function.

High frame-rates of 3DGS, especially compared to vol-
umetric ray marching methods, can be largely accredited
to the efficient rasterization of particles. However, this re-
liance on rasterization also imposes some inherent limita-
tions. The EWA splatting formulation [57] does not support
highly-distorted cameras with complex time dependent ef-
fects such as rolling shutter. Additionally, rasterization can-
not simulate secondary rays required for representing phe-
nomena like reflection, refraction, and shadows.

Instead of rasterization, recent works have proposed to
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render the volumetric particles using ray tracing [7, 30, 34].
While this mitigates the shortcomings of rasterization, it
does so at the expense of significantly reduced rendering
speed, even when the tracing formulation is heavily op-
timized for semi-transparent particles [34]. In this work,
we instead aim to overcome the above limitations of 3DGS
while remaining in the realm of rasterization, thereby main-
taining the high-rendering rates. To this end, we seek an-
swer to the following two questions:

What makes 3DGS ill-suited to represent distorted cam-
eras and rolling shutter? To project 3D Gaussian parti-
cles onto the camera image plane, 3DGS relies on an EWA
splatting formulation that requires computing the Jacobian
of the non-linear projection function. This leads to ap-
proximation errors, even for perfect pinhole cameras, and
the errors become progressively worse with increasing dis-
tortion [14]. Moreover, it is unclear how to even repre-
sent time-dependent effect such as rolling-shutter within the
EWA splatting formulation.

Instead of approximating the non-linear projection func-
tion, we draw inspiration from the classical literature of Un-
scented Kalman Filter [16] and approximate the 3D Gaus-
sian particles using a set of carefully selected sigma points.
These sigma points can be projected exactly onto the cam-
era image plane by applying an arbitrarily complex projec-
tion function to each point, after which a 2D Gaussian can
be re-estimated from them in form of a Unscented Trans-
form (UT) [12]. Apart from a better approximation qual-
ity, UT is derivative-free and completely avoids the need
to derive the Jacobians for different camera models (Fig. 1
left). Moreover, complex effects such as rolling shutter dis-
tortions can directly be represented by transforming each
sigma point with a different extrinsic matrix.

Can we align the rasterization rendering formulation
with the one of ray-tracing? The rendering formulations
mainly differ in terms of: (i) determining which particles
contribute to which pixels, (ii) the order in which the parti-
cles are intersected, (iii) how the particles are evaluated. To
align the representations we therefore follow 3DGRT [34]
and evaluate the Gaussian particle response in 3D, while
sorting them in order similar to Radl et al. [37]. While
small differences persist, this provides us with a represen-
tation that can be both rasterized and ray-traced, enabling
secondary-rays required to simulate phenomena like refrac-
tion and reflection (Fig. 1 right).

In summary, we propose 3D Gaussian Unscented Trans-
form (3DGUT), where our main contributions are:
• We derive a rasterization formulation that approximates

the 3D Gaussian particles instead of the non-linear pro-
jection function. This simple change enables us to extend
3DGS to arbitrary camera models and to support complex
time dependent effects such as rolling shutter.

• We align the rendering formulation with 3DGRT, which

allows us to render the same representation with raster-
ization and ray-tracing, supporting phenomena such as
refraction and reflections.
On multiple datasets, we demonstrate that our formula-

tion leads to comparable rendering rates and image fidelity
to 3DGS, while offering greater flexibility and outperform-
ing dedicated methods on datasets with distorted cameras.

2. Related Work
Neural Radiance Fields Neural Radiance Fields
(NeRFs) [33] have transformed the field of novel view
synthesis, by modeling scenes as emissive volume encoded
within coordinate-based neural network. These networks
can be queried at any spatial location to return the volume
density and view-dependent radiance. Novel views are
synthesized by sampling the network along camera rays
and accumulating radiance through volumetric render-
ing. While the original formulation [33] utilized a large,
global multi-layer perceptron (MLP), subsequent work has
explored more efficient scene representations, including
voxel grids [27, 42, 45], triplanes [3], low-rank tensors [4],
and hash tables [35]. Despite these advances, even highly
optimized NeRF implementations [35] still struggle to
achieve real-time inference rates due to the computational
cost of ray marching.

To accelerate inference, several efforts have focused on
converting the radiance fields into more efficient represen-
tations, such as meshes [5, 53], hybrid surface-volume rep-
resentations [44, 47, 49, 51], and sparse volumes [8, 9, 38].
However, these approaches generally require a cumbersome
two-step pipeline: first training a conventional NeRF model
and then baking it into a more performant representation,
which further increases the training time and complexity.

Volumetric Particle Representations Differentiable ren-
dering via alpha compositing has also been explored in
combination with volumetric particles, such as spheres [23].
More recently, 3D Gaussian Splatting [18] replaced spheres
with fuzzy anisotropic 3D Gaussians. Instead of ray march-
ing, these explicit volumetric particles can be rendered
through highly efficient rasterization, achieving competi-
tive results in terms of quality and efficiency. Due to
its simplicity and flexibility, 3DGS has inspired numer-
ous follow-up works focusing on improving memory ef-
ficiency [24, 29, 31], developing better densification and
pruning heuristics [20, 54], enhancing surface representa-
tion [10, 11], and scaling up to large scenes [19, 26, 28].
However, while rasterization is very efficient, it also intro-
duces trade-offs, such as being limited to perfect pinhole
cameras. Prior work has attempted to work around these
limitations and support complex camera models such as
fisheye cameras [25] or rolling shutter [43]. But these works
still require dedicated formulation for each camera type and



exhibit quality degradation with increased complexity and
distortion of the camera models [14].

