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Figure 1. GEN3C can generate long and temporally consistent videos with precise camera control. We apply it to various applications, including single-view
and sparse-views novel view synthesis, monocular dynamic video novel view synthesis, and driving simulation. With an explicit 3D cache, GEN3C further
supports generating videos with cinematic effects, such as Dolly Zoom which simultaneously changes poses and intrinsics, and 3D editing.

Abstract

We present GEN3C, a generative video model with precise
Camera Control and temporal 3D Consistency. Prior video
models already generate realistic videos, but they tend to
leverage little 3D information, leading to inconsistencies,
such as objects popping in and out of existence. Camera
control, if implemented at all, is imprecise, because camera
parameters are mere inputs to the neural network which must
then infer how the video depends on the camera. In contrast,
GEN3C is guided by a 3D cache: point clouds obtained by
predicting the pixel-wise depth of seed images or previously
generated frames. When generating the next frames, GEN3C
is conditioned on the 2D renderings of the 3D cache with the
new camera trajectory provided by the user. Crucially, this
means that GEN3C neither has to remember what it previ-

ously generated nor does it have to infer the image structure
from the camera pose. The model, instead, can focus all its
generative power on previously unobserved regions, as well
as advancing the scene state to the next frame. Our results
demonstrate more precise camera control than prior work,
as well as state-of-the-art results in sparse-view novel view
synthesis, even in challenging settings such as driving scenes
and monocular dynamic video. Results are best viewed in
videos. Check out our webpage! https://research.
nvidia.com/labs/toronto-ai/GEN3C/

1. Introduction
Creating immersive visual renderings that convey real-world
scenery while enabling flexible viewing, manipulation and
simulation thereof, is a longstanding aspiration in computer
graphics, supporting industries including movie production,
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VR/AR, robotics and social platforms. However, traditional
graphics workflows entail extensive manual effort and time
in asset creation and scene design. Recently, Novel View
Synthesis (NVS) methods [25, 36] unleash this requirement
and successfully produce realistic images at novel viewpoints
of a scene with a set of posed images. However, such meth-
ods generally require dense input images and often suffer
from severe artifacts when viewing from extreme viewpoints.

More recently, video generation models, which can “ren-
der” photorealistic videos from text prompts, have demon-
strated impressive visual quality and powerful content cre-
ation capabilities [4, 35, 40, 45], capturing the underly-
ing distribution of real-world videos by training with mas-
sive amounts of data. However, the key challenge to-
wards practical applications in digital content creation work-
flows is controllability and consistency, i.e. allowing the
user to adjust camera motion, scene composition and dy-
namics, and maintaining spatial and temporal consistency
across long-generated videos. While several methods have
been proposed to address this challenge through fine-tuning
with images, additional text prompts or camera parame-
ters [16, 31, 48, 54, 60, 61], achieving precise control for
subtle or complex camera movements or scene arrangement
remains unsolved. The model can easily forget previously
generated content when looking back and forth; see Fig. 2.

Controllability and consistency in graphics pipelines are
fundamentally rooted in their explicit modeling of 3D geom-
etry and rendering it into 2D views. In this work, we take
an initial step towards building this insight into the video
generation models, and propose GEN3C, a world-Consistent
video generation model with precise Camera Control. Its
core is an approximated 3D geometry—akin to 3D modeling
in graphics pipelines—constructed from user-provided im-
ages, and can be precisely projected to any camera trajectory
to guide video generation, providing strong conditioning
for visual consistency. In addition, “rendering” with video
generation models leverages the rich prior from pre-trained
large models, enabling NVS in sparse-view settings.

Specifically, we construct a 3D cache, represented as a
point cloud, by unprojecting a depth estimate of the input
image(s) or previously generated video frames. With the
camera trajectory from the user, we then render the 3D cache
and use the rendered video as conditioning input for the
video model. The video model is fine-tuned to translate im-
perfectly rendered video into a high-quality video, correcting
any artifacts that stem from the 3D unprojection-projection
process and filling in missing information. This way, we
achieve precise control of the camera and encourage the gen-
erated video to remain consistent over time. When multiple
views are provided, we maintain a separate 3D cache for
each individual view and leverage the video model to han-
dle potential misalignment and aggregattion across views.
Acting as an explicit geometry, the 3D cache further enables
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Figure 2. Motivation: Our model can generate consistent videos when
the camera covers the same region multiple times, while previous work
produces severe artifacts due to the lack of explicit modeling of the history.

scene manipulation by simply modifying the 3D point cloud.
We extensively evaluate our model on video generation

tasks with varying input conditions, ranging from a single
image to sparse and dense multi-view inputs. Our model gen-
eralizes well to dynamic scenes and demonstrates the ability
to accurately control viewpoint, generate 3D-consistent high-
fidelity videos, and fill in occluded or missing regions in
the 3D cache. Beyond novel view synthesis, we explore
applications enabled by the explicit 3D cache, such as object
removal, and scene editing. We believe these results validate
our approach as a step toward applying video generation
models in production and simulation environments.

