
3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting

Supplementary Material

In this supplementary material, we present an extension to
generalized Gaussian particles (Sec. A), derive a numer-
ically stable scheme for computing the partial derivative
through the proposed 3D particle evaluation (Sec. B, cf.
Sec. 4.2), and provide further ablations of the proposed
UT-based rasterization (Sec. C). We also include details on
autonomous vehicle dataset reconstructions (Sec. D). Fi-
nally, we summarize the Gaussian rasterization algorithm
and demonstrate that our method serves as a drop-in re-
placement for a small part of it (Sec. E). Please refer to the
ACCOMPANYING VIDEO for more qualitative results.

A. Generalized Gaussian Particles

In 3DGRT [34] the authors propose to use particles with dif-
ferent kernel functions and their most efficient approach is
based on a generalized Gaussians of degree 2. In Tab. 4 we
demonstrate that our approach supports different particles
as well. Different to [34], we define a generalized Gaus-
sians kernel function of degree n as

⇢(x) = exp(��((x� µ)T⌃�1
(x� µ))

n
2 ) (12)

with � =
r2

rn a scale factor defined to get the same kernel re-
sponse at a given distance r as the reference Gaussian kernel
(we use r = 3). Note that 3DGRT generalized Gaussians
of degree 2 corresponds to our generalized Gaussians kernel
of degree 4.

Figure 10. Rendering the same generalized Gaussian particle with
different degrees. Higher degree particles are denser and have a
steeper and narrower fall-off.

Fig. 10 illustrates the effect of using a different kernel
function on the particle extent and density. Tab. 4 shows
how the degree of the generalized Gaussian kernel function
permits to better control the trade-off between the rendering
quality and speed.

B. Derivation of Backward Gradients

In the following, we provide a step-by-step derivation of
@↵/@µ. The derivations of @↵/@S and @↵/@R follow
analogously.

Table 4. Quality and speed tradeoffs computed on MipN-
ERF360 [1] (excluding flower and treehill for fair comparison with
3DGRT) for various particle generalized Gaussian kernel func-
tions. Note that our kernel of degree= 4 corresponds to the gener-
alized Gaussian of degree= 2 proposed in 3DGRT [34].

MipNERF360
Ours (sorted) 3DGRT

Kernel function PSNR" FPS" PSNR" FPS"

Degree = 2 (Gaussian) 28.77 207 28.69 55
Degree = 3 28.71 217 / /
Degree = 4 (3DGRT) 28.46 233 28.71 78
Degree = 5 28.33 238 / /
Degree = 8 27.63 243 / /

Remember that ↵ = �⇢(o + ⌧maxd) and consider that
⌧max can be defined in the canonical Gaussian space as

⌧maxg = �oT
g

dg

||dg||
, (13)

where og = S�1RT
(o�µ) and dg = S�1RTd denote the

ray origin and ray direction expressed in Gaussian canoni-
cal space, respectively. An illustration of the geometric re-
lationship between values is provided in Fig. 11.

Let !2
g = ||og + ⌧maxg

dg

||dg|| ||
2 denote the squared dis-

tance from the Gaussian particle center to the point of max-
imum response such that ↵ = �e�0.5!2

g . The partial deriva-
tives can be computed as

@↵

@!2
g

= �0.5�e�0.5!2
g (14)

@!2
g

@og
= 2og + 2⌧maxg

dg

||dg||
(15)

@og

@µ
= �S�1RT (16)

C. Gaussian Projection Quality

While Monte Carlo sampling (cf. Fig. 2) is expensive to
compute, it provides accurate reference distributions for as-
sessing the quality of both EWA and the proposed UT-based
projection methods. This assessment can be quantified us-
ing the Kullback–Leibler (KL) divergence between both 2d
distributions, where lower KL values indicate the projected
Gaussians better approximate the reference projections. In
Fig. 12, we evaluate the KL divergence for a fixed recon-
struction (MipNERF360 bicycle [1]). Specifically, for
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Figure 11. An illustration of the geometric transformation of a
Gaussian from world space to canonical Gaussian space.

each visible Gaussian, we compare the projections obtained
using either method under different camera and pose config-
urations against MC-based references (using 500 samples
per reference). The resulting KL divergence distributions
are visualized in the histograms at the bottom.