In response, recent works have explored replacing raster-
ization entirely and instead rendering the 3D Gaussians us-
ing ray tracing [7, 30, 34]. Ray tracing inherently supports
complex camera models and enables secondary effects like
shadows, refraction, and reflections through secondary rays.
However, this comes with a substantial decrease in render-
ing efficiency: even the most optimized ray-tracing methods
are still 3-4 times slower than rasterization [34].

In this work, we instead propose a generalized approach
for efficiently handling complex camera models within the
rasterization framework, thereby preserving the computa-
tional efficiency. Additionally we unify our rendering for-
mulation with the one of ray-tracing, enabling a hybrid ren-
dering technique within the same representation.

Unscented Transform Computing the statistics of a ran-
dom variable that has undergone a transformation is one of
the fundamental tasks in the fields of estimation and opti-
mization. When the transformation is non-linear, however,
no closed form solution exists, so several approximations
have been proposed . The simplest and perhaps most widely
used approach is to linearize the non-linear transformation
using the first order Taylor approximation. However, the
local linearity assumption is often violated, and derivation
of the Jacobian matrix is non-trivial and error prone. The
Unscented Transform (UT) [16, 17] was proposed to ad-
dress these limitations. The key idea of UT is to approxi-
mate the distribution of the random variable using a set of
Sigma points that can be transformed exactly, after which
they can be used to re-estimate the statistics of the random
variable in the target domain. Originally, UT was devised
for filtering-based state estimation [16, 48], but it has since
found applications in computer vision [2, 15]. Notably, UT
has even been explored in the context of novel-view synthe-
sis [2], where it was used to estimate the ray frustum from
samples that match its first and second moments.

3. Preliminaries

We provide a short review of 3D Gaussian parametrization,
volumetric particle rendering, and EWA splatting.

3D Gaussian Splatting Representation: Kerbl et al. [18]
represent scenes using an unordered set of 3D Gaussian par-
ticles whose response function ρ : R3 → R is defined as

ρ(x) = exp(−1

2
(x− µ)TΣ−1(x− µ)), (1)

where µ ∈ R3 denotes the particle’s position and Σ ∈
R3×3 its covariance matrix. To ensure that Σ remains pos-
itive semi-definite during gradient-based optimization, it is
decomposed into a rotation matrix R ∈ SO(3) and a scaling
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Figure 2. When projecting a Gaussian particle from 3D space onto
the camera image plane, Monte Carlo sampling (left) provides the
most accurate estimate but is costly to compute. EWA Splatting
formulation used in [18] approximates the projection function via
linearization, which requires a dedicated Jacobian J for each cam-
era model and leads to approximation errors with increasing dis-
tortion. Unscented Transform instead approximates the particle
with Sigma points than can be projected exactly and from which
the 2D conic can then be estimated.

matrix S ∈ R3×3, such that

Σ = RSSTRT (2)

In practice, both R and S are stored as vectors—a quater-
nion q ∈ R4 for the rotation and a vector s ∈ R3 for the
scaling. Each particle is also associated with an opacity co-
efficient, σ ∈ R, and a view-dependent parametric radiance
function ϕβ(d) : R3 → R3, with d the incident ray direc-
tion, which is in practice represented using spherical har-
monics functions of order m = 3.

Determining the Particle Response: Within the 3DGS
rasterization framework, the 3D particles first need to be
projected to the camera image plane in order to deter-
mine their contributions to the individual pixels. To this
end, 3DGS follows [57] and computes a covariance matrix
Σ′ ∈ R2×2 for a projected Gaussian in image coordinates
via first-order approximation as

Σ′ = J[:2,:3]WΣW TJT
[:2,:3] (3)

where W ∈ SE(3) transforms the particle from the world
to the camera coordinate system, and J ∈ R3×3 denotes
the Jacobian matrix of the affine approximation of the pro-
jective transformation, which is obtained by considering the
linear terms of its Taylor expansion. The Gaussian response
of a particle i for a position x ∈ R3 can then be computed
in 2D from its projection on the image plane vx ∈ R2 as

ρi(x) = exp(−1

2
(vx − vµi)

TΣ′−1
i (vx − vµi)) (4)

where vµi
∈ R2 denotes the projected mean of the particle.



Volumetric Particle Rendering: The color c ∈ R3 of a
camera ray r(τ) = o+τd with origin o ∈ R3 and direction
d ∈ R3 can be rendered from the above volumetric particle
representation using numerical integration

c(o,d) =

N∑
i=1

ci(d)αi

i−1∏
j=1

1− αj , (5)

where N denotes the number of particles that contribute
to the given ray and opacity αi ∈ R is defined as αi =
σiρi(o+ τd) for any τ ∈ R+.