2. Related Work

Novel View Synthesis (NVS). Generating novel views from
a set of posed images has seen significant progress [25,
36, 51], with numerous extensions towards large scene
reconstruction [3, 28, 63, 72], improved rendering qual-
ity [2, 21, 59], faster rendering speed [38, 59] and handling
dynamic scenes [11, 33]. Yet, many of these methods re-
quire a dense set of input images and may produce severe
artifacts when viewed from extreme viewpoints. Several
works proposed to address these issues through regulariza-
tion using geometric priors [10, 39, 44, 49, 55, 64, 71, 76],
which, however, are sensitive to noise in the estimated depth
or normals. Alternative approaches seek to train a feed-
forward model to predict novel views from sparse posed
images [6–8, 22, 43, 52, 56, 68, 74], but these methods are
limited by the scarcity of training data and struggle to gen-
eralize to unseen domains and extreme novel views. With
the recent success of image/video generation models, Re-
conFusion [62] and CAT3D [12] started leveraging prior
knowledge learned by these models to facilitate sparse-view
NVS. Due to the necessity of per-scene optimization, these
methods remain inherently slow. Concurrent and unpub-
lished work, including ReconX [30] and ViewCrafter [70],
are closer to our work. However, they rely on the alignment
of input multiple views using DUSt3R [57], which is not
robust to thin structures, and introduces artifacts when mis-
alignment happens. MultiDiff [37] leverages depth to warp
a single image as guidance for novel view synthesis using a
video diffusion model. It, however, only focuses on single
view setting.
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Figure 3. Overview of GEN3C. With the user input, which can be a single-view image, multi-view images, or dynamic video(s), we first build a spatiotemporal
3D cache (Sec. 4.1) by predicting the depth for each image and unprojecting it into 3D. With the camera poses from the user, we then render the cache into
video(s) (Sec. 4.2), which are fed into the video diffusion model to generate a photorealistic video that aligns with the desired camera poses (Sec. 4.3 & 4.4).

Camera-Controllable Video Generation. Early works
propose inputting numerical camera parameters into their
video generation models as an additional condition to fine-
tune for camera control [15, 31, 48, 54, 60, 61]. However,
these works struggle with precise control due to the model
having to learn the mapping from the camera parameters
to video, usually failing to generalize to camera motion
that is different from the training data. Several training-free
methods [19, 67] proposed to leverage depth to warp a single
frame to a given camera trajectory and incorporate the result
in the denoising process of a pre-trained diffusion model.
This requires tuning the degree of consistency between the
depth-warped images and the denoising output, leading to
either artifacts or imprecise camera control.

Consistent Video Generation. Early work [34] leverages
a 3D point cloud, similar to our 3D cache, obtained by ap-
plying structure from motion to past frames. Renders of this
point cloud are used to condition a Generative Adversarial
Network [13]. Instead, we estimate the depth for each seed
image that is then reconciled by a diffusion-based video
generation model, which is more robust to small-overlap
images. Streetscapes [9] improved the consistency of video
diffusion models by relying on a precise height map of the
environment that is not necessarily available. More recently,
CVD [27] make synchronous frames of generated videos
consistent with each other. However, overall consistency is
still lost if content temporarily leaves the view of all videos,
because no history is maintained. StreamingT2V [17] main-
tain a history in the form of latent feature maps to enhance
consistency, but camera control remains difficult because the
history is latent rather than 3D.

3. Background: Video Diffusion Models
As our method is based on a video diffusion model, we
briefly review their principles. A diffusion model fθ learns

to model a data distribution pdata(x) via an iterative denoising
process. To train the model, noisy versions xτ = ατx0+στ ϵ
of a data sample x0 ∼ pdata(x) are constructed by adding
noise ϵ sampled from a Gaussian distribution, N (0, I), with
the noise schedule parameterized by ατ and στ . The dif-
fusion time τ is sampled from the distribution pτ . Then,
the parameters θ of the diffusion model fθ are optimized to
minimize the denoising score matching objective function:

Ex0∼pdata(x),τ∼pτ ,ϵ∼N (0,I)

[
∥fθ(xτ ; c, τ)− y∥22

]
, (1)

where c is optional conditions, and the target y can be ϵ,
ατ ϵ − στx0 [46], or x0 [23], depending on the selected
denoising process. Once trained, iteratively applying fθ to a
sample of Gaussian noise will produce a sample of pdata(x).

In diffusion-based video generation models, latent diffu-
sion models [5] are frequently employed to compress the
video for operation in a lower-dimensional space. Specifi-
cally, given the a RGB video data x ∈ RL×3×H×W , where
L is the number of frames of size H × W , a pre-trained
VAE encoder E will encode the video into a latent space,
i.e. z = E(x) ∈ RL′×C×h×w. Training and inference of
the diffusion model are performed in this latent space. The
final video x̂ = D(z) is decoded with a pre-trained VAE
decoder D. In this paper, we leverage the pre-trained Stable
Video Diffusion [4] model, which is conditioned on an image
c and only compresses the video in the spatial dimension:
L′ = L,C = 4, h = H

8 , and w = W
8 . However, our method

is compatible with any other image-to-video diffusion model,
as it does not rely on details of its architecture.

4. Method: 3D-Informed Video Generation
Our key idea is to use 3D guidance to inform video gener-
ation, enabling precise camera control and improving con-
sistency across the video frames. For this purpose, we first
build a 3D cache from the input image(s) or pre-generated
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video frames (Sec. 4.1). Then, the 3D cache will be ren-
dered into the camera plane with the camera poses from the
user (Sec. 4.2). Such renderings, while imperfect, provide a
strong condition for the video generation model on the visual
content it needs to generate (Sec. 4.3). Our video generation
model is fine-tuned accordingly to produce a 3D-consistent
video that precisely aligns with the desired camera poses
(Sec. 4.4). Fig. 3 provides an overview of our method.

