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In the supplementary material, we first extensively analyze the differentiability of Marching Tetrahedra
and compare with MeshSDF [16] in Section A. We provide further details about the network
architecture of DMTET in Section B, followed by details about our training algorithm in Section C.
Experimentally, we provide additional comparisons and ablation study in Section D, as well as
quantitative and qualitative results in Section E. Details about the user study are included in Section F.
Limitations, failure cases, and future work are discussed in Sec. G. We additionally provide 360-
degree renderings of our results (see demo.mp4), the visualizations of all animal models in TurboSquid
dataset (see Folder TurboSquid), and the visualization of results on all test shapes of TurboSquid (see
voxel_upsample.html in the Supplementary Material.

A Differentiability of Marching Tetrahedra

The Marching Tetrahedra (MT) [4] layer plays a core role in our representation, converting the Signed
Distance Field encoded by the tetrahedral grid to an explicit triangular mesh. In the main paper, we
have demonstrated how MT determines the surface typology inside the tetrahedron (the number of
triangular faces and how vertices are connected), and compute the vertex location of the extracted
iso-surface as in Fig 3. The gradient from a loss defined on the extracted iso-surface Lsurf can be
back-propagated to both, vertex positions and the SDF values via the chain rule:

∂Lsurf
∂va

=
∂Lsurf
∂v′ab

s(vb)

s(vb)− s(va)
,
∂Lsurf
∂s(va)

=
∂Lsurf
∂v′ab

s(vb)(va − vb))
(s(vb)− s(va))2

, (1)

which are continuous when sign(s(vb)) 6= sign(s(va)). Note that our observation not only applies to
MT, but also applies to MC, since both algorithms use the same way of extracting the zero crossing
point.

To support our argument, we follow the experimental settings in MeshSDF [16] and extensively
evaluate our MT layer. We first show the capability to support the differentiable topology changes via
the MT layer, and then compare with MeshSDF [16] on the task of single-image 3D reconstruction.

Differentiable Topology Changes Following MeshSDF [16], we optimize a deep implicit net-
work [14] to transform the SDF of a sphere to the SDF of a desired object with a different typology,
in particular, torus and bunny rabbit. The objective function is the Chamfer Distance between the
ground truth mesh and the extracted surface from SDF using the MT layer. Qualitative results in
Fig. A demonstrate that MT can effectively propagate the loss defined on the surface to the implicit
field and change the typology of the surface through our MT layer.

Quantitative Comparison with MeshSDF [16] on Single-Image 3D Reconstruction We follow
the experimental setting from MeshSDF [16] on the task of Single-Image 3D Reconstruction. Specif-
ically, we first train a 3D reconstruction model, which takes a latent code z predicted from the
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Figure A: Optimizing an implicit field parametrized by MLPs to minimize Chamfer Distance between the GT
mesh and the extracted mesh from the SDF through our MT layer.

input image via an image encoder and outputs a signed distance value for continuous 3D locations,
supervised only by the SDF loss. During the inference time, the encoder predicts an initial latent code
z, and we further optimize z to minimize the silhouette loss via differentiable rasterization. We refer
the readers to original paper [16] for more details. Both MeshSDF and MT allow gradients defined
on the extracted mesh to propagate back to z to reconstruct better shape. For this experiment, we
use the official code1 and replace their differentiable iso-surfacing layer with MT. With optimization
at inference time, MeshSDF reports an improvement of 5.82% on Chamfer Distance evaluated on
ShapeNet cars. MT achieves an improvement of 7.75% on the same subset. We further jointly
optimize z and positions of grid vertices, since MT is defined on a deformable grid – we achieve
an improvement of 8.33%, significantly outperforming MeshSDF [16]. Note that, we only use MT
to optimize the deep implicit field, and conduct evaluation on surface extracted with MC at high
resolution (256), same as MeshSDF.