4. Method
Our aim is to extend 3DGS [18] and 3DGRT [34] methods
by developing a formulation that:
• accommodates highly distorted cameras and time-

dependent camera effects, such as rolling shutter,
• unifies the rendering formulation to allow the same recon-

structions to be rendered using either splatting or tracing,
enabling hybrid rendering with traced secondary rays,

all while preserving the efficiency of rasterization. We
begin by detailing our approach to bypass the lineariza-
tion steps of 3DGS [18] in Sec. 4.1, followed by an ap-
proach to evaluate the particles in order and directly in 3D
(Sec. 4.2). The former enables support for complex cam-
era models, while the latter aligns the rendering formulation
with 3DGRT [34].

4.1. Unscented Transform

As illustrated in Fig. 2, the EWA splatting formulation used
in 3DGS for projecting 3D Gaussian particles onto the cam-
era image plane relies on the linearization of the affine ap-
proximation of the projective transform (Eq. (3)). This ap-
proach, however, has several notable limitations: (i) it ne-
glects higher-order terms in the Taylor expansion, leading
to projection errors even with perfect pinhole cameras [14],
and these errors increase with camera distortion; (ii) it re-
quires deriving a new Jacobian for each specific camera
model (e.g., the equidistant fisheye model in [25]), which
is cumbersome and error prone; (iii) it necessitates repre-
senting the projection as a single function, which is par-
ticularly challenging when accounting for time-dependent
effects such as rolling shutter.

To overcome these limitations, we leverage the idea of
the Unscented Transform (UT) and propose to instead ap-
proximate the volumetric N -dimensional particle using a
set of carefully selected Sigma points. Generally, 2N + 1
points are required to match at least the first three moments
of the target distribution. Consider the 3D Gaussian scene
representation described in Sec. 3, where particles are char-
acterized by their position µ and covariance matrix Σ, the
Sigma points X = {xi}6i=0 are then defined as

xi =


µ for i = 0

µ+
√

(3 + λ)Σ
[i]

for i = 1, 2, 3

µ−
√
(3 + λ)Σ

[i−3]
for i = 4, 5, 6

(6)

using the available factorization Eq. (2) of the covariance
to read of the matrix square-root.

Their corresponding weights W = {wi}6i=0 are given as

wµ
i =

{
λ

3+λ for i = 0

1
2(3+λ) for i = 1, . . . , 6

(7)

wΣ
i =

{
λ

3+λ + (1− α2 + β) for i = 0

1
2(3+λ) for i = 1, . . . , 6

(8)

where λ = α2(3 + κ)− 3, α is a hyperparameter that con-
trols the spread of the points around the mean, κ is a scaling
parameter typically set to 0, and β is used to incorporate
prior knowledge about the distribution [48].

Each Sigma point can then be independently projected
onto the camera image plane using the non-linear projection
function vxi = g(xi). The 2D conic can subsequently be
approximated as the weighted posterior sample mean and
covariance matrix of the Gaussian:

vµ =

6∑
i=0

wµ
i vxi (9)

Σ′ =

6∑
i=0

wΣ
i (vxi

− vµ)(vxi
− vµ)

T (10)

With the 2D conic computed, we can apply the same
tiling and culling procedures as proposed by [18, 37] to
determine which particles influence which pixels. As de-
scribed in the following section, our particle response eval-
uation does not depend on the 2D conic. Instead, UT only
acts as an acceleration structure to efficiently determine the
particles that contribute to each pixel thus avoiding the need
for computing the backward pass through the non-linear
projection function.

4.2. Evaluating Particle Response

Once the Gaussian particles contributing to each pixel have
been identified, we need to determine how to evaluate their
response. Following 3DGRT [34], we evaluate particles di-
rectly in 3D by using a single sample located at the point of
maximum particle response along a given ray.

A comparison between 3DGS’s 2D conic response eval-
uation method and our 3D response evaluation method is
provided in Fig. 3. Specifically, we compute the distance
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Figure 3. For a given ray, 3DGS [18] evaluates the response of the
Gaussian particle in 2D after the projection onto the camera image
plane. This requires backpropagation through the (approximated)
projection function. Instead, we follow [34] and evaluate particles
in 3D at the point of the maximum response along the ray.

τmax = argmaxτρ(o+ τd), which maximizes the particle
response along the ray r(τ), as

τmax =
(µ− o)TΣ−1d

dTΣ−1d
=

−oT
g dg

dT
g dg

(11)

where og = S−1RT (o− µ) and dg = S−1RTd.
Unlike 3DGS, which performs particle evaluations in

2D, our approach avoids propagating gradients through the
projection function, thereby avoiding the approximations
and mitigating potential numerical instabilities. Due to lim-
ited space, we provide the derivation of the numerically sta-
ble backward pass in the Supplementary Material Sec. B.

4.3. Sorting Particles

The proposed volumetric rendering formulation, i.e. both
the rendering equation Eq. (5) and the particle evaluation
Eq. (11), is equivalent to the one used in 3DGRT. However,
while 3DGRT is able to collect the hit particles in their ex-
act τmax order along the ray thanks to a dedicated accelera-
tion structure [36], 3DGS sorts them globally for each tile.
In order to get a better approximation of the τmax order we
propose to use the multi-layers alpha blending approxima-
tion (MLAB) [41] following [37].1 It consists in storing the
per-ray k-farthest hit particles (typically using k = 16) in a
buffer. The closest hits which cannot be stored in the buffer
are incrementally alpha-blended until the transmittance of
the blended part vanishes.