4.1. Building a Spatiotemporal 3D Cache
Choosing a proper 3D cache compatible with different ap-
plications and that generalizes to different scenes is the
main consideration in our design. Recently, depth estima-
tion has achieved significant progress across various do-
mains [20, 24, 57, 65, 66], such as indoor, outdoor, or self-
driving scenes. We thus choose the colored point cloud,
unprojected from the depth estimation of an RGB image, as
the basic element of our 3D cache.

Specifically, we maintain a spatiotemporal 3D cache. For
an RGB image seen from a camera viewpoint v at time t,
we create a point cloud, Pt,v, by unprojecting the depth
estimation of this RGB image. We denote the number of
camera views as V , and the length in temporal dimension as
L; thus, our 3D cache is an L× V array of point clouds.

We build the spatiotemporal 3D cache according to the
specific downstream applications. For single image to video
generation, we only create one cache element (V = 1) for
the given image, and duplicate it L times along the temporal
dimension to generate the video of length L. For static
NVS, we create one cache element for each of the V images
provided by the user, and duplicate them L times along
the temporal dimension. We can then enable both sparse-
view and dense-view NVS. For dynamic NVS, we build the
cache from each initial video(s) of identical length L that
are provided by a user or generated by another video model.
Then, V equals to the number of time-synchronized videos,
and we can enable both single-view and multi-view dynamic
NVS. For these different applications, we assume the camera
poses are provided along with the image(s) or video(s). If not,
we estimate the camera poses using DROID-SLAM [53].

Optionally, the 3D cache we build may be edited or sim-
ulated, for example, by removing or adding objects; we
provide qualitative results in Sec. 5.4.

4.2. Rendering the 3D Cache

Point clouds can be easily and efficiently rendered along
any camera trajectory, much like Gaussian Splats [25].
Such a rendering function R maps Pt,v onto a tuple:
(It,v,M t,v) := R(Pt,v,Ct), where It,v is the RGB image
as seen from a new camera Ct. The mask M t,v identifies
disocclusions, flagging pixels that are not covered when ren-
dering the point cloud. In that sense, the mask identifies
regions of the image It,v that need to be filled in.
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Figure 4. Three approaches to fuse the point cloud from two views.

For a sequence C = (C1, . . . ,CL) of new camera poses
from the user, we render all cache elements Pt,v and obtain
V videos (R(P1,v,C1),R(P2,v,C2), . . . ,R(PL,v,CL)),
where 1 ≤ v ≤ V . Concatenating the rendered im-
ages (I1,v, . . . , IL,v) and masks (M1,v, . . . ,ML,v) along
the temporal dimension for a camera view v, we denote
the resulting videos of the images and the masks by Iv ∈
RL×3×H×W and Mv ∈ RL×1×H×W , respectively.

4.3. Fusing and Injecting the 3D Cache
When conditioning a video diffusion model with the render-
ings of our 3D cache, the key challenge is that the 3D cache
may be inconsistent across different camera viewpoints, ei-
ther due to imperfect depth predictions or inconsistent light-
ing. Hence, the model will need to aggregate the information
(if V > 1) for a coherent prediction. Our key principle
when designing this module is to minimize the introduction
of additional trainable parameters: as the pre-trained video
diffusion model has been trained on massive Internet data,
any new parameters may not generalize as well.

Specifically, we modify the forward computation process
of the image-to-video diffusion model, denoted by f ′θ. We
first encode the rendered video Iv using the frozen VAE en-
coder E to obtain the latent video zv = E(Iv), and mask out
the regions that are not covered by the 3D cache, as indicated
by the masks Mv . During training, we then concatenate the
masked latent with the noisy version zτ = ατE(x) + στ ϵ of
the target video x in latent space along the channel dimen-
sion, and feed it into the video diffusion model. To fuse the
information from multiple viewpoints, we separately feed
each viewpoint into the first layer of the diffusion model,
denoted by In-Layer, and apply max-pooling over all the
viewpoints to get the final feature map. In summary:

zv,′ = In-Layer(Concat(zv ⊙Mv,′, zτ )), (2)

z′ = Max-Pool{z1,′, . . . , zV,′}, (3)

where ⊙ denotes element-wise multiplication and Mv,′ ∈
RL×1×h×w is obtained by downsampling the Mv using min-
pooling with size H

h × W
w , in order to align with the latent
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Input CameraCtrl NVS-Solver Ours GT
Figure 5. Qualitative results for single-view novel view synthesis. Compared to the baselines, our model generates photorealistic novel view images that
precisely align with the camera poses. The green zoom-in boxes highlight the fine-grained details that our model can preserve.

dimension (Sec. 3). The resulting feature map z′ is further
processed in the video diffusion model that is fine-tuned to
generate a consistent video conditioned on these renderings
from the 3D cache.

Discussion. The strategy described above is a general mech-
anism to aggregate the information from multiple views and
inject it into the video diffusion model. We compare it to
alternatives that exhibit different properties, as illustrated in
Fig. 4. See Sec. 5.6 for an empirical comparison.

