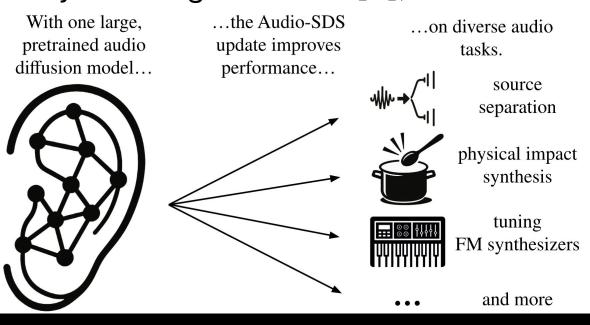
Score Distillation Sampling for Audio: Source Separation, Synthesis, and Beyond



Jessie Richter-Powell, Antonio Torralba, Jonathan Lorraine

Introduction

 We adapt Score Distillation Sampling (SDS), originally for 3D generation [1], to audio models.

Our Method

• All the gory details for SDS and our audio-variant:

Encoded latent

 $\mathbf{h} = \mathrm{enc}_{\boldsymbol{\phi}}(\mathbf{x})$

with frozen parameters ϕ

 $\hat{\mathbf{x}} = \mathrm{dec}_{\boldsymbol{\phi}}(\hat{\mathbf{z}})$

Full-SDS Update: $\mathbf{u}_{\mathrm{SDS}}(\boldsymbol{\theta}; \boldsymbol{p}) = \mathbb{E}\left[\omega(t')(\hat{\boldsymbol{\epsilon}}_{\boldsymbol{\phi}}\!(\mathbf{z}(\boldsymbol{\theta}, \boldsymbol{c}), t', \boldsymbol{p}) - \boldsymbol{\epsilon})\nabla_{\boldsymbol{\theta}}\mathbf{z}(\boldsymbol{\theta}, \boldsymbol{c})\right]$

Noised latent

 $\mathbf{z} = \text{noise}(\mathbf{h}, t', \boldsymbol{\epsilon})$

Denoised latent

 $\hat{\mathbf{z}} = \mathrm{denoise}_{\boldsymbol{\phi}}(\mathbf{z}, \boldsymbol{p})$

 $\sim \mathcal{N}(0,\mathbb{I})$

 $t' \sim \mathcal{U}[0,1]$

High-level idea for the SDS update:

Finds parameters θ that render audio x the diffusion model finds probable.

Rendered Audio:

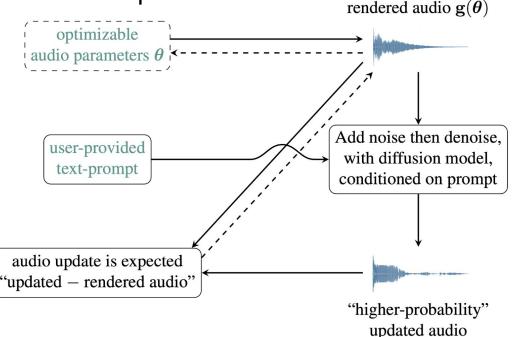
$$\mathbf{x} = \mathbf{g}(\boldsymbol{\theta}, \boldsymbol{c})$$

Update parameters \varTheta

via Decoder-SDS

in Eqs. (5)/(7):

 $\mathbf{u}_{\mathrm{SDS}}^{\mathcal{S},\mathrm{dec}} = \mathbf{d}^{\mathcal{S},\mathrm{dec}} \, \nabla_{\boldsymbol{\theta}} \mathbf{s}$


Get update direction $\mathbf{d}^{\mathcal{S}, dec}$ from Eq.(7)

 $\mathbf{d}^{\mathcal{S}\!,\mathrm{dec}} = \mathbb{E}_{t,\!\!\!/\,\boldsymbol{\epsilon}}\big[\hat{\mathbf{s}}\big]\!-\!\mathbf{s}$