B Network Architectures

Input Encoder Given an input point cloud x, we use PVCNN [11] to extract multi-scale 3D feature
volumes of sizes: R3

1 × C1,R3
2 × C2 and R3

3 × C3, where the spatial resolution R1 = 32, R2 =
16, R3 = 8 and the number of channels C1 = 64, C2 = 256, C3 = 512. To extract the point-wise
feature for a point location v ∈ R3, we use trilinear interpolation to obtain the feature vector from
each 3D feature volume, and concatenate these vectors together to form the final feature vector
Fvol(v, x) ∈ R832. Similarly to DefTet [5], we use two encoders: one provides features for initial
prediction of SDF and the other provides features for surface refinement and surface subdivision.

MLPs for Initial Prediction of SDF For the initial prediction of SDF, we employ a four-layer
MLPs with hidden dimensions 256, 256, 128 and 64, respectively. We extract the activations before
the output layer, denoted as f(v), and pass them to the surface refinement step.

Surface Refinement For the surface refinement network, we use a 2-layer Graph-Convolutional
Network [10] (GCN) followed by a 2-layer MLPs. Specifically, given a graph G = (Vsurf , Esurf )
where Vsurf and Esurf are vertices and edges in surface tetrahedrons Tsurf with per-vertex feature
f0vi , we use Graph-ResNet layers to predicted the residual to f lvi as:

rlvi = ReLU(wl0f
l
vi +

∑
vj∈N (vi)

wl1f
l
vj ) (2)

rl+1
vi = wl2r

l
vi +

∑
vj∈N (vi)

wl3r
l
vj (3)

f l+1
vi = ReLU(f lvi + rl+1

vi ) (4)

where N (vi) denotes vertices connect to vi in G and wl0 to wl3 are weight matrices for the residual
layer l. Next, we use fully connected layers taking f l+1

vi as input to predict the per-vertex position
offset ∆vi, SDF residual value ∆s(vi) and updated feature vector f(vi). The dimensions of the

1https://github.com/cvlab-epfl/MeshSDF
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Figure B: Scheme of Learnable Surface Subdivision. We build our module on top of Loop Subdivision [12],
and additionally predict the α to control the smoothness of the parametric surface.

GCN layers are 256 and 128, respectively. The dimensions of the MLPs are 128 and 64, respectively.
Note that during the volume subdivision step, the per-vertex feature of the midpoint is obtained by
averaging the feature vectors along the edge:

f(v′ac) =
1

2
(f(va) + f(vc)) (5)

Learnable Surface Subdivision Given the predicted surface extracted using MT, we further em-
ploy a separate GCN which shares the same network architecture as the one in the surface refinement
step, to predict the updated position of each mesh vertex v′i and αi. We then follow the scheme of the
Loop Subdivision method [12] as illustrated in Fig. B. Note that αi is also interpolated for new (odd)
vertices and carried over to the next subdivision step. This subdivision step is applied iteratively to
approximate a parametric surface.

3D Discriminator We provide details about how we compute the discretized SDF, Sreal ∈
RN×N×N and Spred ∈ RN×N×N , as input to D. For the predicted mesh Mpred and the corre-
sponding ground truth shape Mgt, we first compute the vertex curvature for all vertices in Mgt.
Next, we sample a vertex v from vertices with magnitude of curvature larger than a threshold. This
sampling step is necessary because most of the surface of the animal is smooth. Training D on all
surface samples leads to smooth results without high-frequency details. We add a small noise to v to
avoid overfitting, and compute the ground truth signed distance field Sreal around v. Specifically,
let n = (i, j, k) ∈ N3 be the multi-index with i, j, k corresponds to the 3 dimensions of Sreal. We
compute the SDF in each grid position as:

Srealn = SDF (v +
(n−N/2)

r
,Mgt) (6)

where r is a hyperparameter controling the range of the discretized SDF. If r is larger, Sreal occupies
a smaller region around v, and vise versa. The Spred is computed in the same location with respect to
the predicted mesh:

Spredn = SDF (v +
(n−N/2)

r
,Mpred). (7)

We follow DecorGAN [2] and use the discriminator architecture shown in Fig. C. Besides the
discretized SDF, the discriminator additionally takes the feature vector Fvol(v, x) as input, which is
extracted from the highest-level feature volume at position v. This feature vector provides global
semantic information to the discriminator.