As an alternative, the hybrid transparency (HT) blending
strategy [32] has been recently used for splatting Gaussian
particles [13]. Instead of storing the k-farthest hit particles
and incrementally blending the closest hits, HT stores the k-
closest and incrementally blends the farthest hits. This per-
mits to recover the exact k-closest hit particles, but requires
to go through all particles, which may be prohibitively slow
without dedicated optimizations and heuristics.

1StopThePop [37] denotes MLAB as the k-buffer approach.

4.4. Implementation and Training

We build on the work of [18, 34] and implemented our
method in PyTorch, using custom CUDA kernels for the
compute-intensive parts. Additionally, we employ ad-
vanced culling strategies proposed by Radl et al. [37].
Unless otherwise specified, we adopt all parameters from
3DGS [18] to ensure a fair comparison and keep them con-
sistent across all evaluations.

Similar to [34] we don’t have access to 2D screen space
gradients, so we follow 3DGRT [34] and replace them with
the 3D positional gradients divided by half of the distance
to the camera and perform densification and pruning every
300 iterations. For the UT, we set α = 1.0, β = 2.0 and
κ = 0.0 in all evaluations. We train our model for 30k
iterations using the weighted sum of the L2-loss L2 and the
perceptual loss LSSIM sucht that L = L2 + 0.2LSSIM.

5. Experiments and Ablations

In this section, we first evaluate the proposed approach on
standard novel-view synthesis benchmark datasets [1, 21],
analyzing both quality and speed. We additionally eval-
uate our method on an indoor dataset captured with fish-
eye cameras [55], as well as an autonomous driving dataset
captured using distorted cameras with rolling shutter ef-
fect [46]. Ablation studies on key design choices and ad-
ditional details on experiments and implementation are pro-
vided in the Supplementary Material.

Model Variants. In the following evaluation, we will re-
fer to two variants of our method. We use Ours to denote
the version that extends 3DGS [18] with the UT formula-
tion (Sec. 4.1) and particle evaluation in 3D (Sec. 4.2). The
second variant Ours (sorted) additionally uses the per-ray
sorting strategy as detailed in Sec. 4.3 that leads to unifica-
tion with 3DGRT [34] .

Metrics. We evaluate the perceptual quality of the novel
views using peak signal-to-noise ratio (PSNR), learned per-
ceptual image patch similarity (LPIPS), and structural sim-
ilarity (SSIM) metrics. To assess performance, we measure
the time required for rendering a single image, excluding
any overhead from data storage or visualization. For all
evaluations, we use the datasets’ default resolutions and re-
port frames per second (FPS) measured on a single NVIDIA
RTX 6000 Ada GPU.

Baselines. There have been many follow up works that
improve or extend 3DGS in different aspects [7, 13, 20,
29, 56]. Many of these improvements are compatible with
our approach, so we limit our comparison to the origi-
nal 3DGS [18] and StopThePop [37] as the representative
splatting methods, along with 3DGRT [34] and EVER [30]
as volumetric particle tracing methods that natively sup-
port distorted cameras and secondary lighting effects. On
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Figure 4. Qualitative comparison of our novel-view synthesis results against the baselines on the MipNERF360 dataset [1].

Table 1. Quantitative results of our approach and baselines on the MipNERF360 [1] and Tanks & Temples [21] datasets.

Method\Metric Complex
Cameras

Without
Popping

MipNeRF360 Tanks & Temples
PSNR↑ SSIM↑ LPIPS↓ FPS ↑ PSNR↑ SSIM↑ LPIPS↓ FPS ↑

ZipNeRF [2] ✓ / 28.54 0.828 0.219 0.2 / / / /

3DGS [18] ✗ ✗ 27.26 0.803 0.240 347 23.64 0.837 0.196 476
Ours ✓ ✗ 27.26 0.810 0.218 265 23.21 0.841 0.178 277

StopThePop [37] ✗ ✓ 27.14 0.804 0.235 340 23.15 0.837 0.189 482
3DGRT [34] ✓ ✓ 27.20 0.818 0.248 52 23.20 0.830 0.222 190
EVER [30] ✓ ✓ 27.51 0.825 0.233 36 / / / /
Ours (sorted) ✓ ✓ 27.26 0.812 0.215 200 22.90 0.844 0.172 272

Table 2. Detailed timings on the MipNeRF360 [1] dataset

Timings in ms Preprocess Duplicate Sort Render Total

3DGS [18] 0.59 0.34 0.55 1.27 2.88
Ours 1.34 0.31 0.33 1.61 3.77

StopThePop [37] 0.57 0.27 0.14 1.83 2.94
3DGRT [34] / / / 19.24 19.24
Ours (sorted) 1.24 0.47 0.24 2.85 4.98

the dataset captured with fisheye cameras, we compare our
method to FisheyeGS [25] which extended 3DGS to fisheye
cameras by deriving the Jacobian of the equidistant fish-
eye camera model. In addition to volumetric particle-based
methods, we also compare our approach to state-of-the-art
NeRF method ZipNeRF [2].