The explicit fusion approach, proposed in concurrent
works [30, 70], directly fuses the point clouds in 3D space.
While being simple, such an approach strongly relies on
depth alignment and will introduce artifacts when inconsis-
tencies manifest across multiple viewpoints. Furthermore,
it would be nontrivial to imbue such fused cache with view-
dependent lighting information. For these reasons, we prefer
to let the model handle aggregation of view information.
Another approach, which we denote as “concat”, is to con-
catenate all latents for the rendered cache along the channel
dimension. Although this approach empirically works well,
it requires bounding the maximum number of viewpoints the
model can support by a constant, and imposes an order on
the viewpoints. Instead, we favored a permutation-invariant
fusion operation, leading to our pooling-based strategy.

Another key design choice is the incorporation of the
masking information into the model. We initially tried to
concatenate the mask channel to the latent. However, the
concatenation operation introduces additional model parame-
ters, which would now need to be trained, and therefore may
not generalize well when the mask channel is not represented
in any large-scale training data. Instead, we apply the mask
values directly to the latents by element-wise multiplica-
tion, leaving the model architecture unchanged. We provide
emperical results of this observation in the Supplement.

4.4. Model Training

With the renderings of the 3D cache as the conditioning sig-
nal c, we fine-tune our modified video diffusion model f ′θ.
Specifically, we first create pairs of the renderings of the 3D
cache, R(Pt,v, ·), and the corresponding RGB ground truth
video x along a new camera trajectory from our training data.
We then fine-tune the video diffusion model using our fusion
strategy (Sec. 4.3) with the denoising score matching objec-
tive function of Eqn. (1), where the target y is z0 = E(x)
following the pre-trained image-to-video diffusion model
practices [4]. We also encode the first frame using the CLIP
model [41] as an additional condition. Details about creating
paired data used for fine-tuning are provided in Sec. 5.

4.5. Model Inference
For inference, we initialize the latent code z with Gaussian
noise and iteratively denoise this latent code using our modi-
fied video diffusion model f ′θ, conditioned on the renderings
of our 3D cache. The final RGB video is obtained by running
the pre-trained VAE decoder D on the denoised latent code.
Generating a 14-frame video takes around 30 seconds on
one A100 NVIDIA GPU.

Autoregressive Inference and 3D Cache Updates. Many
applications require generating long videos, but, the longer
the video, existing models are particularly prone to inconsis-
tencies. To generate long, consistent videos, we propose up-
dating our 3D cache incrementally. We first divide the long
video into overlapping chunks of length L with a one-frame
overlap between two consecutive chunks. We then render the
3D cache and generate the frames of each chunk in sequence
autoregressively. To make the prediction consistent over
time, we update the 3D cache using previously generated
chunks: for each generated frame in a chunk, we estimate
its pixel-wise depth using a depth estimator [66]. Since the
camera pose of the frames is known (user-provided), we
can align the depth estimation with the existing 3D cache
by minimizing reprojection error; details in the supplement.
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Figure 6. Qualitative results on two-views novel view synthesis. Compared to the baselines, our model generates much more plausible and realistic novel
views with a smooth transition between two input views even if the overlap is small (such as the first row).

The aligned RGB-D frame is then unprojected into 3D and
concatenated with the 3D cache, which is subsequently used
for predicting the next chunk of frames.

5. Experiments and Applications
In this section, we introduce the experimental setup to train
GEN3C (Sec. 5.1) and showcase its versatility with several
downstream tasks, including single image to video gener-
ation (Sec. 5.2), two-views NVS (Sec. 5.3), NVS for driv-
ing simulation (Sec. 5.4), and monocular dynamic NVS
(Sec. 5.5). We provide ablation studies in Sec. 5.6.

5.1. Training Details
A key challenge in training GEN3C is the lack of multi-view,
dynamic, real-world video data, that provides the pairs of 3D
cache and ground truth video for a novel camera trajectory.
We leverage static real-world video to help the model reason
about spatial consistency and synthetic multi-view dynamic
video to help with temporal consistency.

Datasets. We select three real-world videos datasets:
RE10K [75], DL3DV [29], Waymo Open Dataset (WOD)
[50], and a synthetic dataset Kubric4D [14, 54]. RE10K [75]
consists of 74,766 video clips that capture real-world real-
estate scenes for both indoors and outdoors. We esti-
mate camera parameters with DROID-SLAM [53] and pre-
dict per-frame depth using DAV2 [66]. The depth predic-
tion is aligned with the scene scale from DROID-SLAM.
DL3DV [29] contains 10k videos of real-world scenes. We
annotate these clips following the same protocol as RE10K.
WOD [50] is a real-world driving dataset with 1000 scenes
and each scene has 200 frames. We use DAV2 [66] to predict
the depth and rigidly align it with the scale from the LiDAR
point cloud. For Kubric4D [14], we use the 3000 scenes gen-
erated by GCD [54], which includes multi-object dynamics.
This dataset is in the format of point cloud sequences and
we render RGB-D videos for desirable camera trajectories.

