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Abstract

Estimating scene lighting from a single image or video remains a longstand-
ing challenge in computer vision and graphics. Learning-based approaches are
constrained by the scarcity of ground-truth HDR environment maps, which are
expensive to capture and limited in diversity. While recent generative models
offer strong priors for image synthesis, lighting estimation remains difficult due
to its reliance on indirect visual cues, the need to infer global (non-local) con-
text, and the recovery of high-dynamic-range outputs. We propose LuxDiT, a
novel data-driven approach that fine-tunes a video diffusion transformer to gen-
erate HDR environment maps conditioned on visual input. Trained on a large
synthetic dataset with diverse lighting conditions, our model learns to infer il-
lumination from indirect visual cues and generalizes effectively to real-world
scenes. To improve semantic alignment between the input and the predicted en-
vironment map, we introduce a low-rank adaptation finetuning strategy using a
collected dataset of HDR panoramas. Our method produces accurate lighting
predictions with realistic angular high-frequency details, outperforming existing
state-of-the-art techniques in both quantitative and qualitative evaluations. Project
page: https://research.nvidia.com/labs/toronto-ai/LuxDiT/

1 Introduction
In physically-based rendering, lighting plays a central role in shaping the appearance—how objects
cast shadows, reflect, and appear integrated within a scene. From virtual object insertion and
augmented reality to synthetic data generation, many downstream tasks rely on estimating scene
illumination. Yet inferring lighting from casually captured images or video remains an open challenge.

A common representation of the scene illumination is the high-dynamic-range (HDR) environment
map, which describes incoming light intensity from all directions. HDR maps can be acquired by
using light probes or multi-exposure panoramas, requiring specialized setups that are impractical for
everyday use [9]. To overcome this, several learning-based methods that estimate environment maps
directly from casually captured LDR images or videos have been proposed [15, 16, 32, 73]. However,
these methods typically depend on paired datasets of input images or videos and HDR environment
maps, leading to a chicken-and-egg problem: a large collection of HDR environment maps is needed
to train a model that aims to alleviate the need for acquiring such expensive data in the first place.

Recently, generative diffusion models have demonstrated strong capabilities in modeling complex
image distributions. DiffusionLight [44] demonstrated that pretrained text-to-image models encode
implicit knowledge of illumination, which can be cleverly extracted by inpainting a virtual chrome
ball into an image, generating plausible appearances under varying exposure settings. However,
without task-specific fine-tuning, the inpainting priors of pre-trained diffusion models are insufficient
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Input Image Lighting Estimation Virtual Object Insertion
Figure 1: LuxDiT is a generative lighting estimation model that predicts high-quality HDR envi-
ronment maps from visual input. It produces accurate lighting while preserving scene semantics,
enabling realistic virtual object insertion under diverse conditions.

for producing reliable lighting estimates in a single inference and cannot directly generate HDR
outputs. As a result, DiffusionLight relies on an expensive test-time ensemble strategy to improve
robustness. Moreover, sampling multiple exposures through separate inference passes introduces
inconsistencies and limits the dynamic range of the reconstructed illumination.

In this work, we formulate lighting estimation as a conditional generative task and propose LuxDiT,
a neural lighting predictor trained on synthetic data and adapted to real-world scenes. Conditioned on
visual input, our approach fine-tunes a diffusion transformer (DiT) to synthesize HDR panoramas
from noise. Unlike pixel-aligned tasks, lighting estimation requires global reasoning over scene
context. DiTs are particularly suited to this task: their attention-based architecture supports global
context aggregation, and their generative priors facilitate reasoning from indirect cues such as shading
and reflections.

Training such a model requires diverse lighting data. To overcome the lack of real-world HDR lighting
supervision, we construct a large-scale synthetic dataset with randomized geometry, materials, and
lighting conditions. Training on this dataset allows the model to learn physically grounded cues for
light direction and intensity. While this imparts general lighting priors, models trained purely on
synthetic data often hallucinate lighting based on dataset priors, producing environment maps that
are plausible but semantically mismatched with the input scene. For example, an image of an urban
street may yield an environment map depicting a rural landscape. To address this, we further apply
low-rank adaptation (LoRA) [23] on a curated set of real HDR panoramas, improving alignment
between predicted lighting and scene semantics.

Given a single image or video, LuxDiT produces HDR environment maps with accurate direction,
intensity, and scene-consistent content. It reduces lighting estimation error by 45% on Laval Outdoor
sunlight direction and improves temporal consistency for video input, enabling reliable use in
downstream applications such as virtual object insertion. Our main contributions are:

• A DiT-based generative architecture that synthesizes HDR environment maps from visual input.
• A LoRA-based fine-tuning strategy using curated HDR panoramas to improve semantic alignment

between the input scene and predicted illumination.
• A large-scale synthetic dataset with randomized geometry, materials, and lighting.

2 Related Work
Lighting estimation aims to infer environment illumination from input imagery, and is critical for
photorealistic rendering and virtual object insertion. Early learning-based methods treat lighting
estimation as a supervised regression problem, predicting spherical lobes [16, 32, 71, 68], parametric
sources [65, 14], or low-resolution environment maps [15, 49, 73, 51] directly from a single image.
These models are trained on paired data obtained from real-world captures [15, 49, 57] or synthetic
rendering [32, 73, 51]. However, their performance often degrades in complex, in-the-wild scenes
due to limited diversity in the training data.
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Recent methods incorporate generative priors to address the ambiguity of scene illumination. Style-
Light [54] fine-tunes a StyleGAN to generate LDR and HDR panoramas from latent codes, using
GAN inversion at test time. However, its performance hinges on inversion quality and often breaks
semantic alignment on out-of-domain inputs. EverLight [8] regresses a parametric lighting estimate
and refines it with a GAN to add high-frequency detail, but relies on pseudo-labeled HDR data and
struggles with complex or bright lighting. DiffusionLight [44] uses a diffusion model to inpaint
a virtual chrome ball under multiple exposures, merging them into an HDR map. While visually
plausible, this multi-stage process yields distorted panoramas and limited dynamic range.

Inverse rendering recovers scene properties such as geometry, material reflectance, and illumination
from image observations. Lighting estimation is often treated as a subcomponent of this broader task,
with prior work jointly estimating lighting alongside depth, normals, and albedo. Learning-based
approaches [48, 32, 58] typically leverage physics-based constraints and use re-rendering losses to
supervise predictions. However, these methods often assume simplified reflectance models such as
Lambertian shading, which limits their ability to handle complex lighting effects.