C Experimental Details

In this section, we first describe the dataset preparation procedure and generator details as they are
the same for the two applications in the main paper. Next, we discuss specific experiment details for
each application.
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Figure C: The architecture of discriminator. Numbers in brackets correspond to the size of the tensor.

Initial Pred. Vol. Subdiv. = 1 Vol. Subdiv. = 2 Vol. Subdiv. = 3 GT

Figure D: An example of overfitting a complex shape with DMTET by applying multiple subdivision steps.
The loss is only computed on the final surface (Vol.Subdiv.=3) and propagated back to optimize the typology
at all subdivision levels. The initial resolution is 40 (which has the same number of vertices as a voxel grid of
resolution of 20) and each volume subdivision step doubles the spatial resolution.

C.1 Dataset Preparation

We provide visualizations of all animal models in TurboSquid dataset in the Supplementary Material
(see Folder TurboSquid). We manually checked all the animal models we used and did not find
personally identifiable information or offensive content in our data.

Since many models in TurboSquid and ShapeNet are not watertight, we follow the pipeline in
Kaolin [8] to convert all objects to watertight meshes. More specifically, each object is first voxelized
at high resolution. We use a resolution of 256 and 100 for TurboSquid and ShapeNet objects,
respectively. We use lower resolution for ShapeNet as it contains a lot of thin structures (e.g. wire,
airfoil), which degenerates the performance of occupancy-based baselines. We voxelize these shapes
at lower resolution to thicken the thin structures as in OccNet [13]. The resulting voxel is then
converted to a surface mesh with Marching Cubes followed by Laplacian Smoothing [7].

C.2 Generator

We use the same generator for 3D shape synthesis from voxels and point cloud reconstruction. Unless
otherwise noted, we start with an initial tetrahedral grid of resolution 70, which has 47,416 vertices
(same as the number of vertices in a voxel grid of resolution 35) and 251,447 tetrahedrons. After
the initial prediction of SDF on grid vertices, we perform a surface refinement step. Then, we apply
volume subdivision once followed by another surface refinement step. Note that the weights are not
shared for the two surface refinement modules. We found conducting more than a single volume
subdivision step does not further improve the accuracy when reconstructing objects in our datasets.
Nevertheless, volume subdivision can be applied iteratively to reconstruct high-resolution objects, as
shown in Fig D.
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For surface subdivision, we only apply it once during training and compute loss on the resulting
surface. At inference time, we subdivide twice for visualization and evaluation. The surface
subdivision step can be applied iteratively to obtain the parametric surface at "infinite resolution", but
we found subdividing twice already approximates the final surface well.

C.3 3D Shape Synthesis from Coarse Voxels

Input to a Discriminator To sample high-curvature vertices from the ground truth mesh, we
compute the vertex defects, which equals 2π minus the sum of the angles of all faces connecting each
vertex. We set the threshold to be π

16 which we found covers most regions containing details we want
to synthesize. We set N = 18 and r = 128 following DecorGAN [2]. We sample 10 patches for each
input and GT pair.

Training Details For the SDF loss, we truncate the ground truth SDF value at ± 0.03 to focus on
surface, and evaluate it only at vertices of non-surface tetrahedrons before volume subdivision as
well as surface tetrahedrons after volume subdivision. This ensures that the ground truth SDF value
of deformed vertices are computed on their updated locations. We set hyper-parameters λcd = 500,
λnormal = 1e− 6, λdef = 1, λSDF = 0.4 and λG = 10. We use the Adam Optimizer with the learning
rate equal to 1e− 4 for both the generator and the discriminator. Although all modules in DMTET
can be trained end-to-end, we found that computing the loss on the mesh obtained after surface
subdivision is slow in practice due to the large number of faces. Thus, we first train DMTET without
surface subdivision, then fine-tune the surface subdivision module added to the pretrained model. In
particular, we initialize the generator by minimizing the SDF loss for 500 iterations and then train
it on all reconstruction losses for 10k iterations. Next, we add the discriminator D and perform
adversarial learning for another 20k iterations. Finally, we add the surface subdivision module and
train our complete model for 30k iterations. The total training takes approximately 6 days on 4 Nvidia
V100 GPUs.