Paired Data Curation. For real-world videos, we train our
model to predict current frames using past or future frames
from the same sequence. In this way, we effectively simu-
late viewpoint changes, allowing the model to extrapolate to

Tanks-and-Temples [26] RE10K [75]

Method PSNR ↑ SSIM ↑ LPIPS↓ PSNR ↑ SSIM ↑ LPIPS↓ TSED↑
MotionCtrl [60] 13.46 0.46 0.42 13.60 0.59 0.46 0.1363
CameraCtrl [16] 15.88 0.55 0.29 18.40 0.72 0.25 0.8033
GenWarp [47] 16.04 0.50 0.39 15.50 0.61 0.40 0.0330
NVS-Solver [67] 16.95 0.59 0.27 16.90 0.69 0.30 0.7286
GEN3C 18.66 0.67 0.20 19.88 0.78 0.20 0.9143

Table 1. Quantitative results for single view to video generation. RE10K is
the in-domain dataset and Tanks and Temples is the out-of-domain dataset.
unseen viewpoints and generate consistent video informed
by the observations. Specifically, for RE10K and DL3DV,
we randomly select equally-spaced V ∈ [1, 4] frames from
the video clip to create our 3D cache. The ground truth
video consists of L consecutive frames that include one of
the selected V frames. For the WOD, we randomly sample
a sequence of time-synchronized L frames for each of the
three cameras to create our 3D cache (V = 3 in this case).
The ground truth video is only sampled from the FRONT
camera. We use all three cameras to create the 3D cache be-
cause it allows the model to learn to resolve inconsistencies
across cameras, such as depth prediction, camera ISP, etc.
For Kubric, we render each dynamic scene from V ∈ [1, 4]
camera trajectories to generate multi-view dynamic videos
for creating the 3D cache. We then render one additional
video at a different camera trajectory as ground truth. Al-
though we choose maximum V to be 4 for training, it is
flexible and can be an arbitrary number.

5.2. Single View to Video Generation
GEN3C can be easily applied to video/scene creation from a
single image. We first predict the depth of the given image,
then create the 3D cache, and render it into a 2D video, which
is fed into the trained video diffusion model to generate a
video that precisely follows the given camera trajectory.
Evaluation and Baselines. We compare GEN3C to four
baselines, including GenWarp [47], MotionCtrl [60], Camer-
aCtrl [16], and NVS-Solver [67]. For a fair comparison to
GenWarp [47] and NVS-Solver [67], we use the same depth
estimator [66] to get the pixel-wise depth and rigidly align it
by globally shifting and scaling using the scene scale. Cam-
eraCtrl [16] is the most related work, and we reproduce it by
training with the same datasets, training protocol, and video
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Figure 7. Qualitative results on novel view synthesis for driving scene. Our model can fill in the missing regions in the original video even when the deviation
is large, while reconstruction-based baselines produce severe artifacts.

Method PSNR ↑ SSIM ↑ LPIPS↓

T-
&

-T

PixelSplat [6] 21.34 / 17.45 0.70 / 0.65 0.42 / 0.46
MVSplat [8] 20.90 / 16.08 0.70 / 0.63 0.39 / 0.44
GEN3C 22.22 / 20.51 0.76 / 0.72 0.14 / 0.16

R
E

10
K PixelSplat [6] 19.74 / 16.95 0.75 / 0.70 0.40 / 0.44

MVSplat [8] 21.40 / 15.51 0.78 / 0.69 0.30 / 0.37
GEN3C 24.08 / 21.56 0.86 / 0.83 0.11 / 0.15

Table 2. Quantitative results for two-views NVS. The two values in each
table cell represent the interpolation and extrapolation results, respectively.

diffusion model as in our method and replacing the rendered
videos from our 3D cache with Plücker embeddings of cam-
era trajectories.We evaluate all the methods on two datasets:
RE10K, which serves for in-domain testing. and Tanks and
Temples (T-&-T), which serves for out-of-domain testing to
evaluate generalization capabilities. To ensure a comprehen-
sive evaluation, we sample 100 testing sequences for both
RE10K and T-&-T. Following prior work [8, 42, 70], we re-
port both pixel-align metrics, i.e., PSNR and SSIM [58], and
perceptual metrics, i.e., LPIPS [73]. We further report TSED
score [69] to evaluate the 3D consistency of the prediction.

Results. Quantitative results are provided in Table 1. Our
method outperforms all the baselines in both out-of-domain
and in-domain testing, demonstrating the strong capability
of generating photorealistic videos from a single image. No-
tably, Plücker-embedding based methods, such as Camera-
Ctrl [16], generalize poorly to out-of-domain data, which has
both different scene layouts and camera trajectories. Thanks
to the explicit modeling of 3D content in our 3D cache, our
model only suffers a small performance drop. We provide a
qualitative comparison with the two strongest baselines in
Fig. 5 and with the others in the Supplement. The prediction
from our method precisely follows the ground truth camera
trajectory and captures fine-grained detail such as the chair
legs or letter words. In particular, CameraCtrl [16] fails to
precisely follow the camera motion, as reasoning the scene
layout only from the Plücker embedding is hard.

Method y ± 0.0m y ± 1.0m y ± 2.0m y ± 4.0m

Nerfacto [51] 48.34 67.77 80.41 112.40
3D-GS [25] 34.81 53.85 61.78 81.26
GEN3C 7.93 18.19 25.11 35.33

Table 3. Quantitative results of FID [18] for NVS on driving scene. GEN3C
significantly outperforms the baselines, especially when generating novel
views that are far away from the original trajectory.