Optimization-based methods leverage differentiable rendering [4, 70, 69, 6, 59, 41, 18, 33] to
jointly optimize lighting parameters and other scene attributes through photometric losses and
regularization terms. Some approaches [30] follow a decomposition-then-optimization strategy:
estimating geometry and albedo first, then solving for lighting via optimization. Other works
also explore priors from proxy geometry [64] or pretrained general models [37, 35, 42]. The
optimization-based pipelines often require dense multi-view captures or known proxy geometry, and
involve expensive test-time optimization procedures. In contrast, our method directly predicts HDR
illumination in a feed-forward manner without requiring scene geometry or iterative inference.

Diffusion model priors. Diffusion models (DMs) have emerged as a powerful class of generative
models in high-fidelity image [45, 2, 46, 7] and video synthesis [21, 72, 3, 62, 1]. Beyond generation,
pretrained DMs have been adapted to perception tasks through task-specific finetuning on carefully
curated datasets [61, 38, 19], showing strong results on spatially aligned predictions such as depth [29,
24, 28], surface normals [13, 63, 34], albedo [11, 30, 67, 34], and material properties [30, 67, 34, 42].
Adapting DMs to non-local tasks like lighting introduces new modeling challenges, as outputs such
as HDR panoramas are not spatially-aligned with the input.

3 Preliminaries: Diffusion Models
Diffusion models learn to approximate a data distribution pdata(x) through iterative denoising. Fol-
lowing DDPM [20], a forward process progressively adds Gaussian noise to a data sample x0 ∼ pdata,
producing a noisy version at timestep t ∈ [1, T ] as: xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I)

and ᾱt defines the noise schedule. During training, a neural network µθ learns to reverse this process
by minimizing:

Ex0∼pdata(x),t∼pt,ϵ∼N (0,I)

[
∥µθ(xt; c, t)− y∥22

]
, (1)

where c represents optional conditioning inputs. The denoising target y varies by formulation, and
can be the noise ϵ [20], the v-prediction

√
ᾱtϵ−

√
1− ᾱtx0 [47], or the clean signal x0 itself [27].

At inference time, samples are generated by denoising an initial Gaussian sample through a fixed
number of reverse steps. In this paper, we build on CogVideoX [62], a latent video diffusion model
trained on compressed video representations. A pretrained auto-encoder pair {E ,D} maps RGB
videos to and from a latent space, such that E(x) = z and D(z) ≈ x. All diffusion training and
generation is performed in this lower-dimensional latent space to reduce memory and computational.

4 Method
We propose LuxDiT, a diffusion-based generative framework for estimating high-dynamic-range
(HDR) environment maps from a single image or video. We tailor a recent video diffusion transformer
architecture [62] for lighting estimation, by jointly processing denoising targets (environment lighting)
and condition tokens (LDR input images) through self-attention layers. Since a single image can be
treated as a one-frame video, we refer to both inputs uniformly as input video in the remainder of this
section. An overview of the architecture is shown in Figure 2. In the following sections, we describe
the model design, data sources, and training procedure.
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Figure 2: Method Overview. Given an input image or video I, LuxDiT predicts an environment map E as two
tone-mapped representations, Eldr and Elog, guided by a directional map Edir. Environment maps are encoded
with a VAE, and the resulting latents are concatenated and jointly processed with visual input by a DiT. The
outputs Eldr and Elog are decoded and fused by a lightweight MLP to reconstruct the final HDR panorama.

4.1 Model Design
We formulate HDR environment map estimation as a conditional denoising task. Given an input
video I ∈ RL×H×W×3 with L frames, the model generates a corresponding sequence of 360◦ HDR
panoramas E ∈ RL×He×We×3.

Two core challenges arise: (1) standard VAEs used in latent diffusion models are trained on LDR
images and cannot faithfully encode HDR content, and (2) the output panoramas are not spatially
aligned with the input, requiring flexible conditioning mechanisms. We address these challenges
using a dual-tonemapping HDR representation, token-based conditioning, and a unified transformer
architecture that jointly denoises two latent representations of lighting.

HDR lighting representation. Realistic lighting involves high-intensity components such as the sun
or artificial sources, with radiance values often exceeding 100 or 1,000. Representing this range in
latent space is non-trivial: standard VAEs are trained on [0, 1]-normalized LDR images and cannot
reconstruct such dynamic content, and retraining on HDR data is impractical due to data scarcity

Inspired by prior works [26, 34], we represent each HDR panorama E using two complementary
tonemapped representations:

Eldr =
E

1 +E
·
(
1 +

E

M2
ldr

)
; Elog =

log(1 +E)

log(1 +Mlog)
(2)

where Eldr is a standard Reinhard tonemapping and Elog captures normalized log-intensity. We set
Mldr = 16 and Mlog = 10,000. Both outputs are clipped to [0, 1] before VAE encoding.

At inference time, the HDR environment map is reconstructed using a lightweight MLP ψ:

Ê = ψ (Eldr,Elog) . (3)

Diffusion latents. Our model builds on a transformer-based diffusion model µθ, adapted to predict
HDR environment maps from visual input. The model operates in latent space and jointly denoises
two tonemapped representations of the HDR lighting.

The tonemapped inputs Eldr and Elog are encoded by the pretrained VAE into latent tensors [zldr, zlog]

with shape as Rl×he×we×C . These are concatenated along the channel dimension to form the diffusion
target z = [zldr, zlog] ∈ Rl×he×we×2C . The input and output projection layers of the diffusion network
µθ are extended to accommodate the increased channel dimension.

Conditioning visual input in DiT. Accurate lighting estimation requires the model to extract fine-
grained shading cues from the input image, such as shadow orientation, surface reflections, and
specular highlights. Unlike pixel-aligned image-to-image translation tasks, we empirically observe
that concatenating conditions to the noisy latents leads to poor performance (see Table 7), indicating
the need for a more flexible conditioning mechanism.

