
3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations

Kangxue Yin1 Jun Gao1,2,3 Maria Shugrina1 Sameh Khamis1 Sanja Fidler1,2,3

NVIDIA1 University of Toronto2 Vector Institute3

{kangxuey, jung, mshugrina, skhamis, sfidler}@nvidia.com

A. Appendices

A.1. Qualitative Results and Failure Cases

In the attached video “supp.mp4”, we provide qual-
itative comparison rendered in a rotating camera view.
We also provide more example failure cases of our
method in the video(1:38). These cases include distor-
tions caused by wrong segmentation(1:40), dramatic differ-
ence in parts(1:46), lack of regularization for man-made ob-
ject(1:57).

To assist the readers in assessing the results shown in Fig
5 of the paper, we further render the examples in different
camera view and provide them in Figure 1.

Visualization. In Figure 2 3 4, we provide additional vi-
sualization of part segmentation and ellipsoid prediction.

A.2. User Study

We conducted a user study through Amazon Mechanical
Turk where users were asked to compare our results against
using Neural Cage [10] and Style Transfer [5] combined.
We generated 2000 videos of the source and target models
for both the Animals dataset and the People dataset. For
both cases we labeled the original models A and B, and the
two stylized models, the hybrid animals or people, C and D.
Our study setup is randomized such that in half the videos
our model is hybrid C and in the other half it is hybrid D to
overcome what is known as left-side selection bias. We also
ran an additional study on People to test for model quality
and identity preservation. The Animals study form that we
presented to our users is shown in Figure 5.

Animals Dataset. When asked whether the stylized ani-
mal models are closer to the target shape or closer to the
source shape, 41.9% of users reported that our model is
closer to the target than it is to the source, compared to only
26.8% for the baseline model. 69.6% of users thought our
generated colors and patterns are closer to animal B than
those of the baseline, and 63.4% reported that our model
has more similar shape and body proportions to the target

than those of the baseline. However, only 51.2% reported
that our model is more unique than the baseline and 53.1%
reported that our overall shape is more of a blend of the two
shapes compared to the baseline.

People Dataset. While slightly more users thought our
generated results had colors, patterns, and proportions
closer to the target shape, the vast majority of the results
on RenderPeople were a close tie. We hypothesize that this
is because we are all so attuned to the appearance of humans
that it is likely a specialized technique for human stylization
would be required to perform any better.

A.3. Qualitative comparison with 2D-to-3D style
transfer

Directly transferring image style to 3D shapes cannot
yield our desired 3D object-to-object style transfer results.
To show that, we run a simple experiment, shown in Fig-
ure 7, where we use [3] to transfer the style of a single-view
image of the target object(top row) to the source shape(first
column). Note that the source shapes do not have texture in
this experiment, as it is not supported by [3].

A.4. Implementation Details

Part segmentation. We segment animal shapes into 11
semantic parts, cars into 7 semantic parts, and people into 6
semantic parts. To train BAE-NET [1] for semi-supervised
segmentation, we manually labeled 32 animal shapes, 8 car
shapes, and 4 human shapes, respectively. The same hyper-
parameters and configuration to the original one-shot train-
ing setting reported in the paper of BAE-NET was used in
our training. Specifically, we first pre-train the BAE-NET
on the small set of labeled examples for 2000 iterations to
initialize the weights. After that, the network is further
trained alternately using unsupervised self-reconstruction
loss on unlabeled examples and supervised MSE loss on
labeled examples for 200k iterations.

We found that BAE-NET does not perform well on small
parts such as animal ears and car wheels. To solve this
challenge, we further provide weak supervision to BAE-
NET for the small parts. For example, for cars, we can

1



Figure 1: Qualitative comparison: Our method v.s. NeuralCage [10] + Linear Image Style Transfer [5].



Figure 2: Visualization of part segmentation and predicted ellipsoids for animals.

Figure 3: Visualization of part segmentation and predicted ellipsoids for cars.

tell whether a point in the point cloud of our ShapeNet
training shape is a wheel point or not by looking at its
original ShapeNet part annotation. We add a further loss
for weak supervision defined on the wheel labels. Let
us denote the probability of a point being wheel as p =
pLeftFront+pLeftBack+pRightFront+pRightBack, where
pLeftFront+pLeftBack+pRightFront+pRightBack are the
four-wheel probabilities predicted by BAE-NET. The weak
supervision is then defined as MSE(p, l), where l is the
ground-truth probability from ShapeNet annotations.