5.1. Novel View Synthesis Benchmarks

MipNeRF360 [1]. is the most popular novel-view synthe-
sis benchmark consisting of nine large scale outdoor and
indoor scenes. Following prior work, we used the images
downsampled by a factor of four for the outdoor scenes, and
by a factor of two for the indoor scenes. To enable compar-
ison with other splatting method, we use rectified images

provided by Kerbl et al. [18].
Tab. 1 depicts the quantitative comparison, while the

qualitative comparison on selected scenes is provided in
Fig. 4. As anticipated, on this dataset with perfect pinhole
inputs, both Ours and Ours (sorted) achieve comparable
perceptual quality to other splatting and tracing methods.
In terms of inference runtime Tab. 1, our method achieves
comparable frame rates to 3DGS [18], while greatly out-
performing all other methods that support complex cam-
eras at more than 265FPS while the closest competitor,
3DGRT [34], achieves 52FPS.

Tanks & Temples [21]. contains two large-scale outdoor
scenes where the camera circulates around a prominent ob-
ject (Truck and Train). Both scenes include lighting vari-
ations, and the Truck scene also contains transient objects
that should ideally be ignored by reconstruction methods.
Tab. 1 depicts the quantitative comparison while the quali-
tative results are provided in the Supplementary Material.

Scannet++ [55]. is a large-scale indoor dataset captured
with a fisheye camera at a resolution of 1752 × 1168 pix-
els. For our evaluation, we use the same six scenes as
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Figure 5. Comparison of our renderings against Fisheye-GS [25],
on scenes from the Scannet++ dataset [55].

Table 3. When evaluated on a dataset acquired with equidistant
fisheye cameras, our general method outperforms [25] which de-
rived the linerization for this specific camera model. Undistortion
removes large parts of the original images and results in underob-
served regions [18]. Results marked with † are taken from [25].

Method\Metric Scannet++
PSNR↑ SSIM↑ LPIPS↓ N. Gaussians↓

3DGS† 22.76 0.798 / 1.31M
FisheyeGS† [25] 27.86 0.897 / 1.25M
FisheyeGS [25] 28.15 0.901 0.261 1.07M
Ours (sorted) 29.11 0.910 0.252 0.38M

FisheyeGS [25] and follow the same pre-processing steps.
Specifically, we convert the images to an equidistant fisheye
camera model to match the requirements of [25]. 2

On this dataset, we compare Ours to FisheyeGS [25] and
3DGS [25]. The results for the latter are taken from [25]
where they were obtained by: (i) undistorting the training
images and training with the official 3DGS [18] implemen-
tation, and (ii) rendering equidistant fisheye test views from
that representation using the FisheyeGS [25] formulation.
This setting is unfavorable for 3DGS [25] as significant
portions of the images are lost during undistortion, but it
highlight the problem of being limited to perfect pinhole
cameras. The quantitative comparison is shown in Tab. 3
and qualitative results are provided in Fig. 5. Ours sig-
nificantly outperforms FisheyeGS [25] across all percep-
tual metrics, while using less than half the particles (1.07M
vs. 0.38M). This result underscores the flexibility and po-
tential of our approach. Despite FisheyeGS [25] deriv-
ing a Jacobian for this particular camera model—limiting
its applicability even to similar models (e.g., fisheye with
distortions)—it still underperforms our simple formulation
that can be trivially applied to any camera model.

2Note that our method seamlessly supports the full fisheye camera
model without any code modifications.

Figure 6. Qualitative comparison of our novel-view synthesis re-
sults against 3DGRT on the Waymo dataset [46].

Camera Motion Directions

f0f1f2f3f4
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(b) Ours (sorted) (c) 3DGS

PSNR:48.26 PSNR:46.68
SSIM:0.997 SSIM:0.996
LPIPS:0.005 LPIPS:0.010

(a) 3DGRT

PSNR:48.70 PSNR:47.03
SSIM:0.998 SSIM:0.997
LPIPS:0.003 LPIPS:0.007

Figure 7. Multiple frame tiles fi of a single solid box rendered by a
left- and right-panning rolling shutter camera with a top-to-bottom
shutter direction illustrate this time-dependent sensor effect (data
from [34]). While ray-tracing-based methods like 3DGRT natu-
rally support compensating for these time-dependent effects (a),
traditional splatting methods struggle to model these (c), whereas
our UT-based splatting formulation faithfully incorporates the sen-
sor’s motion into the projection formulation and recuperates the
true undistorted geometry (b).

Waymo [46]. is a large scale autonomous driving dataset
captured using distorted cameras with rolling-shutter. We
follow 3DGRT [34] and select 9 scenes with no dynamic ob-
jects to ensure accurate reconstructions. Fig. 6 show quali-
tative results. Ours (sorted) can faithfully represent com-
plex camera mounted on a moving platform and reaches
comparable performance to 3DGRT [34]. More results are
provided in the Supplementary Material.

6. Applications

3DGUT also enables novel applications and techniques that
were previously unattainable with particle scene representa-
tion within a rasterization framework.