To this end, we adopt a fully attention-based architecture for the input video conditions. Specifically,
we encode the input video I ∈ RL×H×W×3 into a latent tensor E(I) ∈ Rl×h×w×C using the pre-
trained VAE encoder, and flatten it into a token sequence c ∈ Rlhw×C . To help the model distinguish
between condition tokens and denoising targets, we apply separate adaptive layer normalization
(AdaLN) modules [43, 62] to each token type at every transformer block.
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Directional embedding. To improve angular continuity in the predicted panoramas, we inject
directional information into the model. Specifically, we construct a direction map of unit vectors
Edir that encodes per-pixel lighting directions in the camera coordinate system. This map is passed
through the same VAE encoder E , then projected and fused into the noise tokens using channel-wise
concatenation before the transformer blocks. During training, we apply random horizontal rotations
to Edir to encourage rotational equi-variance and robust directional encoding.

Conditioned denoising process. To put it together, at each denoising timestep t, the model receives
a noisy latent zt = [zldr

t , zlog
t ] and predicts the corresponding clean latents conditioned on visual

input as µθ(zt; c, t). This transformer-based design allows the model to propagate indirect lighting
cues—such as shadows and reflections—through global self-attention, enabling lighting prediction
that is both scene-consistent and directionally accurate.

4.2 Data Strategy
Supervised training of our model requires paired data in the form (I,Eldr,Elog), where I is an LDR
input and Eldr,Elog are tonemapped versions of the target HDR environment map. To overcome the
scarcity of real-world HDR annotations, we leverage three complementary data sources: synthetic
renderings, HDR panorama images, and LDR panoramic videos.

Synthetic rendering data. To supervise lighting prediction using physically accurate visual cues,
we generate synthetic data by rendering randomized 3D scenes lit by HDR environment maps. Each
scene consists of (i) a ground plane with randomly assigned PBR materials, (ii) 3D objects sampled
from Objaverse [10], and (iii) simple geometric primitives such as spheres, cubes, and cylinders
with varied materials. We render multiple frames per scene with randomized camera trajectories and
environment map rotations. Despite their simplicity, these scenes exhibit diverse lighting effects,
including cast shadows, specular highlights, and inter-reflections, all paired with ground-truth HDR
illumination. Empirically, we find this data is critical for enabling the model to learn accurate shading
cues and light-source location (see Table 7).

HDR panorama images. We generate training pairs by sampling perspective crops from HDR
environment maps with data augmentation. Specifically, given a panorama, we randomly sample
camera parameters including azimuth, elevation, field of view, and exposure scale. These parameters
define a virtual pinhole camera, which we use to project the panorama into an LDR perspective view
I. The corresponding HDR environment map serves as the ground truth lighting target E. To support
temporal training, we extend this procedure to generate multi-frame sequences by smoothly varying
the camera pose over time.

LDR panorama videos. To enable the generation of dynamic panorama environment maps, we also
incorporate training data from LDR panoramic videos. Although ground-truth HDR environment
maps are not available for this source, we use it in the form (I,Eldr,∅), where Eldr is derived using
tonemapping and ∅ indicates the absence of log-space intensity. The panoramic video is projected
into a perspective-view video using randomized camera parameters, following the same procedure as
above. Despite the lack of HDR intensity, this data improves robustness and temporal consistency
by exposing the model to natural image statistics, motion patterns, and diverse real-world lighting
conditions. We use 2,000 panoramic videos from the WEB360 dataset [56] for training, and hold out
114 videos for evaluation.

4.3 Training Scheme
We adopt a two-stage training strategy to progressively build the model’s capacity and improve
generalization. The first stage focuses on learning physically grounded lighting cues from synthetic
data. The second stage adapts the model to real-world distributions through LoRA-based fine-tuning.

Stage I: Synthetic supervised training. We begin by training the model on the synthetic rendering
dataset described in Section 4.2. This stage enables the model to learn the fundamental relationship
between image-based shading cues and HDR environment lighting.

We follow the standard DDPM training objective [20] adopted by the CogVideoX base model [62]:

LI(θ) = Ez0,ϵ∼N (0,I),t∼U(T )

[
∥ϵ− µθ(zt, c, t)∥22

]
, (4)

where z0 denotes the clean latent pair [zldr, zlog], and c is the conditioning latent from the input video.
During training, we randomly drop either zldr or zlog with probability p = 0.1 to encourage robustness
to missing tonemapped representations.
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Table 1: Comparison of our method with baselines on three benchmark datasets. The results are
reported in terms of scale-invariant RMSE, angular error, and normalized RMSE.

Dataset Method Scale-invariant RMSE ↓ Angular Error ↓ Normalized RMSE ↓
Diffuse Matte Mirror Diffuse Matte Mirror Diffuse Matte Mirror

Laval Indoor
StyleLight 0.135 0.315 0.552 4.238 4.742 6.781 0.234 0.404 0.511
DiffusionLight 0.124 0.325 0.597 2.500 3.421 5.936 0.216 0.361 0.431
Ours 0.112 0.297 0.586 2.555 3.526 5.641 0.196 0.341 0.457

Laval Outdoor

H-G et al. [22] 0.300 0.437 0.587 7.851 8.755 26.052 0.551 0.627 0.740
NLFE 0.112 0.234 0.431 4.804 5.279 7.278 0.217 0.331 0.496
DiffusionLight 0.083 0.224 0.414 1.936 2.955 5.491 0.167 0.330 0.472
Ours 0.068 0.190 0.396 2.018 2.939 5.286 0.137 0.271 0.454

Poly Haven
StyleLight 0.138 0.336 0.620 3.034 4.272 6.602 0.198 0.344 0.474
NLFE 0.159 0.326 0.571 3.305 4.240 5.180 0.224 0.365 0.458
DiffusionLight 0.113 0.270 0.519 2.199 3.121 4.104 0.191 0.282 0.391
Ours 0.077 0.196 0.442 1.235 1.977 2.783 0.111 0.199 0.323

Table 2: Angular error on estimated peak
luminance light direction on Laval Outdoor
sunny scenes.

Method Peak Angular Error ↓
Mean Median

H-G et al. [22] 52.8 47.8
NLFE 52.9 43.5
DiffusionLight 44.4 32.1
Ours 23.7 17.5

Table 3: Quantitative comparison with video input. Peak an-
gular error (PAE) is used to evaluate PolyHaven-Peak videos.
Angular error (AE) on is used to evaluate WEB360 LDR videos.

Method PolyHaven-Peak WEB360
PAE Mean ↓ PAE Std ↓ AE ↓ AE Std ↓

DiffusionLight 19.09 10.31 6.504 0.269
Ours (image) 5.74 3.68 5.679 0.382
Ours (video) 5.21 1.95 5.218 0.072

Stage II: Semantic adaptation. After base training, we fine-tune the model to improve semantic
alignment between the input appearance and the predicted HDR environment map.