We do the same weak supervision for animal ears. How-
ever, since we do not have an animal dataset with ear an-
notation. We render all our animal shapes into multi-view
images, and train a semi-supervised DatasetGAN [11] to
predict ear labels for our rendered images. Then we project
the ear label back to the 3D shape via max-voting. Since
the segmentation is sometimes noisy, we manually screen
the ear labels, and only reserve 985 training shapes with
high-quality labels. A similar MSE loss is defined on the
animal ears of the 985 training shapes for providing weak
supervision for BAE-NET.

Geometric Network architecture. We show in Figure 6
the detailed architectures of the PVCNN [7] and MLP used
in our geometric style transfer network. As shown in the
figure, we have 4 PVConv layers in the PVCNN encoder.
The PVConv starts from voxelization resolution 32, and de-
creases it to 16, 8 and 1, while the feature getting aggre-
gated. The MLP has 4 fully-connected layers. We connect
the latent feature vectors to all the 4 FC layers in the net-
work. The output length of the last MLP layer is N × m,
where N is number of semantic parts, m is the number of
parameters needed for representing the ellipsoid and affine
transformations of each part.

In our implementation, each ellipsoid needs 9 parame-
ters representing R,S, T that generate it from a unit sphere,
and each affine transformation needs an additional 9 param-
eters as we have R,S, T for them as well. Thus, the animal
category requires 11 × (9 + 9) = 198 parameters as the
output of the last FC layer, and the people category requires
6 × (9 + 9) = 108 parameters. However, for the car cat-
egory, we reduce the number of parameters by letting the
four wheels share the same 3D scaling for their ellipsoids,



Figure 4: Visualization of part segmentation and predicted ellipsoids for people.

Figure 5: The survey form that we presented to Amazon Mechanical Turk users. The 3D objects are displayed rotating in 3D
within a continuously looping video.

and share the same uniform scaling in their affine transfor-
mations. The rotation transformation is also disabled for
car. Thus, car needs 3 ∗ 9 + 4 ∗ 6 + 3 = 54 parameters for
representing its ellipsoids, and needs 3 ∗ 6+ 4 ∗ 3+ 1 = 31
parameters for affine transformations.

Our shapes are normalized such that its the maximal di-
mension is 1.0. The default range for the ellipsoid transla-
tion in our network is [−0.5, 0.5], range for Euler angles is
[−0.5π, 0.5π], and range of ellipsoid radii is [0.1, 0.7]. The
default range for the translation in affine transformation is
[−0.5, 0.5], range for Euler angles is [−0.25π, 0.25π], and
range for scaling is is [0.5, 1.5]. We find if the range of radii
for ellipsoid is set to be small, the affine transformation field

can be discontinuous because of potentially thin Gaussians.
Joint Geometric and Texture Style transfer Unlike

[5], we use {relu11, relu12, relu13, relu14, relu15} lay-
ers of VGG for style loss, and {relu15} for content loss.
To ensure that the camera views cover the surface the ob-
ject, we initialize the camera with six orthogonal views,
and randomly rotate them with the same Euler angles in
each iteration of optimization. The texture image resolu-
tion is 512×512. The rendering resolution is 256×256. To
mask out the VGG features of background pixels. We start
from the binary mask in resolution 256×256 produced by
the renderer, and compute masks in lower resolutions for
deeper feature maps by max pooling.



source 

shape

target 

shape

Ellipsoids

(R, S, T)

Affine transformations 

on ellipsoids

fe
a
tu

re
s

fe
a
tu

re
s

PVConv
(16 x 16 x 16)

PVConv
(8 x 8 x 8)

512 512 512

256 x 2 Nxm

PVConv
(32 x 32 x 32)

Leaky
RELU

64
128

128

Leaky
RELU

Leaky
RELU

FC FC FC FC

PVCNN
MLP

PVConv
(1 x 1 x 1)

256

Figure 6: Detailed architectures of the PVCNN and MLP used in our geometric style network. The number below each
module/layer represents the output feature dimension.

Figure 7: 2D-to-3D style transfer where single-view image of the
target object is used as the style image. We use [3] as the method
for this experiment.