6.1. Complex cameras

Distorted Camera Models. Projection of particles using
UT enables 3DGUT not only to train with distorted cam-
eras, but also to render different camera models with vary-
ing distortion from scenes that were trained using perfect
pinhole camera inputs (Fig. 9 top row).

Rolling Shutter. Apart from the modeling of distorted
cameras, 3DGUT can also faithfully incorporate the cam-
era motion into the projection formulation, hence offering
support for time-dependent camera effects such as rolling-
shutter, which are commonly encountered in the fields of
autonomous driving and robotics. Although optical distor-



PSNR: 19.80

PSNR: 19.26 PSNR: 25.10

3DGRT 3DGS

Ours (sorted)StopThePop

Figure 8. Scenes trained with different methods and rendered us-
ing 3DGRT [34]. Our method is the most consistent with the trac-
ing approach, allowing for seamless hybrid rendering with splat-
ting for primary and tracing for secondary rays.

tion can be addressed with image rectification3, incorporat-
ing time-dependency of the projection function in the lin-
earization framework is highly non-trivial.

To illustrate the impact of rolling shutter on various re-
construction methods, in Fig. 7 we use the synthetic dataset
provided by Moenne-Loccoz et al. [34] where the motion of
the camera and the shutter time are provided.

6.2. Secondary rays and lighting effects

Aligning the representation with 3DGRT [34]. The
rendering formulations of 3DGS and 3DGRT mainly dif-
fer in terms of (i) determining which particles contribute
to which pixels, (ii) the order of particles evaluation, and
(iii) the computation of the particles response. In Secs. 4.2
and 4.3, our goal was to reduce these differences to arrive
at a common 3D representation that can be both rasterized
and traced. Fig. 8 shows the comparison of 3D represen-
tations trained with different methods and evaluated with
3DGRT [34]. While some discrepancies naturally remain,
Ours (sorted) achieves much better alignment with 3DGRT
than StopThePop or 3DGS.

Secondary rays. Aligning our rendering formulation to
3DGRT [34] enables hybrid rendering by rasterizing the
primary and tracing the secondary rays within the same
representations. Specifically, we first compute all the pri-
mary rays intersections with the scene, then render these
primary rays using rasterization and discard Gaussian hits
that fall behind a ray’s closest intersection. Next, we com-
pute and trace the secondary rays using 3DGRT. This hy-
brid rendering method allows us to achieve complex visual
effects, such as reflections and refractions, that would oth-
erwise only be possible with ray tracing.

3Image rectification is generally effective only for low-FoV cameras
and results in information loss, as shown in Tab. 3.

Figure 9. Illustration of the effects unlocked by our method. Top-
left: rendering an image with rolling-shutter. Top-right : applying
a strong lens distortion. Bottom : hybrid splatting / tracing render-
ing. Primary rays are splatted using our method while secondary
rays are traced using 3DGRT [34]. This hybrid formulation allows
us to simulate refraction (left) and reflections (right).

7. Discussion
We proposed a simple idea to replace the linearization of the
non-linear projection function in 3DGS [18] with the Un-
scented Transform. This modification enables us to seam-
lessly generalize 3DGS to distorted cameras, support time-
dependent effects such as rolling shutter, and align our ren-
dering formulation with 3DGRT [34]. The latter enables us
to perform hybrid rendering and unlock secondary rays for
lighting effects.
Limitations and Future Work. Our method is signifi-
cantly more efficient than ray-tracing-based methods [7, 30,
34], but it is still marginally slower than [18] (see details
in Tab. 2). While being more general, the UT evaluation
and the added complexity of 3D particle evaluation impact
rendering times. Additionally, although UT permits exact
projection of sigma points under arbitrary distortions, the
resulting projected shape deviates from a 2D Gaussian in
case of large distortions. This degrades the approximation
of which particles contribute to which pixels. Finally, as our
method still uses a single point to evaluate each primitive,
it is currently unable to render overlapping Gaussians accu-
rately. Approaches such as EVER [30] may offer promising
directions for addressing this limitation. Looking ahead, we
hope that this work could inspire new research, particularly
in fields like autonomous driving and robotics, where train-
ing and rendering with distorted cameras is essential. Our
alignment with 3DGRT [34] also opens interesting opportu-
nities for future research in inverse rendering and relighting.
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3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting
Supplementary Material

In this supplementary material, we present an extension to
generalized Gaussian particles (Sec. A), derive a numer-
ically stable scheme for computing the partial derivative
through the proposed 3D particle evaluation (Sec. B, cf.
Sec. 4.2), and provide further ablations of the proposed
UT-based rasterization (Sec. C). We also include details on
autonomous vehicle dataset reconstructions (Sec. D). Fi-
nally, we summarize the Gaussian rasterization algorithm
and demonstrate that our method serves as a drop-in re-
placement for a small part of it (Sec. E).

A. Generalized Gaussian Particles

In 3DGRT [34] the authors propose to use particles with dif-
ferent kernel functions and their most efficient approach is
based on a generalized Gaussians of degree 2. In Tab. 4 we
demonstrate that our approach supports different particles
as well. Different to [34], we define a generalized Gaus-
sians kernel function of degree n as

ρ(x) = exp(−λ((x− µ)TΣ−1(x− µ))
n
2 ) (12)

with λ = r2

rn a scale factor defined to get the same kernel re-
sponse at a given distance r as the reference Gaussian kernel
(we use r = 3). Note that 3DGRT generalized Gaussians
of degree 2 corresponds to our generalized Gaussians kernel
of degree 4.