Evaluation Metrics For this task, we evaluate our models and baselines using Chamfer Distance,
Chamfer-L1, normal consistency score, light field distance (LFD) [1] and classification score (Cls).
We follow DefTet [5] to calculate the Chamfer and Chamfer-L1:

Chamfer(FPred,FGT) =
1

2|∂FPred|
∑

p∈∂FPred

min
q∈∂FGT

||p− q||2 +
1

2|∂FGT|
∑

p∈∂FGT

min
q∈∂FPred

||p− q||2, (8)

Chamfer-L1(FPred,FGT) =
1

|∂FPred|
∑

p∈∂FPred

min
q∈∂FGT

||p− q||1 +
1

|∂FGT|
∑

p∈∂FGT

min
q∈∂FPred

||p− q||1, (9)

where FGT,FPred denote ground truth and prediction, respectively, and ∂FGT, ∂FPred denote the set of
sampled points on the surface of ground truth and the prediction, respectively. The normal consistency
score is computed via Eqn.3 in the main paper. LFD [1] measures the visual similarity of two shapes
with image differences in light fields. We use the official implementation2 of LFD [1]. For Cls score,
we follow the evaluation pipeline from DecorGAN [2]. More specifically, we convert all predicted
shapes and GT models to high resolution (2563) voxels and render 24 images from random views
for each shape. Next, we train a ResNet using images of GT shapes as real examples and predicted
shapes as fake examples. The rendered images have size 256 x 256 and are randomly cropped to 64 x
64 patches before feeding into the image classifier. We report the mean classification accuracy as Cls
score.

C.4 Point Cloud Reconstruction

Training Details We use hyper-parameters λcd = 500, λnormal = 1e− 6, λdef=1 and λSDF = 0.4.
Similarly, we truncate the ground truth SDF value, and first initialize the network by training only
with the SDF loss for 500 iterations to avoid computing the surface loss on random surfaces. We then
train the model for 20k iterations without surface subdivision, and another 20k iterations with surface
subdivision. The training takes approximately 4 days on 4 Nvidia V100 GPUs.

2https://github.com/kacperkan/light-field-distance
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L2 Chamfer ↓ L1 Chamfer ↓ Norm. Consistency ↑
ConvOnet [15] 0.83 2.41 0.901
ConvOnet [15] - Our Arch. 0.79 2.30 0.912
DMTET wo (Adv,Surf.,Surf Loss) 0.79 2.31 0.915
DMTET wo (Adv.,Surf.) 0.76 2.20 0.914
DMTET 0.75 2.19 0.918

Table A: Additional Comparisons on 3D Shape Synthesis from Coarse Voxels. Comparing with ConvOnet [15]
using our architecture, our DMTET achieves significant improvements. Comparing DMTET wo (Adv., Surf.,
Surf loss) with DMTET wo (Adv., Surf.), adding surface loss significantly improves the performance.

Evaluation Metrics We evaluate different methods using several metrics: 3D Intersection-Over-
Union (IOU), Chamfer Distance, Chamfer-L1 and F-score. For 3D IOU, we follow the pipeline
introduced in OccNet [13] and randomly sample 100k points in the 3D space to evaluate ground truth
occupancies and check whether the points are inside or outside of the predicted mesh. The definitions
of Chamfer and Chamfer-L1 Distance follow Deftet [5]. The F1 score is calculated as

F1 = 2 · completeness · accuracy

completeness + accuracy
(10)

where completeness is the percentage of points in ∂FGT for which at least one point from ∂Fpred is
within a radius of 0.01. Similarly, accuracy is the percentage of points in ∂Fpred for which at least
one point from ∂FGT is within the threshold.

For clarity, we multiply 3D IoU, Chamfer Distance, Chamfer-L1 and F-score by 100 when reporting
them in the tables.

D Additional Comparisons

We provide additional comparisons on 3D Shape Synthesis from Coarse Voxels. We first compare
with ConvOnet [15] using our network architecture, and further compare with our own version of
SDF prediction without training on the surface.