The teaser figure. The above details are consistently
used in the experiment section of the paper. However, since
the teaser figure was rendered before we finalized the de-
fault setting for the experiment section, it uses a different
setting which is not as good as the experiment setting. More
specifically, it uses a semi-supervised BAE-NET without
the hierarchical weak supervision described above for seg-
menting shapes. It does not use the geometric symmetry
loss described in the paper. And the range of ellipsoid radii
was [0.02, 0.7]. We found that thin ellipsoids and Gaussians
can cause distortions in the results(though it produces better
ellipsoids fitting), thus we increased the minimal ellipsoid
radius to 0.1 in the experiment section.

A.5. Data Augmentation Experiment

In this section, we first describe the implementation de-
tails and show how we train the single image reconstruction
network. Then, we present additional experiments on Sin-
gle Image 3D Reconstruction on Cars.

A.5.1 Training Details

Network Architecture: We adopt the network architec-
ture from DISN [9] for Single Image 3D Reconstruction.

We briefly summarize the architecture here and refer the
readers to the original paper [9] for more details. The net-
work has one VGG16 [8] backbone which encodes the im-
age to one global feature that represents the global context
of the image, and five feature maps in different scales. For
each location in 3D space, we project the 3D location into
the image plane using the intrinsics and extrinsics of the
camera, and grab the local feature through bilinear sam-
pling in the multi-scale feature maps. The network then
utilizes two branches to predict the occupancy for each 3D
location. The first branch is taking input of global feature,
concatenated with 3D coordinates, while the second branch
is taking input of the sampled local features with 3D coordi-
nates. The network simply adds two prediction to combine
the two branches. In addition to occupancy prediction in the
original DISN network [9], we also predict the RGB color
for each 3D location.

To determine the ground truth occupancy, we convert the
ground truth mesh to a watertight mesh using the pipeline
from Kaolin [2], and calculate the winding number for each
3D location. To determine the ground truth RGB color for
one 3D location, we find the closest point in the surface
of the ground truth mesh, and use the color of the closest
point as the ground truth color. The network is trained with
Binary Cross Entropy on the occupancy prediction, and the
Mean Squared Loss on the color prediction.

Training Settings: The network was trained using Adam
optimizer [4] with 1e-4 learning rate. We implement the
network using Pytorch and train on one NVIDIA-V100
GPU, the batch size is set to 8, and the whole training pro-
cess takes 2 days to converge. Note that, both the baselines
and our methods all use the same set of hyper-parameters
and network configurations, the only difference is in the
training dataset.

A.5.2 Additional Experiment Results

We first provide more quantative results on single image 3D
reconstruction on Animals in Table 3. The observations we
have in the main paper is consistent across other metrics.



Input No Aug. Random Aff. N. Cage [10] Random
COCO [6]

S. Trans. [5] N. C. [10] &
S. T. [5]

Our Geo Our Tex Our Geo +
Tex

Figure 8: Qualitative results on Single Image 3D reconstruction using DISN as the 3D reconstruction method and various 3D data
augmentation strategies.

We also provide quantitative results on single image 3D re-
construction on Cars in Table 1 and 2. Since most of the
cars have similar shapes, we can only categorize the test
into Seen Shapes and similar shapes based on the closest
chamfer distance to the training set. The qualitative results
can be found in Figure 8.

References

[1] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha
Chaudhuri, and Hao Zhang. Bae-net: Branched autoen-
coder for shape co-segmentation. Proceedings of Interna-
tional Conference on Computer Vision (ICCV), 2019. 1

[2] Krishna Murthy Jatavallabhula, Edward Smith, Jean-
Francois Lafleche, Clement Fuji Tsang, Artem Rozantsev,
Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja
Fidler. Kaolin: A pytorch library for accelerating 3d deep



Augmentation Method Chamfer ↓ Chamfer L1 ↓ F-score ↑
Seen Shapes Similar Shapes Seen Shapes Similar Shapes Seen Shapes Similar Shapes

No Data Augmentation 0.014 0.023 0.040 0.063 0.458 0.283
Random Affine 0.020 0.025 0.055 0.071 0.348 0.268
Neural Cage 0.014 0.022 0.040 0.060 0.485 0.299
Random COCO 0.012 0.017 0.033 0.047 0.616 0.408
Style Transfer 0.012 0.021 0.035 0.057 0.551 0.315
Neural cage + style transfer 0.012 0.019 0.035 0.052 0.573 0.357
Our Geo 0.014 0.021 0.039 0.058 0.512 0.311
Our Tex 0.011 0.018 0.032 0.050 0.618 0.374
Our(w/o finetune) Tex + Geo 0.012 0.018 0.033 0.050 0.622 0.397
Out Tex + Geo 0.012 0.018 0.033 0.049 0.619 0.403

Table 1: Quantitative results on the downstream task of Single Image 3D reconstruction using DISN [9] as the 3D reconstruction method
and 3DSTYLENET compared with baselines as a 3D data augmentation strategy on Cars.