5.3. Two-Views Novel View Synthesis
We further apply GEN3C to a challenging sparse-view novel
view synthesis setting, where only two views are provided
and we generate novel views from these two views. Similar
to Sec. 5.2, we first predict the depth for each view, create the
3D cache, and use the camera trajectory to render it into two
videos, which are fed into and fused by GEN3C to generate
the output video. Note that during inference, our model is
not limited to two views and can be applied to any number
of views. We provide qualitative results in the Supplement.
Evaluation and Baselines. We compare our method to two
representative works for sparse view reconstruction, Pixel-
Splat [6] and MVSplat [8]. In this task, we evaluate both
the interpolation and extrapolation capabilities of our model.
Specifically, we randomly select two input frames from a
video. For interpolation, we select target views between the
input frames, and for extrapolation, we choose target views
outside the range of the two input frames. We sample 40
testing sequences from both RE10K [75] and T-&-T [26],
and report PSNR, SSIM and LPIPS.
Results. We provide quantitative results in Table 2 with
qualitative results in Fig. 6. Our method outperforms all the
baselines, especially when extrapolating from the provided
two views, and can generate photorealistic novel views even
if the overlap between two views is small, thanks to the
strong prior from the pre-trained video generation models.

5.4. Novel View Synthesis for Driving Simulation
Simulating real-world driving scenes along a novel trajectory
that is different from captured videos is a cornerstone for
training autonomous vehicles. GEN3C can be applied.

7
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Figure 8. Qualitative results on 3D editing for driving scene. We remove
and modify the trajectory of cars from the original scene.
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Figure 9. Qualitative results on monocular dynamic NVS. Our model
generates plausible novel camera trajectories for the given dynamic video.
Note that, when zooming out from the original video, our model successfully
reasons depth of field out.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
GCD [54] 19.37 0.67 0.48 150.64
GEN3C 19.41 0.63 0.29 98.58

Table 4. Quantitative results on monocular dynamic NVS.

Evaluation and Baselines. We compare GEN3C to two
representative scene reconstruction methods, Nerfacto [51]
and 3DGS [25]. For a fair comparison, we filter out 18
static scenes from the validation set. For evaluation, we
create the novel trajectories by horizontally shifting from
the original trajectory of the frontal camera and varying the
deviation. We report FID [18] for this evaluation since there
is no ground truth for novel trajectories.

Results. As shown in Table 3, our method achieves sig-
nificantly better FID scores than reconstruction methods on
driving scenarios. This is because reconstruction methods
struggle to recover the scene structures from the sparsely
observed views in the driving scenario. Thus, the rendering
quality degrades significantly when the rendering camera
moves away from the original trajectory, as shown in Fig. 7.

3D Editing. Our explicit 3D cache naturally lends itself to
3D editing. As shown in Fig. 8, we can remove the 3D cars,
modify the trajectory of the car, and generate a plausible
re-simulation video of the driving scene using GEN3C.

5.5. Monocular Dynamic Novel View Synthesis
Given a monocular video of a dynamic scene, GEN3C is
able to “rerender” that video along a new camera trajectory.

Noise Ratio PSNR ↑ SSIM ↑ LPIPS↓
0% 24.08 / 21.56 0.86 / 0.83 0.12 / 0.15
3% 22.39 / 21.00 0.83 / 0.81 0.16 / 0.18
10% 20.85 / 19.64 0.79 / 0.76 0.19 / 0.22
30% 18.52 / 17.91 0.72 / 0.70 0.29 / 0.31

Table 5. Quantitative results on the robustness analysis on noisy depth
estimation. The two values in each table cell represent the interpolation and
extrapolation results, respectively.

PSNR SSIM LPIPS

Explicit Fusion 21.81 / 19.87 0.79 / 0.75 0.21 / 0.28
Ours 24.08 / 21.56 0.86 / 0.83 0.11 / 0.15

Table 6. Ablation of different fusion strategies on RE10K dataset. The
two values in each table cell represent the interpolation and extrapolation
results, respectively.

Ours GTInput Explicit fusion
Figure 10. Qualitative results on ablating different fusion strategies.
GEN3C can generate a realistic novel view with misaligned depth and
different lighting in the input views, while the explicit fusion strategy fails.

Evaluation and Baselines. We evaluate on the 20 held-out
test scenes of Kubric dataset released by GCD [54] and com-
pare them to GCD. We use the publicly released checkpoint
trained on Kubric datasets. Since GCD is only trained at a
resolution of 256x384, we upsample its predictions to the
same resolution as our method for a fair comparison.

Results. We provide quantitative results in Table 4, with
qualitative results in the Supplement. Our method demon-
strates superior performance in preserving object details and
dynamics in input videos, and precisely aligns with the new
camera motion from the users with a 3D cache.

Out-of-Domain Results. We further qualitatively evalu-
ate GEN3C on dynamic videos generated by Sora [40] and
MovieGen [35], and provide the results in Fig. 9. GEN3C
generates photorealistic videos that preserve the 3D content
and align with the new camera motion. We refer the readers
to the supplement video for full results.

5.6. Ablation Study
We ablate our method in two ways: First, different strategies
to fuse the point cloud as discussed in Sec. 4.3, and second,
the robustness to noisy depth estimation. We follow the
experiment settings from Sec. 5.3.

Different Fusion Strategies. We select two input views
and predict the interpolation between these two views. Our
fusion strategy is compared to the explicit fusion of the point

8



SV
D

C
os

m
os

Input New camera 1 New camera 2 New camera 3 New camera 4

Figure 11. Qualitative comparison on using different base models: Stable Video Diffusion (SVD) [4] v.s. Cosmos [1]. When having a more powerful video
generation model, GEN3C is able to generate more realistic output with less artifacts. Note that the slight misalignment between the two results is due to the
models using different video resolutions.

