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In the supplement, we provide additional details of our
method in Sec. 1 and experiments in Sec. 2. We provide
more qualitative results in Sec. 3.

1. Method Details
In this section, we provide additional details on the autore-
gressive generation process that updates the 3D cache.

1.1. Auto-regressive generation
In many applications, we need to generate a video with a
sequence length that is longer than the length the original
video models can support. To achieve this, we first divide the
long video into overlapping chunks of length L, with a one-
frame overlap between consecutive chunks, and generate
the frames of each chunk sequentially in an autoregressive
manner. Specifically, for the first chunk, we follow the
inference pipeline described in Sec. 4.5 of the main paper to
predict an RGB video. We then update the 3D cache with the
frames from the first chunk prediction, which captures a new
viewpoint of the scene and provides additional information
not present in the original 3D cache.

To update the 3D cache, we estimate the pixel-wise depth
of the last frame in the first chunk using DAV2 [10], and
align this depth estimation with the 3D cache by minimizing
the reprojection error. Specifically, we denote the depth
estimation as d and optimize scaling s and translation t
coefficients for d. We render the point cloud from the 3D
cache into a depth image at the camera viewpoint of d. We
render the point cloud from the 3D cache into a depth image
from the camera viewpoint of d, denoted as dtgt, and, similar
to the main paper, render a mask M indicating whether each
pixel is covered by the 3D cache. The optimization objective
is then defined as:

s, t = argmin
s,t

∥∥(s · d+ t− dtgt) ·M∥∥2
2
. (1)

The optimized s and t are applied to normalize the depth
estimation d:

d′ = s · d+ t. (2)

We unproject d′ into a 3D point cloud using the camera
parameters of this frame and append it to the existing 3D
cache. The updated 3D cache is subsequently used to predict
the second chunk of frames. This ensures that the prediction
for the second chunk is informed by the first chunk, lead-
ing to consistent generation of long videos. We iterate this
process for all subsequent chunks.

2. Experimental Details

In this section, we provide additional details for our experi-
ments in the main paper.

2.1. Optimization Details

We optimize the neural network using AdamW optimizer [6]
with the learning rate 3e-5. During training, we apply a
15% dropout ratio to the conditions (the rendered videos
from our 3D cache and the CLIP embedding of the first
frame. We adopt a progressive training strategy for our
model. Specifically, we first train the model on RE10K [12]
and DL3DV [5] at a resolution of 320× 576 for 100K iter-
ations. We then finetune it on all four datasets at a higher
resolution of 576 × 1024 for another 100K iterations. In
the above two stages, the sequence length is set to 14. To
support longer sequence lengths, we finetune the temporal
layers of the video diffusion model on all four datasets for
another 10K iterations at a resolution of 320× 576. We first
resize the video into the resolution of 576 × 1024 and use
center cropping to get the 320 × 576 video. We randomly
sample a video with a sequence length ranging from 14 to
56 frames to finetune the temporal layer. The entire training
takes around 4 days using 32 A100 GPUs.

2.2. Inference Details

We follow the practices from Stable Video Diffusion [1] and
use classifier-free guidance during inference with the guid-
ance weight being 3. We run 25 diffusion steps to generate
the result.
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Figure 1. Additional qualitative results for single-view novel view synthesis.
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Figure 2. Illustration of rendered depth images and model outputs.
Our model can fix the error in the depth projection (such as the
orange handrail in the first image and the light in the second one),
and generate realistic content in the missing regions (such as the
inpainted railway).

2.3. Single-view to video generation

We provide further details of the compared baselines in this
subsection.

Baseline Details. For GenWarp [7]1 and MotionCtrl [9]2,
we use the official checkpoint that is trained with Stable
Video Diffusion [1] and evaluate on the same testing scenes
as our method. Note that RE10k [12] is the training dataset
for two methods. For NVS-Solver [11]3, we use the official
codebase and run the evaluation using our testing data since
the model is training-free.