Augmentation Method 3D IoU ↑ Mean Hausford ↓ Max Hausdorff ↓
Seen Shapes Similar Shapes Seen Shapes Similar Shapes Seen Shapes Similar Shapes

No Data Augmentation 0.806 0.682 0.012 0.022 0.064 0.096
Random Affine 0.717 0.644 0.018 0.024 0.092 0.107
Neural Cage 0.815 0.699 0.012 0.020 0.064 0.091
Random COCO 0.869 0.797 0.009 0.015 0.056 0.074
Style Transfer 0.849 0.739 0.010 0.019 0.060 0.087
Neural cage + style transfer 0.852 0.753 0.010 0.017 0.059 0.083
Our Geo 0.834 0.732 0.011 0.019 0.062 0.087
Our Tex 0.869 0.774 0.008 0.016 0.058 0.082
Our(w/o finetune) Tex + Geo 0.856 0.772 0.009 0.016 0.054 0.076
Our Tex + Geo 0.863 0.785 0.009 0.015 0.055 0.075

Table 2: Quantitative results on the downstream task of Single Image 3D reconstruction using DISN [9] as the 3D reconstruction method
and 3DSTYLENET compared with baselines as a 3D data augmentation strategy on Cars.

Augmentation Method 3D IoU ↑ Mean Hausdorf ↓ Max Hausdorff ↓
Seen Shapes Similar Shapes Unseen shapes Seen Shapes Similar Shapes Unseen shapes Seen Shapes Similar Shapes Unseen shapes

No Data Augmentation 0.641 0.519 0.317 0.024 0.034 0.064 0.129 0.161 0.218
Random Affine 0.525 0.493 0.472 0.040 0.043 0.052 0.187 0.193 0.211
Neural Cage 0.744 0.683 0.530 0.015 0.020 0.042 0.109 0.124 0.189
Random COCO 0.806 0.681 0.480 0.012 0.019 0.043 0.104 0.122 0.189
Style Transfer 0.791 0.651 0.444 0.012 0.022 0.046 0.100 0.129 0.181
Neural cage + style transfer 0.747 0.707 0.552 0.017 0.020 0.038 0.122 0.128 0.176
Our Geo 0.748 0.699 0.559 0.016 0.020 0.038 0.115 0.122 0.174
Our Tex 0.825 0.632 0.403 0.009 0.022 0.050 0.080 0.124 0.192
Our(w/o finetune) Tex + Geo 0.747 0.698 0.569 0.017 0.020 0.037 0.118 0.131 0.165
Our Tex + Geo 0.773 0.723 0.587 0.014 0.017 0.036 0.105 0.114 0.171

Table 3: Quantitative results on the downstream task of Single Image 3D reconstruction using DISN [9] as the 3D reconstruction method
and 3DSTYLENET compared with baselines as a 3D data augmentation strategy. The results in this table are for Animals.

learning research. In arXiv:1911.05063, 2019. 5
[3] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018. 1, 5

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[5] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.
Learning linear transformations for fast image and video
style transfer. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019. 1, 2, 4, 6

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6

[7] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In Advances in Neu-
ral Information Processing Systems, 2019. 3

[8] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

[9] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit sur-
face network for high-quality single-view 3d reconstruction.
In Advances in Neural Information Processing Systems 32,
pages 492–502. Curran Associates, Inc., 2019. 5, 7

[10] Wang Yifan, Noam Aigerman, Vladimir G. Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3d deformations. In CVPR, 2020. 1, 2,
6

[11] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-
Francois Lafleche, Adela Barriuso, Antonio Torralba, and
Sanja Fidler. Datasetgan: Efficient labeled data factory with
minimal human effort. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10145–10155, 2021. 3