Comparison with ConvOnet [15] using our network architecture We use points sampled from
the coarse voxel after MC as inputs to ConvOnet [15] and DMTET. Since ConvOnet [15] uses
a different 3D network architecture to predict occupancies from the input points, we additionally
provide results of predicting continuous occupancy function with our network architecture. More
specifically, we use the PVCNN as a 3D encoder and our MLPs to decode occupancy values, and
follow the same training pipeline as in ConvOnet [15]. We denote this model as ConvOnet [15]-Our
Arch. Quantitative and qualitative results are shown in Table A and Fig. F, respectively. Our DMTET
still reconstructs higher quality shapes with more details, and outperforms ConvOnet [15]-Our Arch.
in terms of L1/L2 Chamfer distances and Normal Consistentcy loss, demonstrating the stronger
capability of our model.

Num. of Queried SDF Points (𝟏𝟎𝟒)

L
1

 C
h

a
m

fe
r

MC

MT1.3

1.2

1.1

2 4 6 8 10 12

Figure E: Comparing MT vs. MC in
Point Cloud 3D Reconstruction, evalu-
ated on ShapeNet Chairs.

Ablating the importance of a surface loss To further
illustrate the effect of learning using the loss defined on
the resulting surface, we ablate DMTET by removing the
losses defined on the surface and train the model purely
using SDF loss (Eqn. 5 in the main paper). In particular,
we predict SDF for each vertex in the hierarchical tetrahe-
dral grid, and supervise with SDF loss. During inference,
we extract the mesh using MT. We denote this model as
DMTET wo (Adv. Surf. Surf-loss.). For a fair compar-
ison, we additionally train our model with surface loss
and remove the adversarial loss and surface subdivision.
The quantitative and qualitative comparisons are shown in
Table A and Fig. F, respectively. Comparing these two
methods, applying surface loss improves the reconstruc-
tion accuracy and generates shapes with more geometric details and fewer artifacts, demonstrating
the effectiveness of directly optimizing for the reconstructed surface.
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ConvOnet ConvOnet –

Our Arch.

Ours wo (Adv., 

Surf., Surf Loss)

Ours wo (Adv., 

Surf.)

Input GTOurs

Figure F: Additional comparisons on 3D shape Synthesis from Coarse Voxels. Comparing with ConvOnet [15]
using our architecture, our DMTET reconstructs shapes with more geometric details. Comparing DMTET
wo (Adv., Surf., Surf loss) with DMTET wo (Adv., Surf.), adding surface loss helps predicting more visually
pleasing shape with more details and fewer artifacts.

Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↓
ConvOnet[15] 1.63 2.06 2.19 1.88 2.10 2.06 2.59 2.31 4.74 2.11 2.12 1.73 2.17 2.28
DMTET 1.30 1.70 2.01 1.72 1.93 1.96 1.89 2.18 4.43 1.96 1.97 1.68 1.88 2.04

Table B: Quantitative Results on 3D Shape Synthesis from Coarse Voxels on ShapeNet (Chamfer L1).

Comparison of MT against MC in Point Cloud 3D Reconstruction While in Sec. 4.2.1 in the
main paper, we compare the oracle performance of MC with MT at different resolution, here we
additionally provide comparison in a learning setup, where we train a neural network to predict the
SDF values at the grid vertices and running MC/MT to obtain the final surface using point cloud
as input on ShapeNet chairs. The loss function and network architectures are the same for both
MC and MT, and we do not deform the vertices or use GCN for surface refinement here for a fair
comparision with MC. As summarized in Fig. E, MT consistently outperforms MC when querying
the same number of points, agreeing with our analysis in 4.2.1.

The runtime of MT/MC is comparable at same resolution (measured by number of vertices in grid).
At 4.5k vertices, it takes 16.5 ms to inference SDF values with network, and 7 ms to run MT/MC for
meshing. Considering the higher performance of MT at the same resolution, we argue MT is a better
choice for learning.

E Additional Experimental Results

E.1 3D Shape Synthesis from Coarse Voxels

We provide more qualitative examples in Fig. G. Compared to all baselines, our DMTET generates
shapes with finer geometric details and fewer artifacts. In addition, we provide visualization of results
on all test shapes in the Supplementary Material (see voxel_upsample.html).