Figure 10. Rendering the same generalized Gaussian particle with
different degrees. Higher degree particles are denser and have a
steeper and narrower fall-off.

Fig. 10 illustrates the effect of using a different kernel
function on the particle extent and density. Tab. 4 shows
how the degree of the generalized Gaussian kernel function
permits to better control the trade-off between the rendering
quality and speed.

B. Derivation of Backward Gradients

In the following, we provide a step-by-step derivation of
∂α/∂µ. The derivations of ∂α/∂S and ∂α/∂R follow
analogously.

Remember that α = σρ(o + τmaxd) and consider that

Table 4. Quality and speed tradeoffs computed on MipN-
ERF360 [1] (excluding flower and treehill for fair comparison with
3DGRT) for various particle generalized Gaussian kernel func-
tions. Note that our kernel of degree= 4 corresponds to the gener-
alized Gaussian of degree= 2 proposed in 3DGRT [34].

MipNERF360
Ours (sorted) 3DGRT

Kernel function PSNR↑ FPS↑ PSNR↑ FPS↑

Degree = 2 (Gaussian) 28.77 207 28.69 55
Degree = 3 28.71 217 / /
Degree = 4 (3DGRT) 28.46 233 28.71 78
Degree = 5 28.33 238 / /
Degree = 8 27.63 243 / /

τmax can be defined in the canonical Gaussian space as

τmaxg = −oT
g

dg

||dg||
, (13)

where og = S−1RT (o−µ) and dg = S−1RTd denote the
ray origin and ray direction expressed in Gaussian canoni-
cal space, respectively. An illustration of the geometric re-
lationship between values is provided in Fig. 11.

Let ω2
g = ||og + τmaxg

dg

||dg|| ||
2 denote the squared dis-

tance from the Gaussian particle center to the point of max-
imum response such that α = σe−0.5ω2

g . The partial deriva-
tives can be computed as

∂α

∂ω2
g

= −0.5σe−0.5ω2
g (14)

∂ω2
g

∂og
= 2og + 2τmaxg

dg

||dg||
(15)

∂og

∂µ
= −S−1RT (16)

C. Gaussian Projection Quality
While Monte Carlo sampling (cf. Fig. 2) is expensive to
compute, it provides accurate reference distributions for
assessing the quality of both EWA and the proposed UT-
based projection methods. This assessment can be quanti-
fied using the Kullback–Leibler (KL) divergence between
both 2d distributions, where lower KL values indicate the
projected Gaussians better approximate the reference pro-
jections. In Fig. 14, we evaluate the KL divergence for a
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Figure 11. An illustration of the geometric transformation of a
Gaussian from world space to canonical Gaussian space.
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Figure 12. KL divergence to Monte Carlo for equidistant fisheye
cameras.
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Figure 13. KL divergence to Monte Carlo under radial distortion
and rolling shutter.

fixed reconstruction (MipNERF360 bicycle [1]). Specif-
ically, for each visible Gaussian, we compare the projec-
tions obtained using either method under different camera
and pose configurations against MC-based references (us-
ing 500 samples per reference). The resulting KL diver-
gence distributions are visualized in the histograms at the
bottom.

While both distributions of divergences are consistent for
the static pinhole camera case (first column), UT-based pro-
jections are more accurate compared to EWA-based esti-
mates for the static fisheye camera case (third column), in-
dicating that UT yields a better approximation in case of
higher non-linearity of the projection. For rolling-shutter
(RS) camera poses (second and fourth columns), RS-aware
UT-based projections still approximate the RS-aware MC
references well. In contrast, RS-unaware EWA lineariza-
tions break down and fail to approximate this case (his-
togram domains are capped to 0.04 for clearer visualization,
but the EWA-based projections have a long tail distribution
of larger KL values still). The tearing artifacts observed in
EWA-based RS renderings arise from these inaccurate pro-
jections, leading to incorrect pixel-to-Gaussian associations

Table 5. On the Waymo [46] autonomous vehicles dataset that was
captured with distorted camera model and rolling-shuter sensor,
our method achieves better quality compared to 3DGRT [34]. Note
that 3DGS [18] requires the training and evaluation to be done on
rectified images without rolling shutter effects and is hence not
directly comparable.

Method\Metric Waymo
PSNR↑ SSIM↑

3DGS [18] 29.83 0.917

3DGRT [34] 29.99 0.897
Ours (sorted) 30.16 0.900

during the volume rendering step.

Additionally, we provide quantitative evaluation of dis-
tortion effects. Fig. 12 further illustrates the KL diver-
gence relative to MC projection across different FoV using
an equidistant fisheye camera model. Our approach pro-
vides more accurate approximations than even the custom-
derived Jacobian employed for EWA splatting. Fig. 13
shows the same comparison under increasing radial dis-
tortion and RS. For EWA we use the Jacobian from [18],
which does not account for these additional distortions.
While one could derive a custom Jacobian for radial dis-
tortion, linearizing the RS effect is non-trivial. In contrast,
our general UT-based method maintains virtually the same
median KL divergence regardless of the distortion param-
eter k2 = 0.0 (KLmedian = 4.4 × 10−3) and k2 = 0.5
(KLmedian = 4.3 × 10−3) and similarly remains consistent
under RS lateral translations of 0.0 (KLmedian = 4.4×10−3)
and 0.35 (KLmedian = 4.6× 10−3).