SDS update (roughly): $\mathbf{u}_{\mathrm{SDS}}^{\mathrm{dec}} = (\mathbb{E}[\hat{\mathbf{x}}] - \mathbf{x}) \nabla_{\boldsymbol{\theta}} \mathbf{x}$

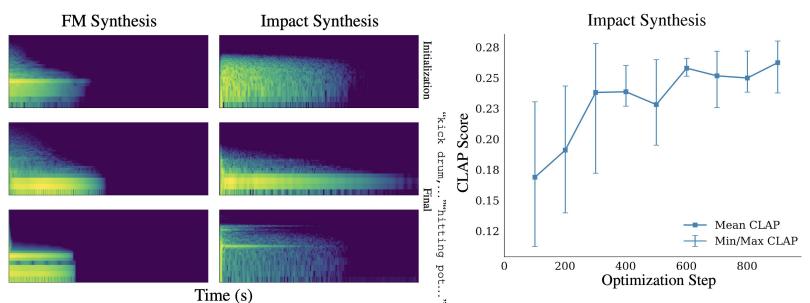
 $\mathbf{x} = \mathbf{g}(\boldsymbol{\theta})$

 $\mathbf{s} = \sum \mathcal{S}_m(\mathbf{x})$

differentiably

Our SDS-variant with

spectrogram emphasis:


 $(\mathbb{E}[\hat{\mathbf{s}}] - \mathbf{s}) \nabla_{\!m{ heta}} \mathbf{s}$

Our Proposed Tasks

	Task	FM Synthesis	Impact Synthesis	Source Separation
	Use-Case	Toy setup, to generate FM synthesizer settings consistent with prompts like "kick drum, bass, reverb"	Generate impacts consistent with prompts like "hitting pot with wooden spoon"	Prompt-conditional source separation for a source audio, such as separating out a "sax" and "cars" from a music recording on a road
	Optimizable	Envelope params., fundamental freq., FM Matrix	Frequency, damping, amplitude of sinusoids	Latent / raw audio for each source
	Parameters $\boldsymbol{\theta}$	$oldsymbol{ heta} = \{lpha_v, \delta_v, \omega_v\}_{v=1}^V$, ${f A}$	$\boldsymbol{\theta} = \{\lambda_n, d_n, a_n, \tilde{\lambda}_n, \tilde{d}_n, \tilde{a}_n\}_{n=1}^N$	$oldsymbol{ heta} = \{\mathbf{x}_k\}_{k=1}^K$
	Rendering Function $\mathbf{g}(\boldsymbol{\theta})$	Sine oscillators modulate each other's frequency $f_v(t) = \max(0, \min(t/(\alpha_v + 10^{-5}), \exp(\alpha_v - t)/\delta_v^2)(\delta_v - t - \alpha_v)/\delta_v)$ $\mathbf{u}_v[t] = \sin(t \cdot \omega_v + \langle \mathbf{A}_v, \mathbf{u}[t-1] \rangle) f_v(t)$ $\mathbf{g}(\boldsymbol{\theta})[t] = \langle \mathbf{A}_v, \mathbf{u}_{t-1} \rangle$	Convolution of impact, object and reverb impulse $\mathbf{I}_{\text{obj}}^{\boldsymbol{\theta}}[t] = \sum_{n=1}^{N} a_n \exp(-d_n t) \cos(\lambda_n t)$ $\mathbf{I}_{\text{reverb}}^{\boldsymbol{\theta}}[t] = \sum_{n=1}^{N} \tilde{a}_n \exp(-\tilde{d}_n t) F(\mathcal{W}(t), \tilde{\lambda}_n)$ $\mathbf{I}_{\text{impact}} = \text{Delta function}$ $\mathbf{g}(\boldsymbol{\theta}) = \mathbf{I}_{\text{impact}} \star \mathbf{I}_{\text{obj}}^{\boldsymbol{\theta}} \star \mathbf{I}_{\text{reverb}}^{\boldsymbol{\theta}}$	Simply the sum of audio over sources $\mathbf{g}(oldsymbol{ heta}) = \sum_{k=1}^K \! \mathbf{x}_k$
	Parameter Update	Audio-SDS	Audio-SDS	Reconstruction Loss Gradient + $\gamma \cdot \text{Audio-SDS}$
y g (Visualization $oldsymbol{ heta}$)	FM Matrix OP Envelopes G. 95 G. 85 G. 93 G. 152 C. 28 G. 104 G. 105 C. 101 G. 100 C.	$\star \qquad \qquad \star \qquad =$ Rendered Audio $\mathbf{x} = \mathbf{g}(\boldsymbol{\theta}) = \mathbf{I}_{\mathrm{obj}}^{\boldsymbol{\theta}} \star \mathbf{I}_{\mathrm{reverb}}^{\boldsymbol{\theta}}$	Our provided audio m is a mixture of various (unknown) sources, which we want to separate which sax playing melody, jazzy, modal, jazzy, modal, interchange, post bop." Note: Ground-truth audio sources are not available in real-world recordings Separate m by training with mix of reconstruction loss and Audio-SDS with prompt p _k per-component k as in Eq. (13) (K = 2 here) "cars passing by on a busy street,