In addition, we evaluate our method on ShapeNet dataset and summarize the result in Tab. B and
Fig. I. Note that we do not apply adversarial loss in this case because our discriminator is designed to
capture surface details while in ShapeNet most details are structural (e.g. holes in wheels.). Without
adversarial learning, our model still outperforms ConvONet [15] across all object categories with
finer details synthesised.

E.2 Point Cloud 3D Reconstruction

Table C, D, E show quantitative results in terms of 3D IOU, Chamfer Distance, and F-score, respec-
tively. We also provide more qualitative examples in Fig. H. We achieve significant improvements
over all baselines in terms of all metrics. Qualitatively, our DMTET generates shapes with more
details and correct topology.
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Input ConvOnet DECOR-Rand. DECOR-Retv. Ours wo Adv. Ours GTRetv.

Figure G: Qualitative results on 3D shapes Synthesis from Coarse Voxels. Compared to all baselines, our
method reconstructs shapes with much higher quality. Adding GAN further improves the realism of the generated
shape. We also show the retrieved shapes from the training set in the second last column
Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↑ Time(ms)↓
3D-R2N2 [3] 70.75 62.98 85.44 86.11 74.83 77.53 63.75 88.11 63.38 85.16 70.37 80.66 76.56 75.82 174
DMC [9] 70.73 64.79 87.48 85.03 79.04 83.34 61.77 89.63 64.33 88.88 78.29 90.09 75.57 78.38 349
Pixel2mesh [18] 84.18 72.06 86.39 91.01 76.02 85.25 65.43 89.90 78.37 90.38 73.67 92.94 83.58 82.24 30
ConvOnet [15] 86.91 80.91 93.41 92.78 88.23 91.11 79.72 94.21 81.05 93.99 89.21 94.77 87.57 88.76 866
MeshRCNN [6] 84.33 76.52 90.96 91.40 85.52 89.23 74.79 92.77 78.18 92.56 86.04 93.86 84.96 86.24 228
DEFTET [5] 85.51 79.88 93.23 92.05 87.12 90.74 77.98 93.80 76.68 93.66 88.46 94.50 86.34 87.69 61
DMTET wo (Def, Vol., Surf.) 85.93 78.25 92.94 93.20 87.95 90.50 78.49 94.76 77.94 93.87 87.60 94.44 87.51 87.95 52
DMTET wo (Vol., Surf.) 89.09 82.83 94.04 93.69 89.45 92.84 82.62 95.11 83.78 94.61 90.49 95.69 89.28 90.27 52
DMTET wo Vol. 89.83 83.93 94.56 93.88 90.06 92.91 83.04 95.35 84.92 95.11 91.36 93.62 89.74 90.64 67
DMTET wo Surf. 90.24 84.32 94.74 93.89 90.24 93.02 83.11 95.29 85.20 95.20 91.31 97.07 89.96 91.05 108
DMTET 90.36 84.63 94.55 93.88 90.33 93.28 83.11 95.31 84.98 95.29 91.74 96.21 89.99 91.05 129

Table C: Quantitative Results on Point Cloud Reconstruction (3D IoU).
Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↓ Time(ms)↓
3D-R2N2 [3] 0.55 0.59 0.60 0.59 0.61 0.62 0.63 0.63 0.53 0.59 0.66 0.60 0.57 0.60 174
DMC [9] 0.56 0.53 0.45 0.59 0.50 0.44 0.75 0.52 0.54 0.41 0.47 0.30 0.62 0.51 349
Pixel2mesh [18] 0.34 0.47 0.47 0.40 0.76 0.46 0.82 0.54 0.30 0.38 0.73 0.26 0.43 0.49 30
ConvOnet [15] 0.27 0.31 0.32 0.37 0.34 0.31 0.44 0.38 0.28 0.30 0.31 0.22 0.33 0.32 866
MeshRCNN [6] 0.30 0.35 0.36 0.39 0.37 0.34 0.41 0.42 0.30 0.33 0.34 0.24 0.36 0.35 228
DEFTET [5] 0.30 0.32 0.33 0.38 0.36 0.32 0.42 0.40 0.33 0.31 0.32 0.23 0.35 0.33 61
DMTET wo (Def, Vol., Surf.) 0.28 0.32 0.31 0.32 0.33 0.29 0.34 0.34 0.28 0.28 0.31 0.22 0.30 0.30 52
DMTET wo (Vol., Surf.) 0.23 0.28 0.30 0.31 0.31 0.27 0.30 0.33 0.22 0.28 0.28 0.21 0.28 0.28 52
DMTET wo Vol. 0.22 0.26 0.29 0.30 0.30 0.27 0.29 0.33 0.21 0.27 0.27 0.21 0.27 0.27 67
DMTET wo Surf. 0.21 0.26 0.29 0.30 0.30 0.27 0.28 0.32 0.21 0.26 0.27 0.20 0.26 0.26 108
DMTET 0.21 0.26 0.28 0.29 0.29 0.26 0.28 0.32 0.21 0.26 0.27 0.19 0.26 0.26 129