This stage uses real-world data sources, including perspective projections from HDR panoramas and
LDR panoramic videos. Since HDR ground truth is not available in the latter, we supervise only
the LDR-tonemapped component. To avoid overfitting and preserve the pretrained model capacity,
we apply parameter-efficient LoRA fine-tuning [23], optimizing a small set of injected low-rank
parameters ∆θ in the transformer layers:

LII(∆θ) = Ez0,ϵ∼N (0,I),t∼U(T )

[
∥ϵ− µθ+∆θ(zt, c, t)∥22

]
, (5)

5 Experiments

5.1 Experiment Settings

Implementation details. We use the pre-trained CogVideoX [62] model as our backbone. All
training is conducted on 16 NVIDIA A100 GPUs. Input resolutions are randomly sampled be-
tween 512×512 and 480×720, and output environment map resolutions are between 128×256 and
256×512. The image-based model is trained with a batch size of 192 for 12,000 iterations. For video
training, we use the same spatial resolutions and uniformly sample frame lengths from 9, 17, 25. The
video model is trained with an average batch size of 48 for an additional 12,000 iterations. LoRA
modules are applied to all attention layers with a rank of 64. We fine-tune the LoRA parameters for
5,000 iterations during the adaptation stage. Please refer to supplement for implementation details.

Datasets. We evaluate our method on the following three benchmark datasets, covering various
indoor and outdoor scenes. 1) Laval Indoor [15]: We use the same set of 289 test HDRIs used by prior
works [44, 54]; 2) Laval Outdoor [22]: We evaluate on 116 sunny HDR panoramas with concentrated
sunlight selected from the original dataset; 3) Poly Haven [66]: We select 181 Poly Haven HDRIs
not used during model training to evaluate performance across both indoor and outdoor scenes.

Metrics. Following prior works [54, 44], we use three standard metrics for evaluating HDR lighting:
scale-invariant root mean square error (si-RMSE) [17], angular error in degrees [31], and normalized
RMSE (n-RMSE) [44]. For scenes with concentrated sunlight, we additionally report peak angular
error (PAE) [22, 57], which measures the angular deviation of the predicted peak light direction.

Baselines. For indoor scenes, we compare against DiffusionLight [44], StyleLight [54], Weber et
al. [60], and EMLight [68], using metrics reported by [44] when applicable. For outdoor scenes, we
compare against DiffusionLight [44], Hold-Geoffroy et al. [22], and NLFE [57].
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Figure 3: Qualitative comparison with baseline methods on three benchmark datasets.

Reference StyleLight DiffusionLight DiPIR Ours

Figure 4: Qualitative comparison of virtual object insertion.

Table 4: Ablation study on impact
of LoRA scale at inference time.

LoRA Scale Diffuse ↓ Matte ↓ Mirror ↓
0.00 2.98 5.02 6.07
0.25 2.09 3.69 4.67
0.50 1.52 2.66 3.56
0.75 1.22 2.05 2.88
1.00 1.17 1.92 2.72

Table 5: Ablation study on im-
pact of camera field-of-view.

FOV Diffuse ↓ Matte ↓ Mirror ↓
45◦ 1.29 2.14 2.95
50◦ 1.26 2.06 2.86
60◦ 1.17 1.92 2.72
70◦ 1.15 1.85 2.63
75◦ 1.13 1.80 2.59

Table 6: Ablation study on impact
of camera elevation.

Elevation Diffuse ↓ Matte ↓ Mirror ↓
−30◦ 1.70 3.04 3.95
−15◦ 1.22 2.05 2.87
+00◦ 1.17 1.92 2.72
+15◦ 1.28 2.09 2.94
+30◦ 1.71 2.59 3.51

Table 7: Ablation study on model design choices and training data. We report the angular error with three-
spheres protocol.

Settings Laval Indoor Poly Haven
Diffuse ↓ Matte ↓ Mirror ↓ Diffuse ↓ Matte ↓ Mirror ↓

Ours (channel concat.) 7.09 10.04 11.07 7.09 10.04 11.07
Ours (w/o synthetic data) 4.50 5.14 6.96 1.48 2.08 2.86
Ours 2.56 3.53 5.64 1.23 1.98 2.78

5.2 Evaluation of Image Lighting Estimation
We follow the evaluation protocol from prior work to render spheres with three representative
materials (gray-diffuse, silver-matte, and mirror), using the estimated HDR environment map from
the LDR input image [15, 54, 44].
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Figure 5: Qualitative comparison of video lighting estimation.

Table 1 reports quantitative comparisons on three benchmarks spanning both indoor and outdoor
scenes. On the Laval Indoor dataset, our method performs comparably or better than DiffusionLight
across most metrics, despite not using Laval Indoor dataset during training. This dataset exhibits
a noticeable shift in color and intensity distribution compared to our training set, and our strong
performance demonstrates robust generalization.

From qualitative comparison shown in Figure 3, DiffusionLight can lose angular high-frequency
details from the input image due to its distorted representation. In contrast, our estimated environment
maps can recover more high-frequency details while preserving accurate lighting.

On the Laval Outdoor and Poly Haven datasets with a broader dynamic range, our method consistently
outperforms prior state-of-the-art methods. Hold-Geoffroy et al. [22] can estimate concentrated
peak light source such as sunlight; however, its results do not adapt well to the details of the input
image. NLFE [57] can estimate in-context environment maps, but it often fails to estimate accurate
highlights. DiffusionLight performs better than other baselines, but due to its limited dynamic range,
it struggles with outdoor high-intensity light sources.

To further assess directional accuracy, we evaluate the angular error of the peak luminance direction
on a subset of the Laval Outdoor dataset containing direct sunlight. Table 2 reports the mean and
median peak angular errors. Our method reduces peak angular error by nearly 50% compared to
DiffusionLight, confirming its advantage in capturing accurate light direction—a critical factor for
casting realistic shadows in downstream applications such as object insertion.

5.3 Evaluation of Video Lighting Estimation

To evaluate lighting estimation accuracy and consistency on video input, we construct two types of
test sequences:

• PolyHaven-Peak: We project 12 unseen Poly Haven panoramas (each with direct sunlight) into
videos using a smooth panning camera. This setting is used to evaluate peak angular error.