Experimental Results


- We assess quality with audio-prompt alignment via CLAP
- FM Synthesis works for simple prompts
- Impact synthesis improves CLAP on impact-oriented prompts
- Ablations provided in the paper

Experimental Results

- Prompt-guided Source Separation: A
 user takes mixed audio and chooses a
 set of prompts for channels to split it.
- We improve SDR to ground truth and CLAP when ground truth unavailable.
- Fully-automatic pipeline: We take a video, caption it with a model, and provide that to an LLM-assistant suggesting source decompositions.

Mixture	SDRs for reconstructed (source ₁ , source ₂ , mixture)			
	Initialization	Us		
Traffic + Sax	(-0.7, -5.2, 3.2)	(8.5, 8.1, 13.1)		
Bongo + Waves	(1.2, -6.4, 3.9)	$(1.2, \mathbf{-2.1}, 8.7)$		
Pipes + Glass	(-4.2, 0.0, 2.8)	(1.5, 6.5, 7.7)		
Clock + Bongo	(-15.8, 10.4 , 11.8)	(-10.4, 3.6, 13.9)		
Wind + Pipes	(-6.1, 1.9, 5.8)	$(\mathbf{-0.5}, 8.6, 7.3)$		
Mixture	CLAPs for reconstructed source ₁ and source ₂ , then SDR for mixture			
	Initialization	Us		
Traffic + Sax	(0.17, 0.02, 3.2)	(0.2 , 0.05 , 13.1)		
Bongo + Waves	(0.15, 0.14 , 3.9)	(0.16 , 0.08, 8.7)		
Pipes + Glass	(0.25 , 0.27, 2.8)	(0.21, 0.3 , 7.7)		
Clock + Bongo	(0.22, 0.24, 11.8)	(0.30, 0.34, 13.9)	1.	
Wind + Pipes	(0.25, 0.06, 5.8)	(0.25, 0.09 , 7.3)		

Our View of the Future

- Limitations to improve on:
 - Clip-Length Budget: We optimized on ≤10 s clips; minute-scale audio may have artifacts or blow up memory.
 - o **Audio-Model Bias:** We use Stable Audio Open, so when this struggles, e.g., on rare instruments, speech, so do we.
- **Future:** Easily use one video + audio diffusion model with SDS-style updates for various tasks impacts, lighting, cloth, fluids, and more.

Links

- Webpage in QR-code: research.nvidia.com/labs/toronto-ai/Audio-SDS/
- [1] Poole, Ben, et al. "DreamFusion: Text-to-3D using 2D Diffusion." The Eleventh International Conference on Learning Representations.