Figure 12. Example of extreme NVS using Cosmos as the base model:
the input view is the middle one, and our model is capable of rotating
significantly to the left and right.

clouds from two views, in analogy to the method proposed
in the concurrent work ReconX [30] and ViewCrafter [70].
Qualitative examples are provided in Fig. 10 with quanti-
tative comparison in Table 6. Our method can smoothly
transition between two disjoint views even if the depth es-
timates are misaligned and the lighting is different, while
explicit fusion on the point cloud suffers from severe artifacts
in misalignment regions.

Robustness to Noisy Depth Estimation. Since our model
leverages an off-the-shelf depth estimator to create the 3D
cache, we need to understand the impact of error in the
depth estimation. Given a depth estimation, we add a noise
sampled from the Gaussian distribution, N (0, s ∗ (d0.95 −
d0.05)). d0.95, d0.05 denote the 95 and 5 percentile of depth,
respectively, and s is the noise ratio. We vary the noise ratio
and evaluate the capability of producing novel views. As
shown in Table 5, when having a small amount of noise, the
performance drop is negligible, and our model still performs
reasonably well when the noise ratio is large (30%).

5.7. Extending to Advanced Video Diffusion Model
We further replace the Stable Video Diffusion model [4]
with Cosmos [1], a more advanced video diffusion model
which has demonstrated superior performance in video
generation. We follow the same fine-tuning protocol as
above. Specifically, we chose Cosmos1.0Diffusion-
7BVideo2World1 as our base model and concatenate the
noisy latent with the embedding of rendered frames, which
are encoded by the Cosmos tokenizer. The model is fine-
tuned on both the RE10K [75] and DL3DV [29] datasets for
10,000 steps with a batch size of 64.

We provide a qualitative comparison in Figure 11 with

1https://github.com/NVIDIA/Cosmos

additional results on our webpage2. Results for extreme
novel view synthesis are shown in Figure 12.

When leveraging a more powerful video diffusion model,
GEN3C is able to generate videos with much higher quality,
even under extreme camera viewpoint changes. This high-
lights a key strength of our method: its ability to leverage
continuously evolving, pre-trained video models to achieve
generalizability with minimal data required for fine-tuning.

6. Conclusion

In this paper, we introduced GEN3C, a consistent video
generative model with precise camera control. We achieve
this goal by constructing a 3D cache from seed image(s) or
previously generated videos. We then render the cache into
2D videos from a user-provided camera trajectory to strongly
condition our video generation, achieving more accurate
camera control than previous methods. Our results are also
state-of-the-art in sparse-view novel view synthesis, even in
challenging settings such as driving scenes and monocular
dynamic novel view synthesis.

Limitations. When generating videos with dynamic con-
tent, GEN3C relies on a pre-generated video to provide the
motion of the objects. Generating such a video is a chal-
lenge on its own. A promising extension is to incorporate
text conditioning to prompt for motion when training video
generation models.
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Appendices
In the supplement, we provide additional details of our
method in Sec. A and experiments in Sec. B. We provide
more qualitative results in Sec. C.

A. Method Details
In this section, we provide additional details on the autore-
gressive generation process that updates the 3D cache.

A.1. Auto-regressive generation
In many applications, we need to generate a video with a
sequence length that is longer than the length the original
video models can support. To achieve this, we first divide the
long video into overlapping chunks of length L, with a one-
frame overlap between consecutive chunks, and generate
the frames of each chunk sequentially in an autoregressive
manner. Specifically, for the first chunk, we follow the
inference pipeline described in Sec. 4.5 of the main paper to
predict an RGB video. We then update the 3D cache with the
frames from the first chunk prediction, which captures a new
viewpoint of the scene and provides additional information
not present in the original 3D cache.

To update the 3D cache, we estimate the pixel-wise depth
of the last frame in the first chunk using DAV2 [66], and
align this depth estimation with the 3D cache by minimizing
the reprojection error. Specifically, we denote the depth
estimation as d and optimize scaling s and translation t
coefficients for d. We render the point cloud from the 3D
cache into a depth image at the camera viewpoint of d. We
render the point cloud from the 3D cache into a depth image
from the camera viewpoint of d, denoted as dtgt, and, similar
to the main paper, render a mask M indicating whether each
pixel is covered by the 3D cache. The optimization objective
is then defined as:

s, t = argmin
s,t

∥∥(s · d+ t− dtgt) ·M∥∥2
2
. (4)

The optimized s and t are applied to normalize the depth
estimation d:

d′ = s · d+ t. (5)

We unproject d′ into a 3D point cloud using the camera
parameters of this frame and append it to the existing 3D
cache. The updated 3D cache is subsequently used to predict
the second chunk of frames. This ensures that the prediction
for the second chunk is informed by the first chunk, lead-
ing to consistent generation of long videos. We iterate this
process for all subsequent chunks.