• WEB360: We randomly select 12 LDR panoramic videos featuring dynamic content from
WEB360 and render them into perspective views with fixed horizontal camera motion. This
setting evaluates temporal consistency using chromatic angular error on rendered mirror spheres.

Each set contains 12 videos at resolution of 480×720 and a length of 25 frames. To quantify temporal
consistency, we compute the standard deviation (std) of per-frame error metrics for each video clip,
and average the results across the 12-video set.

We compare our video inference to two baselines: our own image-based inference (applied frame-by-
frame) and DiffusionLight [44]. Table 3 reports the results. Our method outperforms DiffusionLight.
Comparing to Ours (image), video inference achieves higher accuracy and significantly lower
temporal variance, indicating more stable predictions across time.

Figure 5 shows qualitative examples of video inference. Both DiffusionLight and our image-based
variant exhibit visible temporal flickering. In contrast, our method produces smooth lighting transi-
tions, successfully aligning content across frames and preserving consistent lighting behavior over
time.
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5.4 Evaluation of Virtual Object Insertion

Table 8: Quantitative evaluation of virtual
object insertion. We report the percentage of
images where users preferred Ours over base-
lines. A preference > 50% indicates Ours
outperforming baselines.

Method RMSE ↓ SSIM ↑ Ours Preferred
StyleLight 0.056 0.986 60.6%
DiffusionLight 0.057 0.987 60.6%
DiPIR 0.048 0.989 54.5%
Ours 0.047 0.990 /

Virtual object insertion is a key downstream applica-
tion of lighting estimation. We evaluate our method on
this task using the benchmark from [35], using 11 HDR
panoramas from the Poly Haven dataset [66]. For each
scene, a virtual object and a known ground plane are
manually placed into the environment. Each test case
includes an LDR background image rendered from the
HDR panorama, along with a posed object and ground
plane. A pseudo-ground-truth object insertion is gen-
erated by rendering the object using the original HDR
environment map. This allows for controlled comparison
against renderings produced using predicted lighting.

We report quantitative metrics in Table 8. In addition, we conduct a user study to assess perceptual
quality (details provided in the supplement), and report the percentage of samples where users
preferred our results over baseline methods.

Our method achieves visual quality comparable to DiPIR and significantly outperforms other baselines.
Notably, DiPIR is specialized for object insertion and incorporates additional modules for tone
mapping and appearance harmonization. In contrast, our model estimates lighting alone, yet still
produces realistic composite renderings. We include qualitative results in Figure 4.

5.5 Ablation Study
Model Design and Training Data We evaluate two model variants to ablate the contributions
of our architectural and training design: (1) Channel concatenation: This variant fuses input and
environment map (resized to match input image) latents along the channel dimension [26], and
no token-wise concatenation is used. Our two-stage training is also applied. (2) Training without
synthetic data: This variant skips Stage I training and uses only panorama crops for fine-tuning.

Table 7 reports angular errors on Laval Indoor and Poly Haven. Channel concatenation significantly
underperforms, confirming the importance of token-level conditioning. Without synthetic pretraining,
the model performs well in-domain (Poly Haven) but degrades out-of-domain (Laval Indoor), showing
synthetic data pre-training is crucial for learning generalized lighting priors.

LoRA scale. We vary the LoRA interpolation weight from 0.0 to 1.0 to ablate how fine-tuned LoRA
affects the predicted lighting content. Table 4 shows that higher LoRA weights yield lower angular
error on Poly Haven, validating the effectiveness of LoRA for improving semantic alignment.

Camera sensitivity. We test robustness to camera variation by rendering crops from Poly Haven
under varying field of view (45◦ to 75◦) and camera elevation (−30◦ to 30◦). Results in Tables 5 and
6 show that while extreme viewpoints introduce mild error increases, performance remains stable,
demonstrating robustness to moderate viewpoint shifts.

6 Discussion
We introduce LuxDiT, a conditional generative model for estimating HDR scene illumination from
casually captured images and videos. Our approach fine-tunes a video diffusion transformer (DiT)
to synthesize HDR environment maps, combining large-scale synthetic data for learning physically
grounded priors with LoRA-based adaptation on real HDR panoramas to improve semantic alignment.
Extensive experiments demonstrate that LuxDiT produces accurate, high-frequency, and scene-
consistent lighting predictions from limited visual input.

Limitations and future work. While LuxDiT produces high-quality lighting predictions, inference
remains computationally intensive due to the iterative nature of diffusion models, limiting its use in
real-time applications. Future work could explore model distillation or more efficient architectures
to accelerate inference. Additionally, the resolution of predicted panoramas is limited by data and
training scale; generating high-resolution outputs for immersive applications will require richer, more
diverse HDR supervision. Looking ahead, with recent progress in joint generative modeling [5, 36],
we see LuxDiT as a step toward unified inverse and forward rendering frameworks, complementing
recent progress in neural forward rendering and G-buffer estimation [67, 34]. Future directions
include joint modeling or co-training of lighting, geometry, and material for general-purpose scene
reconstruction and appearance synthesis.
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Supplement for LuxDiT: Lighting Estimation with
Video Diffusion Transformer

In the supplementary material, we discuss the broader impact of our project in Sec. A, and provide
additional details for implementation and experiments in Sec. B. Sec. C provides additional quantita-
tive and qualitative results. We refer to the accompanied video for extended comparisons on video
lighting estimation.

A Broader Impact

We introduce LuxDiT, a generative model for estimating high-dynamic-range (HDR) environment
lighting from casually captured images and videos. Lighting estimation is a core challenge in
photorealistic rendering due to its non-local and indirect nature. LuxDiT produces scene-consistent
HDR panoramas, enabling applications in virtual object insertion, relighting, AR/VR, and visual
effects. It can also support synthetic data generation for downstream tasks in robotics and perception,
where realistic illumination is critical.

Similar to other generative methods, LuxDiT could be misused to produce visually convincing
but deceptive content. While it does not directly generate synthetic scenes, it enables realistic
virtual object insertion and may facilitate the creation of manipulated imagery that is difficult to
distinguish from real footage. We encourage responsible use of LuxDiT and caution against its
deployment in contexts where synthetic content could mislead viewers or undermine public trust,
such as misinformation or falsified media.

B Additional Details

B.1 HDR Reconstruction

Section 4.1 describes our method for reconstructing HDR environment maps from two tone-mapped
LDR images using a lightweight MLP ψ (Eldr,Elog). This MLP consists of 5 layers with 64 hidden
units per layer and LeakyReLU activation. A softplus activation is applied to the final output layer to
ensure non-negative outputs.