Table D: Quantitative Results on Point Cloud Reconstruction (Chamfer L2).
Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↑ Time(ms)↓
3D-R2N2 [3] 85.36 83.85 86.82 85.49 83.84 83.34 82.43 87.18 86.21 85.63 79.52 81.52 85.45 84.36 174
DMC [9] 84.66 88.04 93.29 86.31 91.31 93.84 79.67 90.87 85.92 94.32 92.57 98.44 83.48 89.44 349
Pixel2mesh [18] 95.22 91.46 92.61 93.92 86.02 93.26 82.77 90.47 96.35 95.68 87.23 98.99 92.52 92.04 30
ConvOnet [15] 98.07 97.40 98.05 95.37 97.73 98.26 94.32 96.48 97.51 98.36 98.33 99.64 96.09 97.355 866
MeshRCNN [6] 97.09 96.01 96.94 94.12 96.64 97.37 93.26 94.80 96.68 97.46 97.25 99.48 94.84 96.30 228
DEFTET [5] 97.53 97.24 97.56 95.00 97.19 97.97 94.01 95.37 95.35 98.04 98.04 99.55 95.75 96.81 61
DMTET wo (Def, Vol., Surf.) 98.29 97.86 98.54 97.28 98.40 98.93 96.29 97.82 97.64 98.86 98.71 99.64 97.24 98.11 52
DMTET wo (Vol., Surf.) 99.11 98.59 98.92 97.68 98.71 99.08 97.46 98.09 98.86 99.07 98.99 99.76 97.91 98.63 52
DMTET wo Vol. 99.17 98.90 98.95 97.76 98.78 99.02 97.44 98.09 98.90 99.14 99.02 99.21 98.00 98.64 67
DMTET wo Surf. 99.25 98.77 99.01 97.84 98.81 99.10 97.66 98.11 99.04 99.16 99.11 99.79 98.08 98.75 108
DMTET 99.25 98.79 98.99 97.87 98.81 99.15 97.63 98.07 99.02 99.20 99.13 99.80 98.14 98.76 129

Table E: Quantitative Results on Point Cloud Reconstruction (F1).
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Figure H: Qualitative results on 3D Reconstruction from Point Clouds: Our model reconstructs shapes
with more geometric details compared to baselines.

E.3 DMTET for Scene Representation

In Fig. J we show an overfitting result to demonstrate that DMTET can scale up to room-level scene.

F User Study Details

The user study reported in Section 4.1 of the main paper was conducted on Amazon Mechanical Turk.
The survey form we presented to the users is shown in Figure K. Given two methods that we aim to
compare in the study (e.g., DECOR-Retv. vs. DMTet), we generate results of the two methods and
render them into videos where the two 3D objects are displayed in a rotating view. The users are asked
to answer two questions regarding how the overall shape looks and how realistic are its geometric
details, as shown in Figure K. Since we have 442 test shapes in the animal dataset, we generate 442
HITs for comparing the two methods. In each HIT, the order of the two methods displayed to the
users are randomly determined to avoid order bias. To reduce outliers in user responses, we ask 3
different users per HIT, and determine the final response via majority voting. Furthermore, a qualified
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Figure I: Qualitative results on 3D Shape Synthesis from Coarse Voxels on ShapeNet: Our model recon-
structs shapes with more geometric details and less artifacts compared to ConvONet [15]

Overfitted by DMTet GT
Figure J: We demonstrate DMTET can scale up to room-level scene in an overfitting setting.
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Figure K: The survey we presented to users on Amazon Mechanical Turk, where the two 3D animal
shapes are displayed in a rotating view.

user allowed to work on our HITs has to have finished 1000 approved HITs on MTurk, with an
approving rate higher than 95%.

