This work explores expanding the capabilities of large language models (LLMs) pretrained on text to generate 3D meshes within a unified model. This offers key advantages of (1) leveraging spatial knowledge already embedded in LLMs, derived from textual sources like 3D tutorials, and (2) enabling conversational 3D generation and mesh understanding. A primary challenge is effectively tokenizing 3D mesh data into discrete tokens that LLMs can process seamlessly. To address this, we introduce LLaMA-Mesh, a novel approach that represents the vertex coordinates and face definitions of 3D meshes as plain text, allowing direct integration with LLMs without expanding the vocabulary. We construct a supervised fine-tuning (SFT) dataset enabling pretrained LLMs to (1) generate 3D meshes from text prompts, (2) produce interleaved text and 3D mesh outputs as required, and (3) understand and interpret 3D meshes. Our work is the first to demonstrate that LLMs can be fine-tuned to acquire complex spatial knowledge for 3D mesh generation in a text-based format, effectively unifying the 3D and text modalities. LLaMA-Mesh achieves mesh generation quality on par with models trained from scratch while maintaining strong text generation performance.
The following meshes are generated with text prompt "Create a 3D obj file using the following description: {caption}".
The following videos show the animation of the mesh generation process. We first generate all the vertices and all the faces sequentially.
Mesh Type | # Tokens | # Vertices | # Faces |
---|---|---|---|
With Quantization | 1280 | 64 | 96 |
Mesh Type | # Tokens | # Vertices | # Faces |
---|---|---|---|
Without Quantization | 4607 | 64 | 96 |
@misc{wang2024llamameshunifying3dmesh,
title={LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models},
author={Zhengyi Wang and Jonathan Lorraine and Yikai Wang and Hang Su and Jun Zhu and Sanja Fidler and Xiaohui Zeng},
year={2024},
eprint={2411.09595},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2411.09595},
}