The MLP ψ operates on a per-pixel basis: it takes a pair of LDR RGB values as input and predicts a
single HDR RGB value. It is trained using the same HDR environment maps as the diffusion model,
with augmentations including random intensity rescaling and exposure adjustments for diversity. To
simulate limited input precision, LDR inputs are randomly quantized to 8-bit RGB values. We train
the MLP using a Huber loss with δ = 1.0, which provides robustness against large HDR outliers
while preserving smooth gradients.

Additionally, we show the tone-mapping curves used to generate the LDR images in Fig. 6. Our
dual-tone mapping strategy ensures sufficient sampling across the full dynamic range [0, 10,000],
supporting accurate HDR reconstruction.

0 1 4 8 16 100 1000 10000
HDR Value

0.0

0.2

0.4

0.6

0.8

1.0

L
D

R
V

al
u
e

Reinhard

Logarithm

Figure 6: The two tone-mapping curves used to gen-
erate the LDR images. The 128 dot points along the
curve are evenly spaced along [0, 1] LDR value range.
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B.2 Datasets

We provide more details about the datasets used in our experiments.

The data sources of HDR environment maps. We collected 2386 HDR environment maps from
the following 4 data sources either publicly available or commercially available.

• Poly Haven0: 626 HDR environment maps with a wide range of indoor and outdoor lighting.

• HDR Maps1: 403 HDR environment maps with diverse lighting conditions, including 294
panorama maps and 109 hemi-sphere sky maps.

• HDRI Skies2: 457 HDR environment maps with outdoor lighting conditions.

• DOSCH DESIGN3: 900 HDR environment maps mainly for outdoor lighting conditions.

Figure 7 shows the histogram of the 99.9-th percentile intensity of all HDR environment maps in
our training set. With over 50% of the HDR environment maps having a 99.9-th percentile intensity
greater than 2.93. Note that the for outdoor lighting, the highest intensity can be orders of magnitude
higher than the 99.9-th percentile. Among these, Poly Haven and HDR Maps offer greater diversity
across scene types. To balance the training distribution across data sources, we apply sampling
weights in the ratio 3:2 :2 :1 in the order listed above.

For quantitative and qualitative evaluation, we use the Laval Indoor 4 and Laval Outdoor 5 datasets,
which contain calibrated HDR panoramas of real-world indoor and outdoor scenes.

Figure 8: Randomly sampled example images
from our synthetic rendering data.

Synthetic rendering data. Similar to OBJect [39]
and DiffusionRenderer [34], we create synthetic 3D
scenes by compositing multiple 3D objects from Ob-
javerse [10] and randomly placing them on a plane
with varying plane textures. We use a filtered sub-
set of Objaverse, containing ∼269,000 3D objects
with decent geometries and material textures, to cre-
ate synthetic 3D scenes. The varying plane textures
are sampled from ∼4000 PBR textures from Mat-
Synth6 [53]. Each composited scene contains up to
3 sampled Objaverse objects. We additionally add up
to 3 random geometry primitives (sphere, cube, and
cylinder) with varying material textures to provide
rich shading cues for model to learn. For each scene,
we randomly render 1∼4 video clips with varying
camera motions (e.g., orbiting camera and oscilating
camera) and environment lightings. We use a path-tracing renderer with 128 samples per pixel (spp)
and the default OptiX denoiser to render the video clips with a resolution of 480× 720 or 512× 512.
The HDR rendering results are tone-mapped to LDR images using Blender’s AgX tonemapping7. In
total, we created ∼190,000 random synthetic scenes, resulting in ∼260,000 video clips with at least
16 frames per video clip.

Perspective crops of HDR panorama images. We use a subset of 1251 HDR panoramas with
meaningful contents from Poly Haven, HDR Maps, and HDRI Skies for the training with perspective
crops. Instead of pre-processing the perspective crops from the HDR panoramas, we do the perspective
crops on-the-fly during the training. The projection camera’s azimuth angle is randomly sampled
from [0, 360◦] and the elevation angle is randomly sampled from −10◦ to 10◦. The camera’s field
of view (FOV) is randomly sampled from 45◦ to 80◦. The perspective crops are rendered with a
resolution of 480× 720. A random tone-mapping function is applied to perspective projection crops

0https://polyhaven.com/
1https://hdrmaps.com/
2https://hdri-skies.com/
3https://doschdesign.com/
4http://hdrdb.com/indoor/
5http://hdrdb.com/outdoor/
6https://huggingface.co/datasets/gvecchio/MatSynth
7https://www.blender.org/
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to generate LDR images. The tone-mappings include ACES, Filmic, AgX, and Gamma-2.4 sRGB
mappings. Auto-exposure (i.e., remapping the 99-th percentile intensity to 0.9) is also randomly
applied to the LDR crops. For video input, we create trajectories of projection cameras by smoothly
rotating the camera angle within an angular cone of 15◦.

Perspective crops of LDR panorama videos. Similar to the perspective crops of HDR panorama
images. We on-the-fly sample perspective crops from the LDR panorama videos. Due to the lack of
HDR content, we only apply a random auto-exposure tone-mapping to the perspective crops.

B.3 Model Details and Initialization

LuxDiT is fine-tuned from the pre-trained CogVideoX-5b-I2V8. To adapt this model for our task,
we replace the original text token with an image input token. This image token is generated in the
same manner as the environment map noise token, but without adding noise. We reuse the model’s
existing text-processing layers (e.g., AdaLN) to process these new image input tokens. Furthermore,
we extend the input projection layer to incorporate additional conditioning channels derived from
the concatenated noise token; these extended channels are initialized to zero. Similarly, the output
projection layer is extended to predict dual tone-mapped environment tokens, with its newly added
channels initialized from the original model’s weights.

B.4 User Study Details for Virtual Object Insertion

Following prior works [14, 16, 15, 57, 35], we conduct a user study on Amazon Mechanical Turk to
compare our method against baseline approaches in terms of perceptual realism for virtual object
insertion. Each participant is shown a pair of rendered results—one from our method and one from a
baseline—and asked to assess lighting realism, focusing on shadows, reflections, and overall visual
integration.