While both distributions of divergences are consistent for
the static pinhole camera case (first column), UT-based pro-
jections are more accurate compared to EWA-based esti-
mates for the static fisheye camera case (third column), in-
dicating that UT yields a better approximation in case of
higher non-linearity of the projection. For rolling-shutter
camera poses (second and fourth columns), RS-aware UT-
based projections still approximate the RS-aware MC ref-
erences well. In contrast, RS-unaware EWA linearizations
break down and fail to approximate this case (histogram
domains are capped to 0.04 for clearer visualization, but
the EWA-based projections have a long tail distribution of
larger KL values still). The tearing artifacts observed in
EWA-based RS renderings arise from these inaccurate pro-
jections, leading to incorrect pixel-to-Gaussian associations
during the volume rendering step.

D. Waymo Autonomous Vehicle Dataset

For comparison on the Waymo Open Perception
dataset [46], we follow [34] and select 9 static scenes.
Images in the dataset are captured using a distorted
camera with rolling shutter sensor, mounted on the front
of the vehicle. To adapt to this dataset, we incorpo-
rated additional losses for lidar depth and image opacity,
combining them as a weighted sum: the L1-loss Ldepth

1

for depth and the L2-loss Lopacity
2 for opacity, such that

Lwaymo
= L + 0.001Ldepth

1 + 0.05Lopacity
2 , where L is the

loss function defined in Sec. 4.4. We initialized scenes
using a colored point cloud generated by combining
screen-projected lidar points with camera data. For the
case of 3DGS [18], we rectify the images and ignore the
rolling shutter effects following [6]. For 3DGRT [34] and
our method, we make use of the full camera model and

Table 5. On the Waymo [46] autonomous vehicles dataset that was
captured with distorted camera model and rolling-shuter sensor,
our method achieves better quality compared to 3DGRT [34]. Note
that 3DGS [18] requires the training and evaluation to be done on
rectified images without rolling shutter effects and is hence not
directly comparable.

Method\Metric Waymo
PSNR" SSIM"

3DGS [18] 29.83 0.917

3DGRT [34] 29.99 0.897
Ours (sorted) 30.16 0.900

compute the rolling shutter effect correctly. The quantative
results are reported in Tab. 5 and qualitative visualizations
are available in Fig. 13.

E. Gaussian Rasterization Algorithm

To show that our proposed UT-based projection can be used
as a drop-in replacement to the 3DGS rasterization pipeline,
we summarize their pipelines in terms of pseud-code in
Algs. 1 and 2. Note that we keep the Alg. 1 intact and only
adapt the the ESTIMATE2DGAUSSIAN function in Alg. 1.

Algorithm 1 RASTERIZE

Input: Gaussian parameters: {µi,Ri,Si,�i}Ni=1, camera
extrinsic W , camera intrinsic D

Output: 2D Means: vµi , 2D AABBs: ri
1: for i in 1 . . . N do . iterate over the particles
2: vµi ,⌃

0
i = Estimate2DGaussian(µi,Ri,Si,W ,D)

3: hi = Extent(⌃0
i,�i) . use opacity to compute a

tighter 2D extent
4: ri = ComputeRectangle(hi,vµi) . 2D rectangle

used for tile-based rasterization

Algorithm 2 ESTIMATE2DGAUSSIAN

Input: Gaussian parameters: µ,R,S, camera extrinsic
W , camera intrinsic D, ↵, �, 

Output: 2D Mean: vµ, 2D Covariance: ⌃0

1: � = ↵2
(3 + )� 3

2: x = SampleSigmaPoints(µ,R,S,�) . Eq. (6)
3: w = ComputeWeights(↵,�,�) . Eqs. (7) and (8)
4: vx = ProjectPoints(x,W ,D) . evaluate g(x)
5: vµ = EstimateMean(vx,w) . Eq. (9)
6: ⌃0

= EstimateCovariance(vµ,vx,w) . Eq. (10)
7: return vµ ⌃0
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Figure 12. Gaussian Projection Quality: for both distortion-free pinhole and fisheye camera models, as well as static and rolling-shutter (RS,
top-top-bottom shutter direction) poses, we evaluate the Kullback–Leibler (KL #) divergence of each Gaussian projected using either EWA
(•) or UT-based (•) projections against Monte-Carlo-based reference projection. The distribution of KL-divergences for each rendering is
shown in the histograms below

F. Additional Qualitative Results

In the main paper, Fig. 4 showcased a qualitative compar-
ison of our model against various baselines on the MipN-
eRF360 dataset [1]. Expanding on this, Fig. 14 provides
an additional comparison using a different dataset (Tanks
& Temples [21]). This figure highlights the qualitative per-
formance of our method alongside the baseline approaches:
3DGS [18], 3DGRT [34], and StopThePop [37]. The re-
sults demonstrate that our approach delivers comparable or
superior rendering quality.
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