1https://github.com/sony/genwarp
2https://github.com/TencentARC/MotionCtrl
3https://github.com/ZHU-Zhiyu/NVS_Solver

2.4. Two-views NVS
We provide further details of the compared baselines in this
subsection.

Baseline Details. For PixelSplat [2], we take the official
codebase and the released checkpoint4 that is trained on
RE10k [12] for a fair evaluation. For MVSplat [3], we
also take the official codebase and the released checkpoint5.
Both baselines take images and their corresponding camera
parameters as input to reconstruct 3D Gaussian Splats that
can be used to render the video in the target camera trajectory.
We run the two baselines on the testing data we prepared and
report the results for both interpolation and extrapolation.

2.5. NVS for driving simulation

Baseline Details. For Nerfacto, we take the official code-
base released by Nerfstudio6, which is a state-of-the-art
codebase for training Nerf. For 3DGS, we take the official
codebase7. We use all frames from three cameras in the
training data to train Nerfacto and 3DGS.

Inference Pipeline. With a driving video, we estimate
the depth of each frame and align it with the depth scale
from the Lidar point cloud. We then unproject the depth
estimation for each frame. In this case, we treat each frame
as a different time capture of the same scene and concatenate
them along the temporal dimension of the 3D cache, since
there could exist dynamic objects in the scene. With the
new camera trajectory provided by the user, we render the
3D cache along this trajectory. The rendering of the 3D

4https://github.com/dcharatan/pixelsplat
5https://github.com/donydchen/mvsplat
6https : / / github . com / nerfstudio - project /

nerfstudio
7https://github.com/graphdeco- inria/gaussian-

splatting
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Figure 3. Qualitative results on Kubric4D [4]. Compared to GCD [8], our method demonstrates superior performance in preserving object details and
dynamics in input videos.

Concatenation Multiplication 

Figure 4. Comparison of different strategies for incorporating
masking information into the model. (Left) the mask channel is
concatenated to the latent as an additional channel. (Right) the
mask values are applied directly to the latent through element-wise
multiplication.

cache is then used to generate the video at the novel camera
trajectory.

2.6. Monocular Dynamic NVS

Inference Pipeline. With a monocular video of a dynamic
scene, we aim to generate a video of the same scene from
a different camera trajectory. Similar to the driving simu-
lation, we predict the depth for each frame separately and
concatenate the unprojected point cloud from depth along
the temporal dimension of the 3D cache. With the new cam-
era trajectory provided by the user, we render the 3D cache
along this new camera trajectory. The rendered video is fed
into GEN3C to generate a dynamic video output.

3. Additional Results

3.1. Generalization with mask channel

In Sec. 4.3 of the main paper, we discuss different strategies
for incorporating mask information into the model. Here,
we provide an additional qualitative comparison in Fig. 4.
Concatenating the mask channel to the latent introduces ad-
ditional model parameters, which do not generalize well to
out-of-distribution masks during training. This issue is par-
ticularly severe in driving simulations, where ground truth
views for novel trajectories (e.g., horizontal shifts from the
original trajectory) are unavailable. In contrast, directly mul-
tiplying the mask with the latent demonstrates better gener-
alization, significantly reducing artifacts when synthesizing
extreme novel views.

3.2. Single-view to video generation

In addition to the comparison in the main paper, we pro-
vide the quantitative comparisons with GenWarp [7] and
MotionCtrl [9] in Fig. 1. We also provide the rendered depth
images and the model outputs in Fig. 2 to demonstrate the
capability of our model on both filling missing regions in
the 3D cache and fixing artifacts from the rendering of the
imperfect 3D cache.
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3.3. Monocular Dynamic Novel View Synthesis
We provide the qualitative comparison with GCD [8] on the
Kubric dataset in Fig. 3. Our method generates sharper video
details with more object details and dynamics compared to
GCD [8].
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