The specific instructions shown to participants are:

Instruction: Find the inserted virtual object, look at the difference, and select the
more realistic image.
An AI system is trying to insert a virtual object into an image in a natural way.
It aims to make the virtual object look as if it is part of the scene. There are two
results: Trial A and Trial B, and the virtual object is located in the center of each
image. Please zoom in to compare the differences between the two images, and
pay attention to the lighting effects such as the reflections and shadows.
Which one looks more realistic?
□ A
□ B

Participants are required to use a monitor 24 inches or larger. Image pairs are randomly shuffled to
prevent bias. Following [35], we repeat the user study three times, and recruited 11 unique participants
for each experiment. We compute the percentage of images for which users preferred our method
over the baseline, and report the average user preferences for three repeated experiments. In total, the
study includes 11× 3× 11× 3 = 1089 individual comparisons.

B.5 Three-sphere Evaluation Protocol

We adopt the three-sphere rendering setting described in StyleLight [54], with evaluation scripts
provided by DiffusionLight9.

For the Laval Indoor dataset, we use the same set of HDR environment maps and corresponding
perspective crops as DiffusionLight. We resize and crop the input image to 480× 720 for our model.
For Laval Outdoor and Poly Haven environment maps, we generate perspective crops using a fixed
horizontal camera with a 60◦ field of view and a resolution of 480 × 720. For Laval Outdoor, we
apply auto-exposure by scaling the 50th percentile intensity to 0.5.

8https://huggingface.co/THUDM/CogVideoX-5b-I2V
9https://github.com/DiffusionLight/DiffusionLight-evaluation
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C Additional Experiments

C.1 Array-of-Spheres Evaluation

Table 9: Scores on indoor array-of-spheres.

Method si-RMSE ↓ AE ↓
EverLight [8] 0.091 6.36
StyleLight [54] 0.123 7.09
Weber et al. [60] 0.081 4.13
EMLight [68] 0.099 3.99
DiffusionLight [44] 0.090 5.25
Ours 0.089 4.90

Following prior work [60, 8], we evaluate our method
using the array-of-spheres protocol, which renders a grid
of diffuse spheres on a ground plane using the predicted
environment map.

We use 2,240 perspective crops from 224 Laval Indoor
panoramas, provided by DiffusionLight10. All input im-
ages are resized to 512 × 512 to match our model input.
Quantitative results are shown in Table 9 and qualitative
results in Fig. 9.

While our method performs slightly below specialized sys-
tems like Weber et al. [60] and EMLight [68], it remains
competitive—despite not being trained on Laval Indoor.
Notably, it outperforms StyleLight [54] and DiffusionLight [44], demonstrating strong generalization
across lighting domains.

Input Image GT DiffusionLight Ours Input Image GT DiffusionLight Ours

Figure 9: Visual results on array-of-spheres protocol.

C.2 Lighting Estimation with the Cube++ Dataset

Table 10: Scores on SpyderCube white face
rendering on Cube++ dataset.

Method RMSE ↓ AE ↓
Left Right Left Right

D.Light [44] 0.044 0.035 7.221 5.741
Ours 0.024 0.025 3.985 4.003

We also evaluated our method on the Cube++
dataset [12], specifically designed for illumination esti-
mation and color constancy. This dataset includes illu-
mination information annotated by the SpyderCube 11.
For our experiment, we selected 100 processed JPEG
images from Cube++. We then applied both Diffusion-
Light and our method to estimate the illumination from
each image. Subsequently, we rendered the left and
right white faces of the SpyderCube under the estimated
illumination, assuming purely Lambertian diffuse sur-
faces. To prevent information leakage from the SpyderCube in the input images, we masked out
the SpyderCube from the tested images and inpainted the masked region using LaMa [50]. We then
compared the rendered face colors to the colors sampled directly from the SpyderCube JPEG images.
Table 10 presents the RMSE and angular errors, demonstrating that our method clearly outperforms
DiffusionLight, achieving angular errors of less than 5◦ on both faces. Visual comparison results are
further illustrated in Fig. 10.

10https://github.com/DiffusionLight/image-array_of_spheres
11https://www.datacolor.com/spyder/products/spyder-cube/
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Figure 10: Visual results on Cube++ dataset. We show the rendered two white cube faces, mirror ball, and
matte silver ball from our method and DiffusionLight for visual comparison.

C.3 Lighting Estimation from Foreground Objects

Since our model is trained on object-centric synthetic rendering data, we can also apply it to estimate
lighting from foreground objects. We selected 4 NeRF synthetic objects [40] and 4 real-world
objects [52], aiming to estimate lighting from videos containing nine consecutive rendering views.

We qualitatively compare LuxDiT with optimization-based inverse rendering methods [41, 18] that
reconstruct 3D geometry and lighting from full NeRF scenes. Using the ground truth camera poses,
we rotate each frame’s estimated lighting into the global coordinate system and average across frames
to produce the final environment map.

Qualitative results are shown in Fig.11. On mostly diffuse objects like lego and hotdog, our method
recovers highlight directions accurately, enabling shadow rendering consistent with the input. For
glossy objects like mic and ficus, our model estimates lighting nearly identical to the ground truth.
While these HDR environment maps are included in our training set, the NeRF scenes differ signifi-
cantly from our synthetic renderings (see Fig. 8), indicating that our model leverages shading cues
and learned priors rather than direct memorization. In contrast, optimization-based baselines struggle
to capture high-frequency lighting detail and often introduce noise and artifacts in lighting.

We further tested our method on real-world foreground objects from the Objects-with-Lighting
dataset [52], which provides ground truth distant environment lighting. Similar to the NeRF synthetic
scene setup, the estimated lighting was then aligned into the global coordinate system using ground
truth camera poses. We compared our approach to NeuS+Mitsuba [55, 25], the top-performing
method on this dataset [52]. The metrics, using the three-sphere protocol, are presented in Table 11,
with visual results in Fig. 12.

While our model performs well overall, minor errors remain, e.g. color shifts in the NeRF Lego
scene (Fig. 11) and a slightly higher si-RMSE compared to NeuS+Mitsuba (Table 11). We believe
combining our generative model with optimization-based methods could further enhance lighting
estimation, which we leave for future work.

Table 11: Comparison of our method with NeuS+Mitsuba on Objects with Lighting datasets.