We pay the participants of the user studies 0.02 US Dollars for each assignment. The average time
required for one assignment is 9 seconds. Thus, the estimated hourly wage paid to the participants is
3600/9× 0.02 = 8 US Dollars. The total amount spent on participant compensation is 5× 442×
3× 0.02 = 132.6 US Dollars.

G Additional Discussions

Limitations and Future Work We discuss a few limitations to be solved in future work. First,
our conditional generative model that predicts high resolution animals from coarse voxels fails to
generate multi-modal shapes from a latent distribution. In the first to second rows of Fig. L, the
similar heads of bears are generated for different inputs, not representing the diversity in natural
3D shapes. We would like to leverage more techniques from the Generative Adversarial Network
literature to achieve multi-modal predictions, and allow further user control. Moreover, our model
typically fails to generate large and irregular structures like antlers in the third row of Fig. L. We
hypothesize the reason could be that the discriminator needs to see larger regions to realize it, and we
plan to explore using multi-resolution discriminators in the future.

Second, although DMTET utilize volume subdivision to increase the resolution only around the
surface, the encoder network still encodes features in a regular grid. Therefore, the resolution of the
encoding is limited, leading to artifacts when reconstructing very high resolution details, as shown in
Fig. M. To increase the resolution of the feature volume while maintaining low memory footprint, we
would like to explore using octree-based feature volumes as in NGLOD [17].

Moreover, the effect of surface subdivision after applying volume subdivision is not obvious because
the resolution of the generated surface is already very high. Ideally, low-curvature regions on the
surface should be modeled only by a few control points and further converted to a parametric surface

11



Input Ours GT

Figure L: Failure cases for 3D shapes Synthesis from Coarse Voxels. The generated details are similar for
the first two examples regardless of the inputs. The antler in the third example looks unnatural.

Input Ours GT

Figure M: Failure cases for 3D Reconstruction from Point Clouds Our model produces artifacts when
reconstructing very high-resolution details.

by surface subdivision to reduce the computational cost. The volume subdivision should only be
applied to regions that need more control points to model the underlying structure, such as high-
frequency details. In the future, we would like to make volume subdivision focus on such regions to
reduce the functional overlap between the two subdivision modules.

Lastly, the surface loss (e.g. Chamfer Distance) we adopt in our experiment is not monotonically
decreasing. thus it suffers from bad local minimum. We find there is no guarantee that the shape
converges to GT from a random initialization (even overfitting as shown in Fig. N), so we pair with
LSDF in learning to alleviate this issue. Without supervision or regularization on SDF, the model
tends to produce double/broken surfaces, which is also reported in DMC [9]. In practice, when
training a network for a learning task, we found a combination of LCD with a less-weighted LSDF
gives the best result. Nevertheless, we would like to explore other surface losses in the future to relax
the requirement on occupancy supervision. For example, we find the problem of local minimum is
less a concern for image supervision (e.g. silhouette loss in MeshSDF’s experiment setup).

Computational Costs All of our experiments and evaluations were run on our internal cluster. The
network training in all experiments takes approximately 20,000 GPU hours on Nvidia V100 GPU.
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(a)

(b)

Optimization

Input wo LSD𝐹 with LSD𝐹 GT

Figure N: Illustration of local minimum of Chamfer Distance: a) A 2D example of marching
triangle. Here we optimize the surface parametrized by signed distance field (shown in red) to
minimize the Chamfer Distance to the point cloud of a bunny (shown in purple). The optimization
stuck at local minimum with wrong topology. b) Without LSDF to regularize the learned SDF, our
model tends to produce double/broken surfaces. Pairing LCD with a less-weighted LSDF generates
a smooth surface.
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