B. Experimental Details
In this section, we provide additional details for our experi-
ments in the main paper.

B.1. Optimization Details
We optimize the neural network using AdamW opti-
mizer [32] with the learning rate 3e-5. During training, we
apply a 15% dropout ratio to the conditions (the rendered
videos from our 3D cache and the CLIP embedding of the
first frame. We adopt a progressive training strategy for our
model. Specifically, we first train the model on RE10K [75]
and DL3DV [29] at a resolution of 320 × 576 for 100K it-
erations. We then finetune it on all four datasets at a higher
resolution of 576 × 1024 for another 100K iterations. In
the above two stages, the sequence length is set to 14. To
support longer sequence lengths, we finetune the temporal
layers of the video diffusion model on all four datasets for
another 10K iterations at a resolution of 320× 576. We first
resize the video into the resolution of 576 × 1024 and use
center cropping to get the 320 × 576 video. We randomly
sample a video with a sequence length ranging from 14 to
56 frames to finetune the temporal layer. The entire training
takes around 4 days using 32 A100 GPUs.

B.2. Inference Details
We follow the practices from Stable Video Diffusion [4] and
use classifier-free guidance during inference with the guid-
ance weight being 3. We run 25 diffusion steps to generate
the result.

B.3. Single-view to video generation
We provide further details of the compared baselines in this
subsection.

Baseline Details. For GenWarp [47]3 and MotionCtrl [60]4,
we use the official checkpoint that is trained with Stable
Video Diffusion [4] and evaluate on the same testing scenes
as our method. Note that RE10k [75] is the training dataset
for two methods. For NVS-Solver [67]5, we use the official
codebase and run the evaluation using our testing data since
the model is training-free.

B.4. Two-views NVS
We provide further details of the compared baselines in this
subsection.

Baseline Details. For PixelSplat [6], we take the official
codebase and the released checkpoint6 that is trained on
RE10k [75] for a fair evaluation. For MVSplat [8], we
also take the official codebase and the released checkpoint7.
Both baselines take images and their corresponding camera
parameters as input to reconstruct 3D Gaussian Splats that
can be used to render the video in the target camera trajectory.

3https://github.com/sony/genwarp
4https://github.com/TencentARC/MotionCtrl
5https://github.com/ZHU-Zhiyu/NVS_Solver
6https://github.com/dcharatan/pixelsplat
7https://github.com/donydchen/mvsplat
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Figure 13. Additional qualitative results for single-view novel view synthesis.

OursInput
Figure 14. Illustration of rendered depth images and model outputs.
Our model can fix the error in the depth projection (such as the
orange handrail in the first image and the light in the second one),
and generate realistic content in the missing regions (such as the
inpainted railway).

We run the two baselines on the testing data we prepared and
report the results for both interpolation and extrapolation.

B.5. NVS for driving simulation

Baseline Details. For Nerfacto, we take the official code-
base released by Nerfstudio8, which is a state-of-the-art
codebase for training Nerf. For 3DGS, we take the official
codebase9. We use all frames from three cameras in the
training data to train Nerfacto and 3DGS.
Inference Pipeline. With a driving video, we estimate
the depth of each frame and align it with the depth scale
from the Lidar point cloud. We then unproject the depth

8https : / / github . com / nerfstudio - project /
nerfstudio

9https://github.com/graphdeco- inria/gaussian-
splatting

estimation for each frame. In this case, we treat each frame
as a different time capture of the same scene and concatenate
them along the temporal dimension of the 3D cache, since
there could exist dynamic objects in the scene. With the
new camera trajectory provided by the user, we render the
3D cache along this trajectory. The rendering of the 3D
cache is then used to generate the video at the novel camera
trajectory.

B.6. Monocular Dynamic NVS

Inference Pipeline. With a monocular video of a dynamic
scene, we aim to generate a video of the same scene from
a different camera trajectory. Similar to the driving simu-
lation, we predict the depth for each frame separately and
concatenate the unprojected point cloud from depth along
the temporal dimension of the 3D cache. With the new cam-
era trajectory provided by the user, we render the 3D cache
along this new camera trajectory. The rendered video is fed
into GEN3C to generate a dynamic video output.

C. Additional Results
C.1. Generalization with mask channel
In Sec. 4.3 of the main paper, we discuss different strategies
for incorporating mask information into the model. Here,
we provide an additional qualitative comparison in Fig. 16.
Concatenating the mask channel to the latent introduces ad-
ditional model parameters, which do not generalize well to
out-of-distribution masks during training. This issue is par-
ticularly severe in driving simulations, where ground truth
views for novel trajectories (e.g., horizontal shifts from the
original trajectory) are unavailable. In contrast, directly mul-
tiplying the mask with the latent demonstrates better gener-
alization, significantly reducing artifacts when synthesizing
extreme novel views.
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Figure 15. Qualitative results on Kubric4D [14]. Compared to GCD [54], our method demonstrates superior performance in preserving object details and
dynamics in input videos.

Concatenation Multiplication 

Figure 16. Comparison of different strategies for incorporating
masking information into the model. (Left) the mask channel is
concatenated to the latent as an additional channel. (Right) the
mask values are applied directly to the latent through element-wise
multiplication.

C.2. Single-view to video generation
In addition to the comparison in the main paper, we provide
the quantitative comparisons with GenWarp [47] and Mo-
tionCtrl [60] in Fig. 13. We also provide the rendered depth
images and the model outputs in Fig. 14 to demonstrate the
capability of our model on both filling missing regions in
the 3D cache and fixing artifacts from the rendering of the
imperfect 3D cache.

C.3. Monocular Dynamic Novel View Synthesis
We provide the qualitative comparison with GCD [54] on
the Kubric dataset in Fig. 15. Our method generates sharper
video details with more object details and dynamics com-
pared to GCD [54].
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