Method Scale-invariant RMSE ↓ Angular Error ↓ Normalized RMSE ↓
Diffuse Matte Mirror Diffuse Matte Mirror Diffuse Matte Mirror

NeuS+Mitsuba 0.082 0.232 0.424 3.145 3.383 3.526 0.180 0.545 0.717
Ours 0.086 0.253 0.482 1.262 1.594 2.000 0.153 0.339 0.479

18



GT & Input NVDIFFREC [41] NVDIFFRECMC [18] Ours

Figure 11: Lighting estimation from the NeRF synthetic objects. We use the estimated lighting from different
methods to re-render the original NeRF Blender scenes.

OursNeuS+Mitsuba

Input GT

OursNeuS+Mitsuba

Input GT Input GT

OursNeuS+Mitsuba

Figure 12: Lighting estimation from the masked real objects from Objects with Lighting.

C.4 Additional Ablations

C.4.1 The Choice of the HDR Fusion Model

As detailed in Sec. 4.1, a lightweight MLPψ is employed to merge the dual-tonemapped environment
maps, Eldr and Elog, thereby reconstructing the HDR environment map Ê. There are also alternative
fusion methods, such as using a more complex CNN model to incorporate adjacent pixel information
for HDR fusion, or applying a rule-based approach with explicit inverse equations. To justify our
choice of a simple MLP, we evaluate various HDR fusion techniques, including MLP, CNN, and a
rule-based method. The CNN model has an identical number of layers to our MLP model, using 3×3
convolution kernels across layers. The rule-based method involves applying the inverse Reinhard map
for lights with intensity below 8, a linear interpolation between Reinhard and log maps for intensities
ranging from 8 to 16, and exclusively the log map for intensities exceeding 16.

Table 12: Comparison on differ-
ent HDR fusion approaches.

MLP CNN Rule

RMSE ↓ 11.55 11.74 11.71

Table 12 presents the RMSE results on testing Polyhaven HDRIs.
All three methods demonstrate comparable accuracy, with the MLP
approach exhibiting a slight advantage. Compared to the rule-based
approach, we believe the neural approach can better handle numer-
ical inconsistency after image uint8 quantization, and the potential
data range overflow (e.g., lights beyond the pre-defined maximum
intensity 10000).
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C.4.2 The Impact of LoRA on Synthetic Scenes

Section 5.5 demonstrates the impact of varying LoRA scales (0.0 to 1.0) on the predicted lighting
content of real-world images. This ablation study, conversely, investigates how our LoRA model,
trained with real images, affects the lighting estimation of synthetic foreground objects. Table 13
presents the angular errors using a three-sphere evaluation, and Fig. 16 provides the visual results.

Table 13: Ablation study on impact of LoRA scale on synthetic foreground objects.
LoRA Scale 0.00 0.25 0.50 0.75 1.00

Diffuse ↓ 1.594 1.737 2.170 3.832 3.937
Matte ↓ 2.068 2.311 2.914 5.322 5.891
Mirror ↓ 3.405 3.690 4.342 6.783 7.400

In contrast to the ablation performed on scene images, a larger LoRA scale leads to lower lighting
estimation accuracy. As Fig. 16 illustrates, increasing the LoRA scale causes foreground content
to gradually appear on the estimated environment map, which is consistent with our LoRA model’s
behavior. Nevertheless, the estimated highlights remain consistent across different LoRA scales.

D Additional Results

We provide additional visual results in this section to further support the claims made in the main
paper.

• Model Ablation and LoRA Scale: Figure 13 details the ablation study on our model’s design
and the exploration of different LoRA scales.

• Camera Parameter Variations: Figures 14 and 15 show lighting estimation performance
when varying camera field of view (FOV) and elevation angles, respectively.

• Three-Sphere Rendering Evaluations: Figures 17, 18, and 19 display further lighting estima-
tion outcomes using the three-sphere rendering protocol on the Laval Indoor, Laval Outdoor,
and Poly Haven datasets.

• Virtual Object Insertion: Figures 20 and 21 illustrate additional virtual object insertion
results on Poly Haven panorama crops and Waymo driving scenes.
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Input Image Model Ablation LoRA Scale Exploration
channel concat. LoRA 0.0 LoRA 0.1 LoRA 0.2 LoRA 0.4

w/o syn. data LoRA 0.6 LoRA 0.7 LoRA 0.8 LoRA 1.0

Figure 13: Model design ablation and LoRA scale exploration. The “Model Ablation” column
shows the results of our two model design variants: 1) channel concatenation and 2) training without
synthetic rendering data. The “LoRA Scale Exploration” columns show the visual results of our
model with different LoRA scales.

FOV 45◦ 50◦ 60◦ 70◦ 75◦

GT

Figure 14: Lighting estimation from input images with varying camera FOV.

Elevation 30◦ ↑ 15◦ ↑ 0◦ 15◦ ↓ 30◦ ↓

GT

Figure 15: Lighting estimation from input images with varying camera elevation.

Input Image LoRA Scale Exploration
GT LoRA 0.00 LoRA 0.25

LoRA 0.50 LoRA 0.75 LoRA 1.00

Figure 16: LoRA scale exploration on synthetic foreground scenes.
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Input Image GT StyleLight DiffusionLight Ours

Figure 17: Additional qualitative results on Laval Indoor dataset.

22



Input Image GT H-G et al. NLFE DiffusionLight Ours

Figure 18: Additional qualitative results on Laval Outdoor dataset.
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Input Image GT StyleLight NLFE DiffusionLight Ours

Figure 19: Additional qualitative results on Poly Haven dataset.
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Figure 20: Additional virtual object insertion on Poly Haven perspective crops.

H-G et al. [22] NLFE DiffusionLight DiPIR Ours

Figure 21: Additional virtual object insertion on Waymo driving scenes.

25


	Introduction
	Related Work
	Preliminaries: Diffusion Models
	Method
	Model Design
	Data Strategy
	Training Scheme

	Experiments
	Experiment Settings
	Evaluation of Image Lighting Estimation
	Evaluation of Video Lighting Estimation
	Evaluation of Virtual Object Insertion
	Ablation Study

	Discussion
	Broader Impact
	Additional Details
	HDR Reconstruction
	Datasets
	Model Details and Initialization
	User Study Details for Virtual Object Insertion
	Three-sphere Evaluation Protocol

	Additional Experiments
	Array-of-Spheres Evaluation
	Lighting Estimation with the Cube++ Dataset
	Lighting Estimation from Foreground Objects
	Additional Ablations
	The Choice of the HDR Fusion Model
	The Impact of LoRA on Synthetic Scenes


	Additional Results