D. Waymo Autonomous Vehicle Dataset

For comparison on the Waymo Open Perception
dataset [46], we follow [34] and select 9 static scenes.
Images in the dataset are captured using a distorted
camera with rolling shutter sensor, mounted on the front
of the vehicle. To adapt to this dataset, we incorpo-
rated additional losses for lidar depth and image opacity,
combining them as a weighted sum: the L1-loss Ldepth

1

for depth and the L2-loss Lopacity
2 for opacity, such that

Lwaymo = L + 0.001Ldepth
1 + 0.05Lopacity

2 , where L is the
loss function defined in Sec. 4.4. We initialized scenes
using a colored point cloud generated by combining
screen-projected lidar points with camera data. For the
case of 3DGS [18], we rectify the images and ignore the
rolling shutter effects following [6]. For 3DGRT [34] and
our method, we make use of the full camera model and
compute the rolling shutter effect correctly. The quantative
results are reported in Tab. 5 and qualitative visualizations
are available in Fig. 15.



Pinhole Camera, Static Pose Pinhole Camera, RS Poses Fisheye Camera, Static Pose Fisheye Camera, RS Poses

EWA

UT

Figure 14. Gaussian Projection Quality: for both distortion-free pinhole and fisheye camera models, as well as static and rolling-shutter (RS,
top-top-bottom shutter direction) poses, we evaluate the Kullback–Leibler (KL ↓) divergence of each Gaussian projected using either EWA
(•) or UT-based (•) projections against Monte-Carlo-based reference projection. The distribution of KL-divergences for each rendering is
shown in the histograms below

Algorithm 1 RASTERIZE

Input: Gaussian parameters: {µi,Ri,Si, σi}Ni=1,
camera extrinsic W , camera intrinsic D

Output: 2D Means: vµi , 2D AABBs: ri
1: for i in 1 . . . N do ▷ iterate over the particles
2: vµi

,Σ′
i = Estimate2DGaussian(µi,Ri,Si,W ,D)

3: hi = Extent(Σ′
i, σi)

4: ▷ use opacity to compute a tighter 2D extent
5: ri = ComputeRectangle(hi,vµi)
6: ▷ 2D rectangle used for tile-based rasterization

Algorithm 2 ESTIMATE2DGAUSSIAN

Input: Gaussian parameters: µ,R,S,
camera extrinsic W , camera intrinsic D, α, β, κ

Output: 2D Mean: vµ, 2D Covariance: Σ′

1: λ = α2(3 + κ)− 3
2: x = SampleSigmaPoints(µ,R,S, λ) ▷ Eq. (6)
3: w = ComputeWeights(α, β, λ) ▷ Eqs. (7) and (8)
4: vx = ProjectPoints(x,W ,D) ▷ evaluate g(x)
5: vµ = EstimateMean(vx,w) ▷ Eq. (9)
6: Σ′ = EstimateCovariance(vµ,vx,w) ▷ Eq. (10)
7: return vµ Σ′

E. Gaussian Rasterization Algorithm
To show that our proposed UT-based projection can be used
as a drop-in replacement to the 3DGS rasterization pipeline,
we summarize their pipelines in terms of pseud-code in
Algs. 1 and 2. Note that we keep the Alg. 1 intact and only
adapt the the ESTIMATE2DGAUSSIAN function in Alg. 1.

F. Additional Experimental Results
In the main paper, Fig. 4 showcased a qualitative compar-
ison of our model against various baselines on the MipN-
eRF360 dataset [1]. Expanding on this, Fig. 16 provides
an additional comparison using a different dataset (Tanks
& Temples [21]). This figure highlights the qualitative per-
formance of our method alongside the baseline approaches:
3DGS [18], 3DGRT [34], and StopThePop [37]. The re-
sults demonstrate that our approach delivers comparable or
superior rendering quality.
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[11] Antoine Guédon and Vincent Lepetit. Gaussian frosting:
Editable complex radiance fields with real-time rendering.
ECCV, 2024. 2

[12] Fredrik Gustafsson and Gustaf Hendeby. Some relations be-
tween extended and unscented kalman filters. IEEE Trans-
actions on Signal Processing, 60(2):545–555, 2012. 2

[13] Florian Hahlbohm, Fabian Friederichs, Tim Weyrich, Li-
nus Franke, Moritz Kappel, Susana Castillo, Marc Stam-
minger, Martin Eisemann, and Marcus Magnor. Efficient
perspective-correct 3d gaussian splatting using hybrid trans-
parency, 2024. 5

[14] Letian Huang, Jiayang Bai, Jie Guo, Yuanqi Li, and Yan-
wen Guo. On the error analysis of 3d gaussian splat-
ting and an optimal projection strategy. arXiv preprint
arXiv:2402.00752, 2024. 2, 3, 4
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